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Abstract—We introduce a self-limiting Hawkes process, build-
ing off of the standard Hawkes process and self-correcting point
process in the literature. The self-limiting Hawkes process is
intended to model situations in which competing forces – one
driven by self-excitation and one by the tendency to block events
from occurring – can be effectively captured by considering a
single stochastic intensity. The example presented here is urban
crime. We show that under some circumstances the parameters
of the self-limiting Hawkes process can be well-estimated by
adapting existing techniques. We apply these techniques to crime
data, showing that the self-limiting Hawkes process is a plausible
alternative to the standard Hawkes process for modeling crime.

Index Terms—Crime, expectation-maximization algorithms,
Hawkes process, maximum likelihood estimation, stochastic point
processes

I. INTRODUCTION

Many real-world stochastic systems appear to exhibit a self-
exciting tendency, a phenomenon whereby the occurrence of
these stochastic events seems to cause an increase in the rate of
occurrence of subsequent events, at least locally in time (and
potentially space). Some examples include earthquakes [1],
financial markets [5], and various forms of communication
[4]. One common model used to describe these systems is
the Hawkes process [6], a linear model that is particularly
amenable to fitting to potentially self-exciting datasets.

Another self-exciting system that has been modeled by
the Hawkes process is urban crime. Various criminological
theories and studies [9], [10] note the existence of “repeat
victimization”, whereby criminals have a tendency to commit
their crimes at or against places or people who have previously
been victimized. In [13], this basic phenomenon was cast in
the form of a Hawkes process to describe repeat victimization
in burglary data; other studies have followed [12].

But in the case of crime, there is another factor at play -
the actions of police, one of whose goal is to prevent crimes
from occurring in the first place. Indeed, in [12], the Hawkes
process fit to up-to-date crime data was used in conjunction
with police forces to inform police patrols, with measurable
success. However, there is a subtle issue involved here that
has not previously been addressed: given that past crime data
was presumably influenced in some way by the past actions of
the police, but the Hawkes process model does not explicitly
capture this interaction, any estimates of the Hawkes process

using past crime data will also implicitly include prior police
effects. Using these fits to inform future police actions is
therefore questionable, even if we have a good model for how
police might influence true crime rates, as our estimates of
the stochastic crime rates already include in some unknown
way the effect of police. This effect is compounded by the
fact that police actions themselves are typically influenced by
those crimes that do occur, such that a feedback loop exists
in the crime-police system, which should alter the estimated
Hawkes process in some non-trivial way.

Within the point-process literature, there are models vari-
ously termed as self-correcting [7]. These models differ from
a standard self-exciting Hawkes process in that events are
typically modeled as decreasing the intensity of the process
via multiplication by some positive factor less than unity.
A common feature of these models is an exogenous rate
of increase of the stochastic intensity over time, to offset
the intensity decreases accompanying the events themselves.
While these models have the flavor of what we want to capture
in our crime example – a police-like effect limiting growth
of the event rate – they don’t explicitly capture the tension
between self-excitation and self-correction that we believe the
crime-police system ought to exhibit.

For this reason, we introduce here what we refer to as
a self-limiting Hawkes process. The specific motivation is,
as discussed, the crime-police system, but the model, and
the methods we show to simulate it and estimate it from
data, could be of potential interest in other domains whereby
control is often exercised or desired over the occurrence of
self-exciting events. The paper is structured as follows. In
section II we provide some background on the mathematics of
the Hawkes process and methods of its estimation. In section
III we introduce the self-limiting Hawkes process model and
describe methods of simulation. In section IV we provide a
method for fitting the self-limiting Hawkes process to data,
testing on simulated data to verify these methods. Finally, in
section V we test the model on real crime data, finding that
in certain cases, the self-limiting Hawkes model out-performs
the standard Hawkes model.



II. BACKGROUND

Before we define a Hawkes process, we will first define the
conditional intensity of a point process as

λ(t) = lim
dt→0

E[N(t, t+ dt | Ht)]

dt
,

where Ht is the history of the process up until time t and N
counts the number of points in the interval [t, t + dt) given
Ht. This leads us to the definition of a Hawkes process, which
has conditional intensity

λ(t) = µ(t) +
∑
i:ti<t

g(t− ti), (1)

where µ(t) is the background intensity of the process and g
is a function that describes the self-exciting property of the
process [6]. For the purpose of this paper, we will use µ(t) =
µ ∈ R+ and the function g(t− ti) = kωe−ω(t−ti) for t > ti,
g(t− ti) = 0 for t ≤ ti.

One way to conceptualize a Hawkes process over an interval
of time [0, T ] is as a sum of individual Poisson processes:
λ0(t) = µ(t), λ1(t) = g(t− t1), . . . , λn(t) = g(t− tn). Each
Poisson process creates a generation of points upon which the
following Poisson processes are based. Intensity λ0 = µ(t)
has no conditions, so it defines a Poisson process on the whole
interval [0, T ]. Events that arise from intensity λ0 are referred
to as background events. Intensities λi, i > 0 do not activate
until t > ti, where ti is the ith point in the overall process.
So λi defines a Poisson process on the interval [ti, T ]. Events
arising from intensity λi, i > 0 are called daughter events,
and the parent event of each of these daughters is event i.

A. Simulating a Hawkes Process

One way to simulate a Hawkes process is using what is
known as the thinning method. This method was first proposed
as a way to simulate non-homogeneous point processes [11],
but has since been modified to simulate Hawkes processes
[14]; it is especially useful if the excited kernel is not expo-
nential. The algorithm is described in Fig. 1.

When applied to the Hawkes process, the thinning method
first simulates background events from intensity µ(t). Then,
it simulates all of the direct offspring of the background
events through the various g kernels that the background events
produce. Then another excited kernel is simulated for each of
these daughters, etc. This is repeated until no new points are
simulated for the last round of excited kernels.

Though this method for simulating a Hawkes process is
intuitive and can be implemented relatively easily, there are
more efficient methods of simulation available, especially
when the excited kernel g is an exponential. One particular
example is the method of Dassios and Zhao [3]; this algorithm
will be discussed in more detail in Section III.

B. Estimating the Parameters of a Hawkes Process

Here we present a review of the Expectation-Maximization
(E-M) method [15] to estimate the parameters µ, k, and ω

Input: the intensity function λ(t)
Output: a realization of the point process, {t1, . . . , tn}

1) Define M = max{λ(t) : t ∈ [0, T ]} and let N ∼
Pois(MT ).

2) Place N points uniformly at random in the interval
[0, T ].

3) For i = 1, . . . , N , delete point ti with probability 1−
λ(ti)
M .

Fig. 1. Thinning Method for Simulating a Non-homogeneous Point Process

of a Hawkes process from data. First, the log-likelihood of a
process given intensity λ(t) and data {t1, . . . , tn} is

L = −
∫ T

0

λ(t)dt+
∑
i

ln(λ(ti)). (2)

To use this formula for a Hawkes process, first suppose we
knew the true branching structure of the process: which events
were background events and which were daughters, along with
which event was the parent of each daughter. Then we could
rewrite L as

L =
∑
i∈B

ln(µ)−
∫ T

0

µdt

+
∑
i∈D

ln
(
kωe−ω(ti−tp(i))

)
−
∫ T

0

∑
i:ti<t

kωe−ω(t−ti)dt,

where B and D are the sets of background and daughter
events, respectively, and p(i) is defined as the parent event
of event of i.

Though we generally don’t know the true branching struc-
ture of the process, we will assume we can still generate a
probabilistic branching structure P , where

Pij =

{
prob. that i is a background event , i = j

prob. that i is a daughter of j , j < i
. (3)

Taking the expectation of L with respect to P gives us what
is called the complete data log-likelihood [15]:

E[L ] = ln(µ)
∑
i

Pii + ln(kω)
∑
j<i

Pij−

ω
∑
j<i

Pi,j(ti − tj)− µT − k
∑
i

(
1− e−ω(T−ti)

)
. (4)

One can then maximize E[L ] with respect to µ, k, and ω
in a variety of ways, including by taking the respective partial
derivatives with respect to each variable and setting them equal
to 0 to obtain analytical formulas for the optimum values; for
more details, see [15]. Of course, we must still specify Pij in
order to use (4). But, since a Hawkes Process can be thought
of as a sum of Poisson processes, we have

Pij =

{
µ

λ(ti)
i = j

kωe−ω(ti−tj)

λ(ti)
j < i

. (5)



Input: An initial guess for µ, k, ω and a tolerance ε
Output: µ, k, ω

1) For each event pair j ≤ i, calculate Pij using the
current values of µ, k, and ω using (5). This is the
Expectation step of the E-M algorithm.

2) Update our values of µ, k, and ω using these Pij by
maximizing (4). This is the Maximization step of the
E-M algorithm.

3) Repeat steps 2 and 3 until some measure of conver-
gence, given the desired tolerance ε, is achieved.

Fig. 2. E-M Algorithm for Estimating Hawkes Process Parameters

From here, we can see that we need µ, k, and ω to calculate Pij
and Pij to calculate µ, k, and ω. This leads us to the iterative
E-M (Expectation-Maximization) method given in Fig. 2.

III. A SELF-LIMITING HAWKES PROCESS

We now turn to the development of our model for a self-
limiting Hawkes process. Recall that the overall goal is to
model a stochastic process with two competing properties: 1)
the process should have self-excitation, for which a Hawkes
process can serve as a baseline and 2) the model should
incorporate a mechanism by which the intensity of the process
can also be reduced by the occurrence of events, to represent
potentially exogenous influences such as police activity. To
capture this second, self-limiting effect, we introduce two new
parameters, α and β, and define N(α, t), which counts the
number of events that occurred through the process on interval
[t − α, t). Then our model of a self-limiting Hawkes process
intensity is

λ(t) =

(
µ+ kω

∑
i:ti<t

e−ω(t−ti)

)
e−βN(α,t). (6)

Parameter β therefore represents the strength of self-limiting,
with greater values decreasing the intensity more than smaller
values, and α represents a time-window over which any given
event can contribute to self-limiting of the overall process. If
the process is being used to model criminal events, then we
can think of α as the memory of the police and β as the
increase in police deterrent activity for each additional crime
that occurs in the interval [t− α, t).

Equation (6) can be interpreted in the following mecha-
nistic way, which aids in simulating. In the absence of self-
limiting, the process would behave as a standard Hawkes
process, and would generate some sequence of hypothetical
events. However, the self-limiting effect is such that each
event ti that does in fact occur via the process causes every
subsequent hypothetical event within the period (ti, ti +α] to
be probabilistically “blocked” from occurring, with probability
p = 1−e−β . If we assume that multiple overlapping blockings
of a single hypothetical event are probabilistically independent,
then the probability of a hypothetical event at time tj not being
blocked is e−βN(α,tj). Hence, the intensity of (6) tells us that
events occur only when the underlying Hawkes process would

hypothetically cause them to occur, and only if they are not
probabilistically blocked by some of the prior events that did
in fact occur (weren’t blocked themselves).

Using this interpretation, one could create a straightforward
Poisson-thinning type algorithm to simulate the self-limiting
Hawkes process. Specifically, first simulate the underlying
Hawkes process by itself, without any self-limiting effect,
being sure to retain the true branching structure of the process.
Then, starting with the first event and working sequentially,
retain each event with probability e−βN(α,tj). If an event
ti is retained, continue to the next event. If event ti is not
retained, remove it from the list of event times and also remove
all subsequent events that are descendants (either directly or
indirectly) of ti in the branching process, then proceed to the
next event.

While the above process is straighforward to describe, it is
not very computationally efficient. Hence, we also provide a
more efficient algorithm, which is a modified version of the
algorithm of Dassios and Zhao [3], and which incorporates the
preventative action right into the generation of the Hawkes
process. This algorithm does have the drawback of only
being valid for the exponential excited kernel g that we are
using here. Rather than simulate the process layer-by-layer
as described in section II-A and above, the method given by
Dassios and Zhao starts at time t = 0 and jumps forward by
simulating the time interval ∆t until the next event occurs.
Each such ∆t is found by randomly generating two possible
values: one from the background rate µ and one from the
full summation of the excited kernels, which is itself simply
a decaying exponential. The smaller of these two times is
then chosen as ∆t, time is incremented by this value, and
the fully summed excited kernel is updated via exponential
decay and an increase by k and the algorithm continues. To
modify this method to account for the self-limiting aspect,
we simply add a step where each event to be added is only
added with probability e−βN(α,tj), where tj is the time of the
potential new event. If tj is added, the algorithm continues
just as in the Dassios and Zhao method. If tj is not added,
increment time by ∆t and factor in the exponential decay of
the excited kernel, but do not increment the excited kernel as
one normally would.

We note here that, unlike a standard Hawkes process, our
self-limiting process can still remain bounded even if k > 1.
In a standard Hawkes process, k > 1 means that each event on
average gives rise to more than one daughter event, generally
causing the intensity to grow exponentially in time. However,
the self-limiting process avoids this through the e−βN(α,t)

term. If k > 1 starts to cause λ to grow very large, then
the number of events N will also grow, and the exponential
dampening will force the value of λ back down. In Fig. 3, we
illustrate two realizations of a self-limiting Hawkes process,
one of which has k > 1.
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Fig. 3. Examples of simulated data from a self-limiting Hawkes model and the intensity function λ(t). For the subfigure on the left, the parameters were
µ = 0.15, k = 0.6, ω = 1, α = 5, and β = 0.3. For the subfigure on the right, the parameters were µ = 0.5, k = 1.5, ω = 0.5, α = 10, and β = 0.1.

IV. ESTIMATING THE PARAMETERS OF A SELF-LIMITING
HAWKES PROCESS

To estimate the parameters of a self-limiting Hawkes pro-
cess, we modify the Expectation-Maximization procedure de-
scribed above. First, we note that on a fixed time interval from
[0, T ], N(α, t) is just a piece-wise constant function

N(α, t) =


n1 t ∈ [x0 = 0, x1]

n2 t ∈ (x1, x2]
...

...
nl t ∈ (xl−1, xl = T ].

The pairs (ni, xi) can be easily computed by realizing that
N(α, t) increases by exactly one at each event time ti and
decreases by exactly one at each time ti + α. The set {xi} is
therefore constructed by taking the union of the two sets {ti}
and {ti +α}, sorting it, and removing any entries with values
greater than T . Then we can write the log-likelihood function
by plugging the intensity from (6) into (2) and then taking
the expectation with respect to the probabilistic branching
structure P to obtain

E[L ] = ln(µ)
∑
i

Pii − β
∑
i

Piins(ti) + ln(k)
∑
j<i

Pij

+ ln(ω)
∑
j<i

Pij − ω
∑
j<i

Pij(ti − tj)− β
∑
j<i

Pijns(ti)

− µ
l∑
i=1

e−βni(xi − xi−1)

+ k

n∑
i=1

l∑
j=1

e−βnj

[
e−ω(xj−ti) − e−ω(xj−1−ti)

]
1E ,

where 1E is the indicator function for the event E = {ti <
xj} and s(ti) is the index of ti in {x0, . . . , xl}. Here P is
equivalent to the definition of P in (5) since e−βN(α,ti) is

a factor in the numerator and denominator of each fraction,
thereby cancelling.

Our log-likelihood function now contains five unknowns
(µ, k, ω, α, and β). For µ, k, ω, and β, we can find the
respective partial derivatives of E[L ] and set them equal to
0 in order to maximize the log-likelihood. This gives the
following formulas:

µ =

n∑
i=1

Pi,i

l∑
i=1

e−βni(xi − xi−1)

, (7)

k =

−
∑
j<i

Pi,j

n∑
i=1

l∑
j=1

e−βnj
[
e−ω(xj−ti) − e−ω(xj−1−ti)

]
1{ti<xj}

,

(8)

0 =
1

ω

∑
j<i

Pi,j −
∑
j<i

Pi,j(ti − tj)

+ k

l∑
j=1

e−βnj

n∑
i=1

(ti − xj)e−ω(xj−ti)1E

− k
l∑

j=1

e−βnj

n∑
i=1

(ti − xj−1)e−ω(xj−1−ti)1E ,

(9)

and

0 = −
∑
i

Pi,ins(ti) −
∑
j<i

Pi,jns(ti)

+ µ

l∑
i=1

nie
−βni(xi − xi−1)

− k
n∑
i=1

l∑
j=1

nje
−βnj

[
e−ω(xj−ti) − e−ω(xj−1−ti)

]
1E .

(10)



However, as N(α, t) is not differentiable with respect to α,
we must maximize over α using some other method. For now,
assume α is given, in which case the remaining parameters
µ, k, ω, and β could be found using the same basic E-M
algorithm given in Fig. 2, with the maximization step done
using (7)-(10). In practice, however, simultaneously solving
(9) and (10) can be quite computationally demanding. Hence,
in our implementations throughout the remainder of this paper,
we have chosen instead to perform a parameter sweep over β
values, numerically solving only (9) for each of the β values
swept over, thereby also obtaining µ and k from (7) and (8),
then simply choosing the parameter combination that resulted
in the highest value for L .

To estimate α, we also perform a parameter sweep, noting
the maximal log-likelihood obtained for each test value of α
and then simply selecting that α, and its accompanying µ, k,
ω, and β, with the greatest overall log-likelihood.

We tested our method over the following sets of parameters
for the preventative action:

α ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5},

β ∈ {0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045}.

We tested each value in each of these sets by choosing one
parameter to vary while holding the other parameter constant
at the fifth value in its set. So while we were testing the
different values of α, β was fixed at 0.025. Likewise, while
we were testing the different values of β, α was fixed at 2.5.
For each test, µ, k, and ω were fixed at 0.65, 0.65, and 50,
respectively.

For a particular set of values of α and β, 100 realizations of
a Hawkes process on time interval [0, 1000] were created with
the given parameters. When simulating these processes, we
employed the thinning algorithm. This was done so that each
realization would yield two datasets: one a standard Hawkes
process, which we will refer to as the hypothetical dataset,
which could be interpreted as the set of crimes that might
have occurred with no police intervention; the other, which
we will refer to as the self-limiting dataset, a corresponding
subset of the hypothetical dataset representing the full self-
limiting process, which can be thought of as the set of crimes
that might have actually occurred when police deterrence was
in place.

For each realization, the parameters µ, k, and ω were then
estimated using the standard Hawkes process E-M algorithm
on both resulting datasets, and using our self-limiting E-
M algorithm on the self-limiting dataset only. For this test,
when using our self-limiting E-M algorithm on the self-
limiting dataset, we used the true values of α and β to
estimate the other parameters. This allows us to determine the
extent to which the self-limiting aspect of the process affects
parameter estimation. This is an important point to consider,
given that current applications to crime data do not explicitly
consider the effects of police activity, and therefore may have
systematically biased estimates for parameter values.

To determine how well parameters have been estimated in
each of these various scenarios, we consider relative error
metrics for each of the estimated parameters. For example,
if µ(i)

e is the estimated value of µ for the ith Hawkes process
in one of the three scenarios, then our average relative error
over the 100 realizations for that scenario is

1

100

100∑
i=1

|µ(i)
e − µ|
µ

;

corresponding values are computed for the other parameters.
Results are shown in Fig. 4. Each subfigure consists of nine

different plots. Each row shows the relative errors in estimates
of µ, k, and ω under one of the three scenarios. The top row
shows the errors in estimation for the hypothetical datasets
using the standard Hawkes E-M algorithm, and serves as a
control. The middle row shows the errors when the standard
Hawkes E-M algorithm is used on the self-limiting datasets.
The bottom row shows the errors in estimation when using
our self-limiting E-M algorithm on the self-limiting datasets.
Across α and β values, we find that estimation error for each
of the three parameters is roughly the same when comparing
the hypothetical datasets estimated via standard Hawkes E-M
(top rows) to the self-limiting datasets estimated via our self-
limiting E-M (bottom rows). This shows that our algorithm
is able to estimate the parameters of a self-limiting Hawkes
process as well as can be done for a standard Hawkes process
of the same parameters. The middle rows show how mis-
specification of the model – using standard Hawkes as the
model when the process is in reality self-limiting – can lead to
significant errors in parameter estimation, in a systematic way.
Recall from section III that α can be thought of as the memory
of the police force and β can be thought of as the intensity
of the police force. So as α and β increase, the number of
events prevented within the hypothetical datasets increases. As
more events are prevented, we should expect that the accuracy
of the estimation via standard Hawkes E-M should decrease
as we lose more information about the underlying Hawkes
process, which is precisely what we find for parameters µ and
k. However, the error in estimating parameter ω is not very
sensitive to the precise value of α or β used.

Next, we tested how well the parameters are estimated when
using the parameter sweep method for estimating α and β.
To do this, we first chose two sets of self-limiting Hawkes
parameters on which to test the estimation:

{µ = 0.65, k = 0.65, ω = 50, α = 2, β = 0.05},

{µ = 0.65, k = 0.65, ω = 50, α = 5, β = 0.01}.

We then generated 100 self-limiting Hawkes processes for
each set of parameters. For each process, we used the self-
limiting E-M algorithm along with the parameter sweep
method to estimate the parameters. Tables I and II show the
average values of each of the five parameters estimated using
this method as well as the percent error between the average
estimated and true values of the parameters for both sets of
true parameters. As we can see, even though the estimation
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Fig. 4. Parameter estimation error when α is varied (left) and when β is varied (right), under various testing conditions described in the text.

TABLE I
THE AVERAGE ESTIMATED PARAMETERS COMPARED WITH THE TRUE

PARAMETERS FOR THE FIRST SET OF TRUE PARAMETERS.

Average
Parameter True Values Estimated Values Percent Error (%)

µ 0.65 0.6637 2.11
k 0.65 0.6449 -0.78
ω 50 51.5862 3.17
α 2 3.15 57.50
β 0.05 0.0429 -14.20

TABLE II
THE AVERAGE ESTIMATED PARAMETERS COMPARED WITH THE TRUE

PARAMETERS FOR THE SECOND SET OF TRUE PARAMETERS.

Average
Parameter True Values Estimated Values Percent Error (%)

µ 0.65 0.6955 7.00
k 0.65 0.7138 9.82
ω 50 50.6129 1.23
α 5 3.745 -25.10
β 0.01 0.0261 161.00

of α and β leads to much higher errors than is found with
the other parameters, the values found are still reasonable and
lead to accurate estimation of µ, k, and ω.

V. RESULTS USING REAL CRIME DATA

Here, we employ our self-limiting Hawkes process on crime
data from Chicago, obtained via their open access portal [2].
We stress here that the main purpose of this analysis is not
to establish that the self-limiting Hawkes process is superior
the the standard Hawkes process in describing real world
crime data; indeed, as we will show, neither model seems
especially well fitting to the data analyzed here, for reasons
we hypothesize below. Instead, this analysis is meant only
to establish the plausibility of the model with respect to an
often-used alternative (the standard Hawkes with exponentially
decaying excited kernel), and show that one can readily fit the
self-limiting Hawkes to real world datasets.

The data set considered contains the times and locations of
all burglaries in Chicago from 2001 to 2020. We have chosen
to focus on burglary here, as it is often used as an example
of a crime type with strong self-excitation. Though location
information is provided in the dataset, we are only considering
purely temporal processes here. Prior work [8] has shown that
parent-daughter crime pairs are often separated by relatively
small distances. To allow our temporal processes to account
for this, we have binned our data into squares with sides 1500
feet long, considering each such bin separately. In a square
this size, any crime could conceivably be the daughter of any
crime that occurred before it.

Having spatially binned our data, we only consider the ten
squares with the highest total crime counts. For each such bin,
we first divide the events into two sets, a training set (the first
half of the events) and a testing set (the second half of the
events). We then estimate the parameters of the training set
using both the standard and self-limiting Hawkes models. As
we mentioned in Sec. IV, when estimating the parameters of
the self-limiting Hawkes model, we will be using the E-M
algorithm to estimate µ, k, and ω, and these estimates will
be done independently for each square. For the estimation of
α and β, we use the same values for all squares; this seems
plausible, as the response of police to crime numbers is likely
more consistent across space than crime rates themselves.
After performing the sweeps, we choose the values of α
and β that maximize the number of squares where the self-
limiting Hawkes process outperformed the standard Hawkes
process on the square’s training set. Here, we say that model
A outperforms model B if the parameters estimated using
model A result in a higher log-likelihood value and lower
Akeike information criteron value (to be defined later) than
the parameters estimated using model B. The values of the
parameters found in this way are given in Tables III and IV.

To determine goodness of fit for each of these estimates, we
compute the residuals {τ1, . . . , τn} for each of the two models



TABLE III
THE VALUES OF THE PARAMETERS USING THE STANDARD HAWKES

MODEL.

Square µ (days−1) k ω (days−1)
1 0.0917 0.393 0.0890
2 0.0590 0.603 0.0204
3 0.0948 0.144 0.4550
4 0.0513 0.564 0.0287
5 0.1111 0.046 11.1671
6 0.0987 0.216 0.3034
7 0.874 0.311 0.1268
8 0.0734 0.447 0.0531
9 0.0737 0.443 0.0553

10 0.0720 0.461 0.0620

TABLE IV
THE VALUES OF THE PARAMETERS USING THE SELF-LIMITING HAWKES

MODEL USING AVERAGE BEST FIT VALUES α = 1.124 DAYS AND
β = 0.03.

Square µ (days−1) k ω (days−1)
1 0.0821 0.4703 0.0798
2 0.0581 0.6152 0.0275
3 0.0689 0.3901 0.0712
4 0.0585 0.4981 0.0463
5 0.1110 0.0485 10.8960
6 0.0599 0.5416 0.0460
7 0.0823 0.3621 0.1170
8 0.0692 0.4905 0.0592
9 0.0657 0.5177 0.0539
10 0.0710 0.4761 0.0724

in each testing set, where

τi =

∫ ti

0

λ(t)dt.

Here, {t1, . . . , tn} are the times of the crimes in the testing
set that occurred in the current square and λ uses our best fit
parameters from the training set for that square. Note that the
times in the testing set are shifted so that the final event of
the training set is time t = 0 for the testing set.

If a model correctly represents the data set, then the resid-
uals should be distributed in a way consistent with a unit rate
homogeneous Poisson process. Graphically, this means that
when plotted as points (i, τi), the resulting curve should lie
close to the line y = x. We measure the goodness of fit of
each model using the Kolmogorov–Smirnov test statistic

KS = max
1≤i≤n

|τi − i|;

results are given in Table V. We found that the self-limiting
Hawkes model has a smaller KS test statistic than the standard
Hawkes model in seven of the ten squares tested, meaning that
the self-limiting model is statistically significant at a higher
confidence level than the standard Hawkes process for these
seven squares. However, neither was model statistically signif-
icant at the 95% confidence level in any of the squares. One
possible reason for this finding is that the excited kernel for
real data is not exponentially decaying; this can be observed
in [13], where a non-parametric method is used to estimate
the kernel g of the Hawkes process, and the results are clearly
not exponential decay.

TABLE V
THE KOLMOGOROV–SMIRNOV TEST STATISTICS OF THE RESIDUALS

USING BOTH MODELS. SQUARE NUMBERS WRITTEN IN GREEN DESIGNATE
SQUARES WHERE THE SELF-LIMITING MODEL OUTPERFORMED THE

STANDARD MODEL WHILE NUMBERS IN RED DESIGNATE THE OPPOSITE.

KS KS.
Square (Standard) (S-L)

1 96.1088 91.6981
2 69.5929 71.0726
3 71.6870 49.8222
4 41.1858 45.4628
5 65.4766 65.3632
6 81.0281 55.3470
7 80.7324 79.6442
8 88.6134 87.9864
9 99.2195 93.5650
10 101.9143 103.3003

TABLE VI
THE AIC VALUES FOR EACH SQUARE USING BOTH MODELS. SQUARE

NUMBERS WRITTEN IN GREEN DESIGNATE SQUARES WHERE THE
SELF-LIMITING MODEL OUTPERFORMED THE STANDARD MODEL WHILE

NUMBERS IN RED DESIGNATE THE OPPOSITE.

Standard Self-Limiting Relative
Square Hawkes Hawkes Likelihood

1 13279.8524 13284.0058 0.1253
2 12619.7345 12621.4520 0.4237
3 11987.1279 11967.3027 4.9547× 10−5

4 11711.5026 11718.6872 0.0275
5 11518.8463 11522.4911 0.1616
6 11575.4314 11549.3261 2.1444× 10−6

7 11454.0408 11452.7481 0.5239
8 11417.2304 11421.1992 0.1375
9 11126.1679 11119.5940 0.0374

10 11025.7570 11031.2991 0.0626

Another way to measure the goodness of fit between models
is to compare the Akeike information criterion (AIC) values
for the two models. The AIC is defined as

AIC = 2(p−L ),

where p is the number of estimated parameters in the model
and L is the log-likelihood value of the estimated parameters.
The set of parameters that minimizes the AIC is the more
likely model.

For this analysis, we divide the data set up into the same
squares, training sets, and testing sets as we used for the resid-
ual analysis above. Once again, we estimate the parameters
of the training sets using both models. We then compute the
log-likelihood and AIC values of each testing set using the
parameters estimated using the corresponding training sets.
The AIC values are given in Table VI. The third column of
Table VI lists the relative likelihoods of the models, defined
as

relative likelihood = e
AICmin−AICmax

2 .

This measure represents how probable the higher AIC model
is to minimize the information loss relative to the lower AIC
model.

As we can see in Table VI, the self-limiting Hawkes model
resulted in lower AIC values in four of the ten squares. Thus,
in these four squares, it is more likely that the data follows a



self-limiting Hawkes process rather than a standard Hawkes
process. Moreover, in three of these squares, the relative
likelihood values indicate that the probability of the standard
Hawkes model resulting in a smaller information loss than the
self-limiting Hawkes model is effectively zero. Hence, the self-
limiting Hawkes process based on an exponentially decaying
excited kernel is in some circumstances a better fitting model
to our crime data than the standard Hawkes process with the
same form of kernel.

VI. CONCLUSIONS

In this work, we introduced a self-limiting Hawkes process,
a variant of the Hawkes process where the self-exciting
component is counteracted by a self-limiting component. In the
context of modelling crime data, the self-exiting component
represents the likelihood that crime at a point in time will
likely lead to more crime in the near future. The self-limiting
component represents the efforts of a police force in preventing
crime events from happening.

We provide methods for simulating the self-limiting Hawkes
process, as well as a method for estimating the parameters
of the self-limiting Hawkes process given a dataset of event
times. Using maximum likelihood estimation, it has been
shown that the parameters of a standard Hawkes process can
be estimated with high accuracy [15]. Using a variation of
this method that takes into account the preventative action of
the self-limiting Hawkes process, we show that one can still
estimate the parameters of the underlying Hawkes process with
high accuracy. Further, using real crime data, we were able
to show that the self-limiting Hawkes process is a plausible
alternative to the standard Hawkes process, though neither of
the two processes were very likely fits to the data.

Future work in this area could include the incorporation of
a spatial component to the self-limiting Hawkes model so that
spatial binning of the data for parameter estimation would be
unnecessary. It has been shown that a spatial component can
be incorporated into a the standard Hawkes model [13], so
we believe that a similar approach could be used for the self-
limiting Hawkes model, and may enhance its ability to fit real
crime data. Another avenue of inquiry along these lines would
be testing self-limiting Hawkes models with excited kernels g
that are not decaying exponentials, which would also likely
enhance the ability of the model to fit real-world data.
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