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NONINTRUSIVE AND STRUCTURE PRESERVING MULTISCALE
INTEGRATION OF STIFF ODEs, SDEs, AND HAMILTONIAN

SYSTEMS WITH HIDDEN SLOW DYNAMICS VIA FLOW
AVERAGING∗

MOLEI TAO† , HOUMAN OWHADI‡ , AND JERROLD E. MARSDEN†

Abstract. We introduce a new class of integrators for stiff ODEs as well as SDEs. Examples of
subclasses of systems that we treat are ODEs and SDEs that are sums of two terms, one of which
has large coefficients. These integrators are as follows: (i) Multiscale: They are based on flow aver-
aging and thus do not fully resolve the fast variables and have a computational cost determined by
slow variables. (ii) Versatile: The method is based on averaging the flows of the given dynamical
system (which may have hidden slow and fast processes) instead of averaging the instantaneous drift
of assumed separated slow and fast processes. This bypasses the need for identifying explicitly (or
numerically) the slow or fast variables. (iii) Nonintrusive: A pre-existing numerical scheme resolving
the microscopic time scale can be used as a black box and easily turned into one of the integrators
in this paper by turning the large coefficients on over a microscopic time scale and off during a
mesoscopic time scale. (iv) Convergent over two scales: They converge strongly over slow processes
and in the sense of measures over fast ones. We introduce the related notion of two-scale flow con-
vergence and analyze the convergence of these integrators under the induced topology. (v) Structure
preserving : They inherit the structure preserving properties of the legacy integrators from which
they are derived. Therefore, for stiff Hamiltonian systems (possibly on manifolds), they can be made
to be symplectic, time-reversible, and symmetry preserving (symmetries are group actions that leave
the system invariant) in all variables. They are explicit and applicable to arbitrary stiff potentials
(that need not be quadratic). Their application to the Fermi–Pasta–Ulam problems shows accuracy
and stability over four orders of magnitude of time scales. For stiff Langevin equations, they are
symmetry preserving, time-reversible, Boltzmann–Gibbs-reversible, quasi-symplectic on all variables,
and conformally symplectic with isotropic friction.

Key words. multiscale integration, flow averaging, nonintrusive, F -convergence, structure
preservation, Hamiltonian, Langevin
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1. Overview of the integrator on ODEs. Consider the following ODE on R
d:

(1.1) u̇ε = G(uε) +
1

ε
F (uε).

In subsections 1.9, 2.1, 3.1, 3.5, and 4.1, we will consider more general ODEs, stiff
deterministic Hamiltonian systems (2.1), SDEs ((3.1) and (3.15)), and Langevin equa-
tions ((4.1) and (4.2)); however, for the sake of clarity, we will start the description
of our method with (1.1).

Condition 1.1. Assume that there exists a diffeomorphism η := (ηx, ηy), from
R

d onto R
d−p ×R

p (with uniformly bounded C1, C2 derivatives), separating slow and
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fast variables, i.e., such that (for all ε > 0) the process (xεt , y
ε
t) = (ηx(uεt), η

y(uεt))
satisfies an ODE system of the form

(1.2)

{
ẋε = g(xε, yε), xε0 = x0,

ẏε = 1
ε f(x

ε, yε), yε0 = y0.

Condition 1.2. Assume that the fast variables in (1.2) are locally ergodic with
respect to a family of measures μ drifted by slow variables. More precisely, we assume
that there exists a family of probability measures μ(x, dy) on R

p indexed by x ∈ R
d−p

and a positive function T �→ E(T ) such that limT→∞ E(T ) = 0 and such that for all
x0, y0, T , and φ uniformly bounded and Lipschitz the solution to

(1.3) Ẏt = f(x0, Yt), Y0 = y0

satisfies

(1.4)

∣∣∣∣∣ 1T
∫ T

0

φ(Ys)ds−
∫
Rp

φ(y)μ(x0, dy)

∣∣∣∣∣ ≤ χ
(‖(x0, y0)‖)E(T )(‖φ‖L∞ + ‖∇φ‖L∞),

where r �→ χ(r) is bounded on compact sets.
Under Conditions 1.1 and 1.2, it is known (we refer the reader, for instance, to [99]

or to Theorem 14 of section 3 of Chapter II of [108] or to [92]) that xε converges
towards xt defined as the solution to the ODE

(1.5) ẋ =

∫
g(x, y)μ(x, dy), x|t=0 = x0,

where μ(x, dy) is the ergodic measure associated with the solution to the ODE

(1.6) ẏ = f(x, y).

It follows that the slow behavior of solutions of (1.1) can be simulated over coarse time
steps by first identifying the slow process xε and then using numerical approximations
of solutions of (1.2) to approximate xε. Two classes of integrators have been founded
on this observation: the equation-free method [67, 68] and the heterogeneous multi-
scale method (HMM) [37, 41, 36, 5]. One shared characteristic of the original form
of those integrators is, after identification of the slow variables, to use a microsolver
to approximate the effective drift in (1.5) by averaging the instantaneous drift g with
respect to numerical solutions of (1.6) over a time span larger than the mixing time
of the solution to (1.6).

1.1. FLAVORS. In this paper, we propose a new method based on the aver-
aging of the instantaneous flow of the ODE (1.1) with hidden slow and fast variables
instead of the instantaneous drift of xε in ODE (1.2) with separated slow and fast
variables. We call the resulting class of numerical integrators FLow AVeraging in-
tegratORS (FLAVORS). Since FLAVORS are directly applied to (1.1), hidden slow
variables do not need to be identified, either explicitly or numerically. Furthermore,

FLAVORS can be implemented using an arbitrary legacy integrator Φ
1
ε

h for (1.1) in
which the parameter 1

ε can be controlled (Figure 1.1). More precisely, assume that
there exists a constant h0 > 0 such that Φα

h satisfies for all h ≤ h0 min( 1
α , 1) and

u ∈ R
d

(1.7)
∣∣Φα

h(u)− u− hG(u)− αhF (u)
∣∣ ≤ Ch2(1 + α)2;
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Fig. 1.1. A pre-existing numerical scheme resolving the microscopic time scale can be used
as a black box and turned into a FLAVOR by simply turning stiff parameters on and off over a
microscopic time scale τ (on) and a mesoscopic time scale δ (off). The bottom line of the approach
is to (repeatedly) compose an accurate, short time integration of the complete set of equations with an
accurate, intermediate-time integration of the nonstiff part of the system. While the integration over
short time intervals is accurate (in a strong sense), this is extended to intermediate time integration
(in the sense of measures) using the interplay between the short time integration and the mesoscopic
integration. The computational cost remains bounded independently from the stiff parameter 1/ε
because of the following: (i) The whole system is integrated only over extremely short (τ � ε) time
intervals during every intermediate (δ) time intervals. (ii) The intermediate time step δ (that of the
nonstiff part of the system) is limited not by the fast time scales (ε) but by the slow ones (O(1)).

then FLAVOR can be defined as the algorithm simulating the process

(1.8) ūt =
(
Φ0

δ−τ ◦ Φ 1
ε
τ

)k
(u0) for kδ ≤ t < (k + 1)δ,

where τ is a fine time step resolving the fast time scale (τ 	 ε) and δ is a mesoscopic
time step independent of the fast time scale satisfying τ 	 ε	 δ 	 1 and

(1.9)
(τ
ε

)2
	 δ 	 τ

ε
.

In our numerical experiments, we have used the “rule of thumb” δ ∼ γ τ
ε , where γ is

a small parameter (0.1, for instance).
By switching stiff parameters, FLAVOR approximates the flow of (1.1) over a

coarse time step h (resolving the slow time scale) by the flow

(1.10) Φh :=
(
Φ0

h
M −τ

◦ Φ 1
ε
τ

)M
,

where M is a positive integer corresponding to the number of “samples” used to
average the flow (δ has to be identified with h

M ). We refer the reader to subsection 1.4
for the distinction between macro- and mesosteps and for the rationale and mechanism
behind FLAVORS and the limits (1.9).

Since FLAVORS are obtained by flow composition, we will show in sections 2
and 4 that they inherit the structure preserving properties (for instance, symplecticity
and symmetries under a group action) of the legacy integrator for Hamiltonian systems
and Langevin equations.

Under conditions (1.9) on τ and δ, we show that (1.8) is strongly accurate with
respect to (hidden) slow variables and weakly (in the sense of measures) accurate with
respect to (hidden) fast variables. Motivated by this observation, we introduce the
related notion of two-scale flow convergence in analogy with homogenization theory
for elliptic PDEs [90, 3] and call it F -convergence for short. F -convergence is close in
spirit to the Young measure approach to computing slowly advancing fast oscillations
introduced in [10, 9].
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1.2. Two-scale flow convergence. Let (ξεt )t∈R+ be a sequence of processes on
R

d (functions from R
+ to R

d) indexed by ε > 0. Let (Xt)t∈R+ be a process on R
d−p

(p ≥ 0). Let x �→ ν(x, dz) be a function from R
d−p into the space of probability

measures on R
d.

Definition 1.1. We say that the process ξεt F -converges to ν(Xt, dz) as ε ↓ 0

and write ξεt
F−−−→

ε→0
ν(Xt, dz) if and only if for all functions ϕ bounded and uniformly

Lipschitz continuous on R
d, and for all t > 0,

(1.11) lim
h→0

lim
ε→0

1

h

∫ t+h

t

ϕ(ξεs) ds =

∫
Rd

ϕ(z)ν(Xt, dz).

1.3. Asymptotic convergence result. Our convergence theorem requires that
uεt and ūt do not blow up as ε ↓ 0; more precisely, we will assume that the following
condition is satisfied.

Condition 1.3.

1. F and G are Lipschitz continuous.
2. For all u0, T > 0, the trajectories (uεt)0≤t≤T are uniformly bounded in ε.
3. For all u0, T > 0, the trajectories (ūεt)0≤t≤T are uniformly bounded in ε,

0 < δ ≤ h0, and τ ≤ min(τ0ε, δ).
For π, an arbitrary measure on R

d, we define η−1 ∗ π to be the push forward of
the measure π by η−1.

Theorem 1.2. Let uεt be the solution to (1.1) and ūt be defined by (1.8). Assume
that (1.7) and Conditions 1.1, 1.2, and 1.3 are satisfied; then the following hold:

• uεt F -converges to η−1 ∗ (δXt ⊗ μ(Xt, dy)
)
as ε ↓ 0, where Xt is the solution

to

(1.12) Ẋt =

∫
g(Xt, y)μ(Xt, dy), X0 = x0.

• ūt F -converges to η−1 ∗ (δXt ⊗ μ(Xt, dy)
)
for ε ≤ δ/(−C ln δ), τ

ε ↓ 0, ε
τ δ ↓ 0,

and ( τε )
2 1
δ ↓ 0.

Remark 1.1. The F -convergence of uεt to η
−1 ∗ (δXt ⊗μ(Xt, dy)

)
can be restated

as

(1.13) lim
h→0

lim
ε→0

1

h

∫ t+h

t

ϕ(uεs) ds =

∫
Rp

ϕ(η−1(Xt, y))μ(Xt, dy)

for all functions ϕ bounded and uniformly Lipschitz continuous on R
d and for all

t > 0.
Remark 1.2. Observe that g comes from (1.5). It is not explicitly known and

does not need to be explicitly known for the implementation of the proposed method.
Remark 1.3. The limits on ε, τ , and δ are in essence stating that FLAVOR is

accurate provided that τ 	 ε (τ resolves the stiffness of (1.1)) and (1.9) is satisfied.
Remark 1.4. Throughout this paper, C will refer to an appropriately large enough

constant independent from ε, δ, τ . To simplify the presentation of our results, we use
the same letter C for expressions such as 2CeC instead of writing it as a new constant
C1 independent from ε, δ, τ .

1.4. Rationale and mechanism behind FLAVORS. We will now explain
the rationale and mechanism behind FLAVORS. We refer the reader to subsection A.1
of the appendix for the detailed proof of Theorem 1.2. Let us start by considering
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the case where η is the identity diffeomorphism. Let ϕ
1
ε be the flow of (1.2). Observe

that ϕ0 (obtained from ϕ
1
ε by setting the parameter 1

ε to zero) is the flow of (1.2)
with yε frozen, i.e.,

(1.14) ϕ0(x, y) = (x̂t, y), where x̂t solves
dx̂

dt
= g(x̂, y), x̂0 = x.

The main effect of FLAVORS is to average the flow of (1.2) with respect to fast
degrees of freedom via splitting and resynchronization. By splitting we refer to the

substitution of the flow ϕ
1
ε

δ by composition of ϕ0
δ−τ and ϕ

1
ε
τ , and by resynchronization

we refer to the distinct time steps δ and τ whose effects are to advance the internal
clock of fast variables by τ every step of length δ. By averaging we refer to the fact

that FLAVORS approximate the flow ϕ
1
ε

h by the flow

(1.15) ϕh :=
(
ϕ0

h
M −τ

◦ ϕ 1
ε
τ

)M
,

where h is a coarse time step resolving the slow time scale associated with xε, M is
a positive integer corresponding to the number of samples used to average the flow
(δ is identified with h

M ), and τ is a fine time step resolving the fast time scale, of the
order of ε, and associated with yε. In general, analytical formulae are not available
for ϕ0 and ϕ

1
ε , and numerical approximations are used instead.

Observe that when FLAVORS are applied to systems with explicitly separated
slow and fast processes, they lead to integrators that are locally in the neighborhood
of those obtained with HMM (or the equation-free method) with a reinitialization of
the fast variables at macrotime n by their final value at macrotime step n − 1 and
with only one microstep per macrostep [38, 40].

We will now consider the situation where η is not the identity diffeomorphism
and give the rationale behind the limits (1.9):

ūnδ
Φ

1
ε
τ ��

η

��

ūnδ+τ

Φ0
δ−τ ��

η

��

ū(n+1)δ

η

��
(x̄, ȳ)nδ

Ψ
1
ε
τ ��

η−1

��

(x̄, ȳ)nδ+τ

Ψ0
δ−τ ��

η−1

��

(x̄, ȳ)(n+1)δ

η−1

��

As illustrated in the above diagram, since (x̄t, ȳt) = η(ūt), simulating ūnδ defined in
(1.8) is equivalent to simulating the discrete process

(1.16) (x̄nδ, ȳnδ) :=
(
Ψ

1
ε

δ−τ ◦Ψ0
τ

)n
(x0, y0),

where

(1.17) Ψα
h := η ◦ Φα

h ◦ η−1.

Observe that the accuracy (in the topology induced by F -convergence) of ūt with
respect to uεt, the solution of (1.1), is equivalent to that of (x̄t, ȳt) with respect to
(xεt , y

ε
t) defined by (1.2). Now, for the clarity of the presentation, assume that

(1.18) Φα
h(u) = u+ hG(u) + αhF (u).
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Using Taylor’s theorem and (1.18), we obtain that
(1.19)

Ψα
h(x, y) = (x, y) + h

(
g(x, y), 0

)
+ αh

(
0, f(x, y)

)
+

∫ 1

0

vT Hess η(u + tv)v(1 − t)2 dt

with

(1.20) u := η−1(x, y) and v := h(G+ αF ) ◦ η−1(x, y).

It follows from (1.19) and (1.20) that Ψ
1
ε

h is a first order accurate integrator approx-
imating the flow of (1.2) and Ψ0

h is a first order accurate integrator approximating
the flow of (1.14). Let h be a coarse time step and δ be a mesostep. Since x̄ remains
nearly constant over the coarse time step, the switching (on and off) of the stiffness
parameter 1

ε averages the drift g of x̄ with respect to the trajectory of ȳ over h. Since

the coarse step h is composed of h
δ mesosteps, the internal clock of the fast process is

advanced by h
δ × τ

ε . Since h is of the order of one, the trajectory of ȳ is mixing with
respect to the local ergodic measure μ provided that τ

δε � 1, i.e.,

(1.21) δ 	 τ

ε
.

Equation (1.21) corresponds to the right-hand side of (1.9). If η is a nonlinear diffeo-
morphism (with a nonzero Hessian), it also follows from (1.19) and (1.20) that each

invocation of the integrator Ψ
1
ε
τ causes an error (on the accuracy of the slow process)

proportional to ( τε )
2. Since, during the coarse time step h, Ψ

1
ε
τ is called h

δ -times, it

follows that the error accumulation during h is h
δ × ( τε )

2. Hence, the accuracy of the
integrator requires that 1

δ × ( τε )
2 	 1, i.e.,

(1.22)
(τ
ε

)2
	 δ.

Equation (1.22) corresponds to the left-hand side of (1.9).
Observe that if η is linear, its Hessian is null and the remainder in the right-hand

side of (1.19) is zero. It follows that if η is linear, the error accumulation due to fine
time steps on slow variables is zero and condition (1.21) is sufficient for the accuracy
of the integrator.

It has been observed in [39] and in section 5 of [114] that slow variables do not
need to be identified with HMM/averaging-type integrators if the relation between
original and slow variables is linear or a permutation and if

(1.23)
Δt

M
	 τ

ε
,

where M is the number of fine-step iterations used by HMM to compute the average
of the drift of slow variables and Δt is the coarse time step (in HMM) along the
direction of the averaged drift. The analysis of FLAVORS associated with (1.19)
reaches a similar conclusion if η is linear in the sense that the error caused by the
Hessian of η in (1.19) is zero and the (sufficient) condition (1.21) is analogous to
(1.23) for M = 1. It is also stated on page 2 of [39] that “there are counterexamples
showing that algorithms of the same spirit do not work for deterministic ODEs with
separated time scales if the slow variables are not explicitly identified and made use
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of. But in the present context, the slow variables are linear functions of the original
variables, and this is the reason why the seamless algorithm works.” Here, the analysis
of FLAVORS associated with (1.19) shows that an algorithm based on an averaging
principle would indeed, in general, not work if η is nonlinear (and (1.22) not satisfied)
due to the error accumulation (on slow variables) associated with the Hessian of η.
However, the above analysis also shows that if condition (1.22) is satisfied, then,
although η may be nonlinear, flow averaging integrators will always work without
identifying slow variables.

1.5. Nonasymptotic convergence result.
Theorem 1.3. Under assumptions and notations of Theorem 1.2, there exists

C > 0 such that for δ < h0, τ < τ0ε, and t > 0

(1.24) |xεt − ηx(ūt)| ≤ CeCtχ1(u0, ε, δ, τ)

and ∣∣∣∣∣ 1T
∫ t+T

t

ϕ(ūs) ds−
∫
Rp

ϕ(η−1(Xt, y))μ(Xt, dy)

∣∣∣∣∣
≤ χ2(u0, ε, δ, τ, T, t)(‖ϕ‖L∞ + ‖∇ϕ‖L∞),(1.25)

where χ1 and χ2 are functions converging towards zero as ε ≤ δ/(C ln 1
δ ),

τ
ε ↓ 0,

ε
τ δ ↓ 0, and ( τε )

2 1
δ ↓ 0 (and T ↓ 0 for χ2).

Remark 1.5. For ε ≤ δ/(−C ln δ) and δ ε
τ + τ

ε ≤ 1, the following holds:

χ1(u0, ε, δ, τ) ≤
√
δ +

(τ
ε

)2 1

δ
+ E

(
1

C
ln

1

δ

)
+

(
δε

τ

) 1
2

+
(τ
ε

) 1
2

+ E

(
1

C
ln

((
δε

τ
+
τ

ε

)−1
))

,(1.26)

and χ2 satisfies a similar inequality.
Remark 1.6. Choosing τ ∼ γε and δ ∼ γ τ

ε , where γ is a small constant indepen-
dent from ε, Theorem 1.3 shows that the approximation error of FLAVOR is bounded
by a function of γ converging towards zero as γ ↓ 0. It follows that the speedup is of
the order of δ

τ ∼ γ
ε , i.e., scales like

1
ε at fixed accuracy. In order to be able to compare

FLAVOR with integrators resolving all the fine time steps, we have limited the speedup
in the numerical experiments to 200x (but the latter can be arbitrarily large as ε ↓ 0).
For sufficiently small ε, we observe that FLAVORS with microstep τ and mesostep
δ overperform their associated legacy integrator with the same microstep τ over large
simulation times (we refer the reader to section 6.3 on the Fermi–Pasta–Ulam prob-
lem). This phenomenon is caused by an error accumulation at each tick (microstep)
of the clock of fast variables. Since FLAVORS (indirectly, i.e., without identifying
fast variables) slow down the speed of this clock from 1

ε to a value τ
δε ∼ 1

γ independent

from ε, this error does not blow up as ε ↓ 0 (as opposed to an integrator resolving
all fine time steps). For this reason, if this error accumulation on fast variables is

exponential, then the speedup at fixed accuracy does not scale like 1
ε , but like e

T
ε ,

where T is the total simulation time. A consequence of this phenomenon can be seen
in Figure 6.5 (associated with the Fermi–Pasta–Ulam problem), where Velocity Verlet
fails to capture the O(ε−1) dynamics with a time step h = 10−5, whereas FLAVORS
remain accurate with τ = 10−4 and δ = 2 · 10−3.
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Remark 1.7. The reader should not be surprised by the presence of the exponen-
tial factor eCt in (1.24). It is known that global errors for numerical approximations
of ODEs grow, in general, exponentially with time (see, for instance, [58]). These
bounds are, however, already tight; consider, for instance, how error propagates in a
generic numerical scheme applied to the special system of ẋ = x. It is possible to show
that the increase of global errors is linear in time only for a restricted class of ODEs
(using techniques from Lyapunov’s theory of stability [118]). Notice that the constant
C in the exponential of our bound does not scale with ε−1, and therefore the bound is
uniform and rather tight.

Remark 1.8. We refer the reader to [41] for higher order averaging based meth-
ods. In particular, [41] shows how, after identification of slow variables, balancing
the different error contributions yields an explicit stable integration method having the
order of the macroscheme.

1.6. Natural FLAVORS. Although convenient, it is not necessary to use leg-
acy integrators to obtain FLAVORS. More precisely, Theorems 1.2 and 1.3 remain
valid if FLAVORS are defined to be algorithms simulating the discrete process

(1.27) ūt :=
(
θGδ−τ ◦ θετ

)k
(u0) for kδ ≤ t < (k + 1)δ,

where θετ and θGδ−τ are two mappings from R
d onto R

d (the former approximating the
flow of the whole system (1.1) for time τ and the latter approximating the flow of
v̇ = G(v) for time δ − τ), satisfying the following condition.

Condition 1.4.

1. There exists h0, C > 0, such that for h ≤ h0 and any u ∈ R
d

(1.28)
∣∣θGh (u)− u− hG(u)

∣∣ ≤ Ch2.

2. There exists τ0, C > 0, such that for τ
ε ≤ τ0 and any u ∈ R

d

(1.29)
∣∣∣θετ (u)− u− τG(u) − τ

ε
F (u)

∣∣∣ ≤ C
(τ
ε

)2
.

3. For all u0, T > 0, the discrete trajectories
((
θGδ−τ ◦ θετ

)k
(u0)

)
0≤k≤T/δ

are

uniformly bounded in ε, 0 < δ ≤ h0, and τ ≤ min(τ0ε, δ).

Observe that (1.8) is a particular case of (1.27) in which θε = Φ
1
ε and the mapping

θG is obtained from the legacy integrator Φα by setting α to zero.

1.7. Related work. “Dynamical systems with multiple time scales pose a major
problem in simulations because the small time steps required for stable integration of
the fast motions lead to large numbers of time steps required for the observation of
slow degrees of freedom” [113, 57]. Traditionally, stiff dynamical systems have been
separated into two classes with distinct integrators: stiff systems with fast transients
and stiff systems with rapid oscillations [6, 36, 100]. The former have been solved
using implicit schemes [49, 35, 57, 59], Chebyshev methods [73, 1], or the projec-
tive integrator approach [51]. The latter have been solved using filtering techniques
[48, 69, 104] or Poincaré map techniques [50, 94]. We also refer to methods based on
highly oscillatory quadrature [32, 62, 63], an area that has undergone significant de-
velopments in the last few years [64]. It has been observed that “at the present time,
there exists no unified strategy for dealing with both classes of problems” [36]. When
slow variables can be identified, effective equations can be obtained by averaging the
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instantaneous drift driving those slow variables [108]. Two classes of numerical meth-
ods have been built on this observation: the equation-free method [67, 68] and HMM
[37, 41, 36, 5]. Observe that FLAVORS apply in a unified way to both stiff systems
with fast transients and stiff systems with rapid oscillations, with or without noise,
with a mesoscopic integration time step chosen independently from the stiffness.

1.8. Limitations of the method. The proof of the accuracy of the method
(Theorems 1.2 and 1.3) is based on an averaging principle; hence, if ε is not small
(the stiffness of the ODE is weak), although the method may be stable, there is no
guarantee of accuracy. More precisely, the global error of the method is an increasing
function of ε, δ, τ

ε ,
δε
τ , (

τ
ε )

2δ. Writing γ := τ
ε , the accuracy requires γ2 	 δ 	 γ.

Choosing δ = γ
3
2 , the condition ε 	 δ 	 1 (related to computational gain) requires

ε
2
3 	 γ 	 1, which can be satisfied only if ε is small.

The other limitation of the method lies in the fact that a stiff parameter 1
ε needs

to be clearly identified. In many examples of interest (Navier–Stokes equations, Max-
well’s equations, etc.), stiffness is a result of nonlinearity, initial conditions, or bound-
ary conditions and not of the existence of a large parameter 1

ε . Molecular dynamics
can also create widely separated time scales from nonlinear effects; we refer the reader,
for instance, to [119] and the references therein.

1.9. Generic stiff ODEs. FLAVORS have a natural generalization to systems
of the form

(1.30) u̇α,ε = F (uα,ε, α, ε),

where u �→ F (u, α, ε) is Lipschitz continuous.
Condition 1.5. Assume that the following hold:
1. ε �→ F (u, α, ε) is uniformly continuous in the neighborhood of 0.
2. There exists a diffeomorphism η := (ηx, ηy), from R

d onto R
d−p × R

p, inde-
pendent from ε, α, with uniformly bounded C1, C2 derivatives, such that the
process (xαt , y

α
t ) =

(
ηx(uα,0t ), ηy(uα,0t )

)
satisfies, for all α ≥ 1, the ODE

(1.31) ẋα = g(xα, yα), xα0 = x0,

where g(x, y) is Lipschitz continuous in x and y on bounded sets.
3. There exists a family of probability measures μ(x, dy) on R

p such that for all
x0, y0, T

(
(x0, y0) := η(u0)

)
, and ϕ uniformly bounded and Lipschitz∣∣∣∣∣ 1T

∫ T

0

ϕ(yαs ) ds−
∫
Rp

ϕ(y)μ(x0, dy)

∣∣∣∣∣
≤ χ

(‖(x0, y0)‖)(E1(T ) + E2(Tα
ν)
)‖∇ϕ‖L∞ ,(1.32)

where r �→ χ(r) is bounded on compact sets and E2(r) → 0 as r → ∞ and
E1(r) → 0 as r → 0.

4. For all u0, T > 0, the trajectories (uα,0t )0≤t≤T are uniformly bounded in
α ≥ 1.

Remark 1.9. Observe that slow variables are not kept frozen in (1.32). The error
on local invariant measures induced by the (slow) drift of xα is controlled by E2. More
precisely, the convergence of the right-hand side of (1.32) towards zero requires the
convergence of T towards zero and (at the same time) the divergence of Tαν towards
infinity.
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Assume that we are given a mapping Φα,ε
h from R

d onto R
d approximating the

flow of (1.30). If the parameter α can be controlled, then Φα,ε
h can be used as a black

box for accelerating the computation of solutions of (1.30).
Condition 1.6. Assume that the following hold:
1. There exists a constant h0 > 0 such that Φα,ε satisfies for all h ≤ h0 min( 1

αν , 1),
0 < ε ≤ 1 ≤ α

(1.33)
∣∣Φα,ε

h (u)− u− hF (u, α, ε)
∣∣ ≤ C(u)h2(1 + α2ν),

where C(u) is bounded on compact sets.

2. For all u0, T > 0, the discrete trajectories
((
Φ0,ε

δ−τ ◦ Φ 1
ε ,ε
τ

)k
(u0)

)
0≤k≤T/δ

are

uniformly bounded in 0 < ε ≤ 1, 0 < δ ≤ h0, and τ ≤ min(h0ε
ν , δ).

FLAVOR can be defined as the algorithm given by the process

(1.34) ūt =
(
Φ0,ε

δ−τ ◦ Φ 1
ε ,ε
τ

)k
(u0) for kδ ≤ t < (k + 1)δ.

The theorem below shows the accuracy of FLAVORS for δ 	 h0, τ 	 εν , and(
τ
εν

)2 	 δ 	 τ
εν .

Theorem 1.4. Let u
1
ε ,ε
t be the solution to (1.30) with α = 1/ε, and let ūt

be defined by (1.34). Assume that Conditions 1.5 and 1.6 are satisfied. Then the
following hold:

• u
1
ε ,ε
t F -converges towards η−1 ∗ (δXt ⊗ μ(Xt, dy)

)
as ε ↓ 0, where Xt is the

solution to

(1.35) Ẋt =

∫
Rp

g(Xt, y)μ(Xt, dy), X0 = x0.

• As ε ↓ 0, τε−ν ↓ 0, δ εν

τ ↓ 0, and τ2

ε2νδ ↓ 0, ūt F -converges towards η−1 ∗(
δXt ⊗ μ(Xt, dy)

)
as ε ↓ 0, where Xt is the solution of (1.35).

Proof. The proof of Theorem 1.4 is similar to that of Theorems 1.2 and 3.2.
Only the idea of the proof will be given here. The condition ε 	 1 is needed for the
approximation of uα,ε by uα,0 and for the F -convergence of u

1
ε ,0. Since yαt = ηy(uα,0t ),

the condition τ 	 εν is used along with (1.33) for the accuracy of Φ
1
ε ,ε
τ in (locally)

approximating yαt . The condition δ 	 τ
εν allows for the averaging of g to take place

prior to a significant change of xαt ; more precisely, it allows for m � 1 iterations of

Φ
1
ε ,ε
τ prior to a significant change of xαt . The condition

(
τ
εν

)2 	 δ is required in order

to control the error accumulated by m iterations of Φ
1
ε ,ε
τ .

Remark 1.10. It is easy to see that Theorem 1.4 remains valid if item 4 of
Condition 1.5 and item 2 of Condition 1.6 do not hold for all u0 but only for a subset
of initial conditions u0 ∈ I and if the trajectories of u and ū remain in that subset
for all ε.

We also observe that Theorem 1.4 can easily be generalized to situations where η
is noninjective, for instance to a situation where η is a differentiable mapping from
R

d onto R
d−p × R

q, where q < p. In that situation, item 4 of Condition 1.5 and
item 2 of Condition 1.6 should be replaced by the condition that η(u) and η(ū) do not
blow up as ε ↓ 0. Furthermore, the convergence of u and ū is only partial in the sense
that η(u) F -converges towards δXt ⊗ μ(Xt, dy) but the projection of u on the kernel
of η (i.e., η−1(0, 0)) may not F -converge.
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2. Deterministic mechanical systems: Hamiltonian equations. Since av-
eraging with FLAVORS is obtained by flow composition, FLAVORS have an inherent
extension to multiscale structure preserving integrators for stiff Hamiltonian systems,
i.e., ODEs of the form

(2.1) ṗ = −∂qH(p, q), q̇ = ∂pH(p, q),

where the Hamiltonian

(2.2) H(q, p) :=
1

2
pTM−1p+ V (q) +

1

ε
U(q)

represents the total energy of a mechanical system with Euclidean phase space Rd×R
d

or a cotangent bundle T ∗M of a configuration manifold M.
Structure preserving numerical methods for Hamiltonian systems have been de-

veloped in the framework of geometric numerical integration [57, 75] and variational
integrators [82, 78]. “The subject of geometric numerical integration deals with nu-
merical integrators that preserve geometric properties of the flow of a differential
equation, and it explains how structure preservation leads to an improved long-time
behavior” [56]. Variational integration theory derives integrators for mechanical sys-
tems from discrete variational principles that are characterized by a discrete Noether
theorem. These methods have excellent energy behavior over long integration runs
because they are symplectic; i.e., by backward error analysis, they simulate a nearby
mechanical system instead of nearby differential equations. Furthermore, statistical
properties of the dynamics such as Poincaré sections are well preserved even with
large time steps [16]. Preservation of structures is especially important for long time
simulations. Consider integrations of a harmonic oscillator, for example: no matter
how small a time step is used, the amplitude given by forward Euler/backward Euler
will increase/decrease unboundedly, whereas the amplitude given by variational Euler
(also known as symplectic Euler) will be oscillatory with a variance controlled by the
step length.

These long term behaviors of structure preserving numerical integrators moti-
vated their extension to multiscale or stiff Hamiltonian systems. We refer the reader
to [31] for a recent review on numerical integrators for highly oscillatory Hamiltonian
systems. “Symplectic integrators are natural for the integration of Hamiltonian sys-
tems since they reproduce at the discrete level an important geometric property of the
exact flow” [20]. For symplectic integrators primarily for (but not limited to) stiff
quadratic potentials, we refer the reader to the impulse method, the mollified impulse
method, and their variations [54, 113, 47, 101], which require an explicit form of the
flow map of the stiff process. In the context of variational integrators, by defining a
discrete Lagrangian with an explicit trapezoidal approximation of the soft potential
and a midpoint approximation for the fast potential, a symplectic (IMEX—IMplicit–
EXplicit) scheme for stiff Hamiltonian systems has been proposed in [109]. The re-
sulting scheme is explicit for quadratic potentials and implicit for nonquadratic stiff
potentials. We also refer the reader to Le Bris and Legoll’s (Hamilton–Jacobi derived)
homogenization method [20]. Asynchronous variational integrators [77] provide a way
to derive conservative symplectic integrators for PDEs where the solution advances
nonuniformly in time; however, stiff potentials require a fine time step discretization
over the whole time evolution. In addition, multiple time step methods [110] evaluate
forces to different extents of accuracies by approximating less important forces via
Taylor expansions, but they have issues on long time behavior, stability, and accu-
racy, as described in section 5 of [76]. Fixman froze the fastest bond oscillations in
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polymers to remove stiffness by adding a log term resemblant of entropy-based free
energy to compensate [44]. This approach is successful in studying statistics of the
system but does not always reconstruct the correct dynamics [95, 93, 14].

Several approaches to the homogenization of Hamiltonian systems (in analogy
with classical homogenization [11, 65]) have been proposed. We refer the reader to
M-convergence introduced in [105, 15], to the two-scale expansion of solutions of the
Hamilton–Jacobi form of Newton’s equations with stiff quadratic potentials [20], and
to PDE methods in weak KAM theory [42]. We also refer the reader to [26, 61, 99].

Obtaining explicit symplectic integrators for Hamiltonian systems with nonqua-
dratic stiff potentials is known to be an important and nontrivial problem. By using
Verlet/leap-frog macrosolvers, methods that are symplectic on slow variables (when
those variables can be identified) have been proposed in the framework of HMM in
[106, 24]. A “reversible averaging” method has been proposed in [74] for mechanical
systems with separated fast and slow variables. More recently, a reversible multi-
scale integration method for mechanical systems was proposed in [6] in the context
of HMM. By tracking slow variables, [6] enforces reversibility in all variables as an
optimization constraint at each coarse step when minimizing the distance between
the effective drift obtained from the microsolver (in the context of HMM) and the
drift of the macrosolver. We also refer the reader to [103] for a symmetric HMM for
mechanical systems with stiff potentials of the form 1

ε

∑ν
j=1 gj(q)

2.

2.1. FLAVORS for mechanical systems on manifolds. Assume that we
are given a first order accurate legacy integrator for (2.1) in which the parameter
1/ε can be controlled, i.e., a mapping Φα

h acting on the phase space such that for

h ≤ h0min(1, α− 1
2 )

(2.3)
∣∣∣Φα

h(q, p)− (q, p)− h
(
M−1p,−V (q)− αU(q)

)∣∣∣ ≤ Ch2(1 + α).

Write Θδ as the FLAVOR discrete mapping approximating solutions of (2.1) over
time steps δ � ε, i.e.,

(2.4) (q(n+1)δ, p(n+1)δ) := Θδ(qnδ, pnδ).

FLAVOR can then be defined by

(2.5) Θδ := Φ0
δ−τ ◦ Φ 1

ε
τ .

Theorem 1.4 establishes the accuracy of this integrator under Conditions 1.5 and 1.6

provided that τ 	 √
ε	 δ and τ2

ε 	 δ 	 τ√
ε
.

Remark 2.1. We also refer the reader to Remark 1.10 for the application of
Theorem 1.4 to Hamiltonian systems. Consider, for instance, the linear Hamiltonian
system H(q1, q2, p1, p2) :=

1
2p

2
1+

1
2p

2
2+

1
2q

2
1 +

1
ε (q2− q1)2. If the system is started from

q2(0) − q1(0) = O(
√
ε), then the energy remains bounded as ε ↓ 0 and (q1, q2, p1, p2)

F -converges due to the first part of Remark 1.10.
For that same example, if the system is started from a point such that q2(0) −

q1(0) �= O(
√
ε), then the energy in the system blows up as ε ↓ 0 and the range of p2−p1

blows up and therefore cannot converge, even in the sense of measures. However, the
(slow) process (q1 + q2, p1 + p2) satisfies an equation of the type (1.31), where the
dependence on fast variables is only through q2 − q1 (yα = q2 − q1 in (1.31)) and
q2 − q1 is locally ergodic (as defined in item 3 of Condition 1.5) and does converge in
the sense of distributions. Henceforth, if q2(0)− q1(0) �= 0, then the generalization of
Theorem 1.4 (see the second part of Remark 1.10) applies with η being noninjective.
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2.1.1. Structure preserving properties of FLAVORS. We will now show
that FLAVORS inherit the structure preserving properties of their legacy integrators.

Theorem 2.1. If, for all h, ε > 0, Φε
h is symmetric under a group action, then

Θδ is symmetric under the same group action.
Theorem 2.2. If Φα

h is symplectic on the cotangent bundle T ∗M of a configu-
ration manifold M, then Θδ defined by (2.5) is symplectic on the cotangent bundle
T ∗M.

Theorems 2.1 and 2.2 can be resolved by noting that “the overall method is
symplectic—as a composition of symplectic transformations, and it is symmetric—as
a symmetric composition of symmetric steps” (see Chapter XIII.1.3 of [57]).

Write

(2.6) Φ∗
h :=

(
Φ−h

)−1
.

Let us recall the following definition corresponding to Definition 1.4 of Chapter V
of [57].

Definition 2.3. A numerical one-step method Φh is called time-reversible if it
satisfies Φ∗

h = Φh.
The following theorem, whose proof is straightforward, shows how to derive a

“symplectic and symmetric and time-reversible” FLAVOR from a symplectic legacy
integrator and its adjoint. Since this derivation applies to manifolds, it also leads to
structure preserving FLAVORS for constrained mechanical systems.

Theorem 2.4. If Φα
h is symplectic on the cotangent bundle T ∗M of a configu-

ration manifold M, then

(2.7) Θδ := Φ
1
ε ,∗
τ
2

◦ Φ0,∗
δ−τ
2

◦ Φ0
δ−τ
2

◦ Φ 1
ε
τ
2

is symplectic and time-reversible on the cotangent bundle T ∗M.
Remark 2.2. Observe that (except for the first and last steps) iterating Θδ

defined by (2.7) is equivalent to iterating

(2.8) Θδ := Φ0,∗
δ−τ
2

◦ Φ0
δ−τ
2

◦ Φ 1
ε
τ
2
◦ Φ 1

ε ,∗
τ
2
.

It follows that a symplectic, symmetric, and reversible FLAVOR can be obtained in a
nonintrusive way from a Störmer/Verlet integrator for (2.1) [56, 58, 117].

2.1.2. An example of a symplectic FLAVOR. If the phase space is Rd×R
d,

then an example of a symplectic FLAVOR is obtained from Theorem 2.2 by choosing
Φα

h to be the symplectic Euler (also known as variational Euler or VE for short)
integrator defined by

(2.9) Φα
h(q, p) =

(
q
p

)
+ h

(
M−1

(
p− h

(
V (q) + αU(q)

))
−V (q) − αU(q)

)

and letting Θδ be defined by (2.5).

2.1.3. An example of a symplectic and time-reversible FLAVOR. If the
phase space is the Euclidean space R

d × R
d, then an example of a symplectic and

time-reversible FLAVOR is obtained by letting Θδ be defined by (2.7) of Theorem 2.4
by choosing Φα

h to be the symplectic Euler integrator defined by (2.9) and

(2.10) Φα,∗
h (q, p) =

(
q
p

)
+ h

(
M−1p

−V (q + hM−1p)− αU(q + hM−1p)

)
.
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2.1.4. An artificial FLAVOR. There is not a unique way of averaging the
flows of (2.2). We present below an alternative method based on the freezing and
unfreezing of degrees of freedom associated with fast potentials. We have called
this method “artificial” because it is intrusive. With this method, the discrete flow
approximating solutions of (2.1) is given by (2.4) with

(2.11) Θδ := θtrδ−τ ◦ θετ ◦ θVδ ,

where θVδ is a symplectic map corresponding to the flow of Hslow(q, p) := V (q),
approximating the effects of the soft potential on momentum over the mesoscopic
time step δ and defined by

(2.12) θVδ
(
q, p

)
=
(
q, p− δ∇V (q)

)
.

θετ is a symplectic map approximating the flow of Hfast(q, p) := 1
2p

TM−1p + 1
εU(q)

over a microscopic time step τ :

(2.13) θετ
(
q, p

)
=
(
q + τM−1p, p− τ

ε
∇U(q + tM−1p)

)
.

θtrδ−τ is a map approximating the flow of the Hamiltonian Hfree(q, p) := 1
2p

TM−1p
under holonomic constraints imposing the freezing of stiff variables. Velocities along
the direction of constraints have to be stored and set to be 0 before the constrained dy-
namics, i.e., frozen, and the stored velocities should be restored after the constrained
dynamics, i.e., unfrozen; geometrically speaking, one projects to the constrained sub-
symplectic manifold, runs the constrained dynamics, and lifts back to the original
full space. Oftentimes, the exact solution to the constrained dynamics can be found
(examples are given in subsections 5.3, 5.2, 6.2, 6.3, and 6.4).

When the exact solution to the constrained dynamics cannot be found easily, one
may want to employ integrators for constrained dynamics such as SHAKE [98] or
RATTLE [4] instead. This has to be done with caution because symplecticity of the
translational flow may be lost. The composition of projection onto the constrained
manifold (freezing), evolution on the constrained manifold, and lifting from it to the
unconstrained space (unfreezing) preserves symplecticity in the unconstrained space
only if the evolution on the constrained manifold preserves the inherited symplectic
form. A numerical integration preserves the discrete symplectic form on the con-
strained manifold but not necessarily the projected continuous symplectic form.

Remark 2.3. This artificial FLAVOR is locally a perturbation of nonintrusive
FLAVORS. By splitting theory [85, 57],

(2.14) θtrδ−τ ◦ θετ ◦ θVδ ≈ θtrδ−τ ◦ θVδ−τ ◦ θετ ◦ θVτ ≈ θtrδ−τ ◦ θVδ−τ ◦ Φ 1
ε
τ ,

whereas Φ0
δ−τ ◦Φ

1
ε
τ ≈ θfreeδ−τ ◦θVδ−τ ◦Φ

1
ε
τ , where θfree is the flow of Hfree(q, p) under no

constraint. The only difference is that constraints are treated in θtr but not in θfree.

Remark 2.4. This artificial FLAVOR can be formally regarded as Φ∞
δ−τ ◦ Φ

1
ε
τ .

In contrast, the natural FLAVOR is Φ0
δ−τ ◦ Φ 1

ε
τ .

The advantage of this artificial FLAVOR lies in the fact that only τ 	 √
ε 	 δ

and δ 	 τ√
ε
are required for its accuracy (and not τ2

ε 	 δ). We also observe that,

in general, the artificial FLAVOR overperforms the nonintrusive FLAVOR in Fermi–
Pasta–Ulam long time (O(ω2)) simulations (we refer the reader to subsection 6.3).
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2.2. Variational derivation of FLAVORS. FLAVORS based on variational
legacy integrators [82] are variational too. Recall that discrete Lagrangian Ld is an
approximation of the integral of the continuous Lagrangian over one time step, and
the discrete Euler–Lagrangian (DEL) equation is obtained by applying the variational
(least action) principle to the discrete action, which is a sum of discrete Lagrangians.
The following diagram commutes:

Singlescale Ld
FLAVORization ��

variational principle

��

Multiscale Ld

variational principle

��
Singlescale DEL

FLAVORization �� Multiscale DEL

For example, recall that VE (i.e., symplectic Euler) for system (2.2) with time
step h

(2.15)

{
pk+1 = pk − h[∇V (qk) +

1
ε∇U(qk)],

qk+1 = qk + hpk+1

can be obtained by applying the variational principle to the following discrete La-
grangian:

(2.16) Ld
1/ε
h (qk, qk+1) = h

[
1

2

(
qk+1 − qk

h

)2

−
(
V (qk) +

1

ε
U(qk)

)]
.

Meanwhile, FLAVORized VE with small step τ and mesostep δ

(2.17)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p′k = pk − τ [∇V (qk) +

1
ε∇U(qk)],

q′k = qk + τp′k,
pk+1 = p′k − (δ − τ)∇V (q′k),
qk+1 = q′k + (δ − τ)pk+1

can be obtained by applying the variational principle to the FLAVORized discrete
Lagrangian

Ldδ(qk, q
′
k, qk+1) = Ld

1/ε
τ (qk, q

′
k) + Ld

0
δ−τ (q

′
k, qk+1)

= τ

[
1

2

(
q′k − qk
τ

)2

−
(
V (qk) +

1

ε
U(qk)

)]
+ (δ − τ)

[
1

2

(
qk+1 − q′k
δ − τ

)2

− V (q′k)

]
.

(2.18)

FLAVORizations of other variational integrators such as Velocity Verlet follow
similarly.

3. SDEs. “Asymptotic problems for stochastic differential equations arose and
were solved simultaneously with the very beginnings of the theory of such equations”
[108]. Here, we refer the reader to the early work of Gihman [52], Kryloff and Bogo-
liouboff [70, 71], Bogolyubov [13], and Papanicolaou and Kohler [91]. We refer the
reader in particular to Skorokhod’s detailed monograph [108]. As for ODEs, effective
equations for stiff SDEs can be obtained by averaging the instantaneous coefficients
(drift and the diffusivity matrix squared) with respect to the fast components; we
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refer the reader to section 3 of Chapter II of [108] for a detailed analysis including
error bounds. Numerical methods such as HMM [38] and the equation-free method [7]
have been extended to SDEs based on this averaging principle. “Implicit methods in
general fail to capture the effective dynamics of the slow time scale because they can-
not correctly capture non-Dirac invariant distributions” [79] (we refer to a non-Dirac
invariant distribution as a measure of probability on the configuration space whose
support is not limited to a single point). Another idea is to treat fast variables by
conditioning; here, we refer the reader to optimal prediction [28, 27, 29] that has also
been used for model reduction. We also refer the reader to [8, 55, 112, 23, 22, 79, 2].

Since FLAVORS are obtained via flow averaging, they have a natural extension
to the SDEs developed in this section. As for ODEs, FLAVORS are directly applied
to SDEs with mixed (hidden) slow and fast variables without prior (analytical or
numerical) identification of slow variables. Furthermore, they can be implemented
using a pre-existing scheme by turning the stiff parameters on and off.

For the sake of clarity, we will start the description with the following SDE on R
d:

(3.1) duεt =

(
G(uεt) +

1

ε
F (uεt)

)
dt+

(
H(uεt) +

1√
ε
K(uεt)

)
dWt, uε0 = u0,

where (Wt)t≥0 is a d-dimensional Brownian motion; F and G are vector fields on R
d;

and H and K are d × d matrix fields on R
d. In subsection 3.5, we will consider the

more general form (3.15).
Condition 3.1. Assume that the following hold:
1. F , G, H, and K are uniformly bounded and Lipschitz continuous.
2. There exists a diffeomorphism η := (ηx, ηy), from R

d onto R
d−p × R

p, inde-
pendent of ε, with uniformly bounded C1, C2, and C3 derivatives, such that
the process (xεt , y

ε
t ) = (ηx(uεt), η

y(uεt)) satisfies the SDE

(3.2)

{
dxε = g(xε, yε) dt+ σ(xε, yε)dWt, xε0 = x0,

dyε = 1
ε f(x

ε, yε) dt+ 1√
ε
Q(xε, yε)dWt, yε0 = y0,

where g is a (d − p)-dimensional vector field; f is a p-dimensional vector
field; σ is a ((d−p)×d)-dimensional matrix field; Q is a (p×d)-dimensional
matrix field; and Wt is a d-dimensional Brownian motion.

3. Let Yt be the solution to

(3.3) dYt = f(x0, Yt) dt+Q(x0, Yt) dWt, Y0 = y0;

there exists a family of probability measures μ(x, dy) on R
p indexed by x ∈

R
d−p and a positive function T �→ E(T ) such that limT→∞E(T ) = 0 and

such that for all x0, y0, T , and φ with uniformly bounded Cr derivatives for
r ≤ 3

(3.4)

∣∣∣∣∣ 1T
∫ T

0

E
[
φ(Ys)

] − ∫
φ(y)μ(x0, dy)

∣∣∣∣∣ ≤ χ
(‖(x0, y0)‖)E(T )max

r≤3
‖φ‖Cr ,

where r �→ χ(r) is bounded on compact sets.
4. For all u0, T > 0, sup0≤t≤T E

[
χ
(‖uεt‖)] is uniformly bounded in ε.

Remark 3.1. As in the proof of Theorem 1.2, the uniform regularity of F , G,
H, and K can be relaxed to local regularity by adding a control on the rate of escape
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of the process towards infinity. To simplify the presentation, we will use the global
uniform regularity.

We will now extend the definition of two-scale flow convergence introduced in
subsection 1.2 to stochastic processes.

3.1. Two-scale flow convergence for SDEs. Let
(
ξε(t, ω)

)
t∈R+,ω∈Ω

be a se-

quence of stochastic processes on R
d (progressively measurable mappings from R

+×Ω
to R

d) indexed by ε > 0. Let (Xt)t∈R+ be a (progressively measurable) stochastic pro-
cess on R

d−p (p ≥ 0). Let x �→ ν(x, dz) be a function from R
d−p into the space of

probability measures on R
d.

Definition 3.1. We say that the process ξεt F-converges to ν(Xt, dz) as ε ↓ 0

and write ξεt
F−−−→

ε→0
ν(Xt, dz) if and only if for all functions ϕ bounded and uniformly

Lipschitz continuous on R
d, and for all t > 0,

(3.5) lim
h→0

lim
ε→0

1

h

∫ t+h

t

E
[
ϕ(ξεs)

]
ds = E

[∫
Rd

ϕ(z)ν(Xt, dz)

]
.

3.2. Nonintrusive FLAVORS for SDEs. Let ω be a random sample from
a probability space (Ω,F ,P) and Φα

h(·, ω) be a random mapping from R
d onto R

d

approximating the flow of (3.1) for α = 1/ε. If the parameter α can be controlled,
then Φα

h can be used as a black box for accelerating the computation of solutions of
(3.1) without prior identification of slow variables. Indeed, assume that there exist a
constant h0 > 0 and a normal random vector ξ(ω) such that for h ≤ h0 min( 1

α , 1)
(3.6)(
E

[∣∣Φα
h(u, ω)−u−hG(u)−αhF (u)−

√
hH(u)ξ(ω)−

√
αhK(u)ξ(ω)

∣∣2])
1
2

≤ Ch
3
2 (1+α)

3
2 ;

then FLAVOR can be defined as the algorithm simulating the stochastic process

(3.7)

⎧⎪⎨
⎪⎩
ū0 = u0,

ū(k+1)δ = Φ0
δ−τ (., ω

′
k) ◦ Φ

1
ε
τ (ūkδ, ωk),

ūt = ūkδ for kδ ≤ t < (k + 1)δ,

where ωk, ω
′
k are independent and identically distributed (i.i.d.) samples from the

probability space (Ω,F ,P), δ ≤ h0, and τ ∈ (0, δ) such that τ ≤ τ0ε. Theorem 3.2
establishes the asymptotic accuracy of FLAVOR for τ 	 ε	 δ and

(3.8)
(τ
ε

) 3
2 	 δ 	 τ

ε
.

3.3. Convergence theorem.
Theorem 3.2. Let uε be the solution to (3.1), and let ūt be defined by (3.7).

Assume that (3.6) and Condition 3.1 are satisfied; then the following hold:
• uεt F -converges towards η−1 ∗ (δXt ⊗ μ(Xt, dy)

)
as ε ↓ 0, where Xt is the

solution to

(3.9) dXt =

∫
g(Xt, y)μ(Xt, dy) dt+ σ̄(Xt) dBt, X0 = x0,

where σ̄ is a (d− p)× (d− p) matrix field defined by
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(3.10) σ̄σ̄T =

∫
σσT (x, y)μ(x, dy)

and Bt is a (d− p)-dimensional Brownian motion.
• ūt F -converges towards η

−1 ∗ (δXt ⊗μ(Xt, dy)
)
as ε ↓ 0, τ ≤ δ, τ

ε ↓ 0, δε
τ ↓ 0,

and
(
τ
ε

) 3
2 1
δ ↓ 0.

The proof of convergence of SDEs of type (3.2) is classical, and a comprehensive
monograph can be found in Chapter II of [108]. A proof of (mean squared) convergence
of HMM applied to (3.2) (separated slow and fast variables) with σ = 0 has been
obtained in [38]. A proof of (mean squared) convergence of the equation-free method
applied to (3.2) with σ �= 0 but independent of fast variables has been obtained in [53].
Theorem 3.2 proves the convergence in distribution of FLAVOR applied to SDE (3.1)
with hidden slow and fast processes. One of the main difficulties of the proof of
Theorem 3.2 lies in the fact that we are not assuming that the noise on (hidden)
slow variables is null or independent from fast variables. Without this assumption,
xεt converges only weakly towards Xt, the convergence of uε can be only weak, and
techniques for strong convergence cannot be used. The proof of Theorem 3.2 relies
on a powerful result by Skorokhod (Theorem 1 of Chapter II of [108]) stating that
the convergence in distribution of a sequence of stochastic processes is implied by the
convergence of their generators. We refer the reader to subsection A.2 of the appendix
for the detailed proof of Theorem 3.2.

3.4. Natural FLAVORS. As for ODEs, it is not necessary to use legacy inte-
grators to obtain FLAVORS for SDEs. More precisely, Theorem 3.2 remains valid if
FLAVORS are defined to be algorithms simulating the discrete process

(3.11)

⎧⎪⎨
⎪⎩
ū0 = u0,

ū(k+1)δ = θGδ−τ (., ω
′
k) ◦ θετ (ūkδ, ωk),

ūt = ūkδ for kδ ≤ t < (k + 1)δ,

where ωk, ω
′
k are i.i.d. samples from the probability space (Ω,F ,P) and θετ and θGδ−τ

are two random mappings from R
d onto R

d satisfying Condition 3.2. More precisely,
θετ (., ω) approximates in distribution the flow of (3.1) over time steps τ 	 ε. θGh (., ω)
approximates in distribution the flow of

(3.12) dvεt = G(vεt ) dt+H(vεt ) dWt

over time steps h	 1.

Condition 3.2. Assume that the following hold:

1. There exist h0, C > 0, and a d-dimensional centered Gaussian vector ξ(ω)
with identity covariance matrix such that for h ≤ h0

(3.13)

(
E

[∣∣θGh (u, ω)− u− hG(u)−
√
hH(u)ξ(ω)

∣∣2])
1
2

≤ Ch
3
2 .

2. There exist τ0, C > 0, and a d-dimensional centered Gaussian vector ξ(ω)
with identity covariance matrix such that for τ

ε ≤ τ0
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(
E

[∣∣∣∣θετ (u, ω)− u− τG(u) − τ

ε
F (u)−√

τH(u)ξ(ω)−
√
τ

ε
K(u)ξ(ω)

∣∣∣∣
2
]) 1

2

≤ C
(τ
ε

) 3
2

.

(3.14)

3. For all u0, T > 0, sup0≤n≤T/δ E
[
χ
(‖ūnδ‖)] is uniformly bounded in ε, 0 <

δ ≤ h0, and τ ≤ min(τ0ε, δ), where ū is defined by (3.11).

3.5. FLAVORS for generic stiff SDEs. FLAVORS for stochastic systems
have a natural generalization to SDEs on R

d of the form

(3.15) duα,ε = F (uα,ε, α, ε) dt+K(uα,ε, α, ε) dWt,

where (Wt)t≥0 is a d-dimensional Brownian motion, and F and K are Lipschitz con-
tinuous in u.

Condition 3.3. Assume that the following hold:
1. γ �→ F (u, α, γ) and γ �→ K(u, α, γ) are uniformly continuous in the neighbor-

hood of 0.
2. There exists a diffeomorphism η := (ηx, ηy), from R

d onto R
d−p × R

p, in-
dependent from ε, α, with uniformly bounded C1, C2, and C3 derivatives,
such that the stochastic process (xαt , y

α
t ) = (ηx(uα,0t ), ηy(uα,0t )) satisfies for

all α ≥ 1 the SDE

(3.16) dxα = g(xα, yα) dt+ σ(xα, yα) dWt, xα0 = x0,

where g is a (d− p)-dimensional vector field, σ is a ((d− p)× d)-dimensional
matrix field, and g and σ are uniformly bounded and Lipschitz continuous in
x and y.

3. There exists a family of probability measures μ(x, dy) on R
p such that for all

x0, y0, T
(
(x0, y0) := η(u0)

)
, and ϕ with uniformly bounded Cr derivatives

for r ≤ 3 ∣∣∣∣∣ 1T
∫ T

0

E
[
ϕ(yαs )

]
ds−

∫
ϕ(y)μ(x0, dy)

∣∣∣∣∣
≤ χ

(‖(x0, y0)‖)(E1(T ) + E2(Tα
ν)
)
max
r≤3

‖ϕ‖Cr ,(3.17)

where r �→ χ(r) is bounded on compact sets and E2(r) → 0 as r → ∞ and
E1(r) → 0 as r → 0.

4. For all u0, T > 0, sup0≤t≤T E
[
χ
(‖uα,0t ‖)] is uniformly bounded in α ≥ 1.

Remark 3.2. As in the proof of Theorem 1.2, the uniform regularity of g and
σ can be relaxed to local regularity by adding a control on the rate of escape of the
process towards infinity. To simplify the presentation, we have used the global uniform
regularity.

Let ω be a random sample from a probability space (Ω,F ,P) and Φα,ε
h (., ω) be

a random mapping from R
d onto R

d approximating in distribution the flow of (3.15)
over time steps τ 	 ε. If the parameter α can be controlled, then Φα,ε

h can be used as
a black box for accelerating the computation of solutions of (3.15). The acceleration
is obtained without prior identification of the slow variables.
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Condition 3.4. Assume that the following hold:
1. There exist h0, C > 0, and a d-dimensional centered Gaussian vector ξ(ω)

with identity covariance matrix such that for h ≤ h0, 0 < ε ≤ 1 ≤ α, and
h ≤ h0min( 1

αν , 1)
(3.18)(

E

[∣∣Φα,ε
h (u)− u− hF (u, α, ε)−

√
hξ(ω)K(u, α, ε)

∣∣2])
1
2

≤ Ch
3
2 (1 + α

3ν
2 ).

2. For all u0, T > 0, sup0≤n≤T/δ E
[
χ
(‖ūnδ‖)] is uniformly bounded in ε, 0 <

δ ≤ h0, and τ ≤ min(h0ε
ν , δ), where ū is defined by (3.19).

FLAVORS. Let δ ≤ h0 and τ ∈ (0, δ) such that τ ≤ τ0ε
ν . We define FLAVORS

as the class of algorithms simulating the stochastic process t �→ ūt defined by

(3.19)

⎧⎪⎨
⎪⎩
ū0 = u0,

ū(k+1)δ = Φ0,ε
δ−τ (., ω

′
k) ◦ Φ

1
ε ,ε
τ (ūkδ, ωk),

ūt = ūkδ for kδ ≤ t < (k + 1)δ,

where ωk, ω
′
k are i.i.d. samples from the probability space (Ω,F ,P).

Remark 3.3. ωk simulates the randomness of the increment of the Brownian
motion between times δk and δk + τ . ω′

k simulates the randomness of the increment
of the Brownian motion between times δk + τ and δ(k + 1). The independence of ωk

and ω′
k is a reflection of the independence of the increments of a Brownian motion.

The following theorem shows that the flow averaging integrator is accurate with
respect to F -convergence for τ 	 εν 	 δ and

(3.20)
( τ
εν

) 3
2 	 δ 	 τ

εν
.

Theorem 3.3. Let u
1
ε ,ε
t be the solution to (3.15) with α = 1/ε, and let ūt be

defined by (3.19). Assume that Conditions 3.3 and 3.4 are satisfied; then the following
hold:

• u
1
ε ,ε
t F -converges towards η−1 ∗ (δXt ⊗ μ(Xt, dy)

)
as ε ↓ 0, where Xt is the

solution to

(3.21) dXt =

∫
g(Xt, y)μ(Xt, dy) + σ̄(Xt) dBt, X0 = x0,

where σ̄ is a (d− p)× (d− p) matrix field defined by

(3.22) σ̄σ̄T =

∫
σσT (x, y)μ(x, dy)

and Bt is a (d− p)-dimensional Brownian motion.

• As ε ↓ 0, τε−ν ↓ 0, δ εν

τ ↓ 0, and
(

τ
εν

) 3
2 1
δ ↓ 0, the numerical solution ūt F -

converges towards η−1 ∗ (δXt ⊗ μ(Xt, dy)
)
as ε ↓ 0, where Xt is the solution

to (3.21).
Proof. The proof of Theorem 3.3 is similar to the proof of Theorem 3.2. The

condition ε 	 1 is needed for the approximation of uα,ε by uα,0 and for the F -
convergence of u

1
ε ,0. Since yαt = ηy(uα,0t ), the condition τ 	 εν is used along with

(3.18) for the accuracy of Φ
1
ε ,ε
τ in (locally) approximating yαt . The condition δ 	 τ

εν
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allows for the averaging of g and σ to take place prior to a significant change of xαt;

more precisely, it allows for m � 1 iterations of Φ
1
ε ,ε
τ prior to a significant change of

xαt. The condition
(

τ
εν

) 3
2 	 δ is required in order to control the error accumulated

by m iterations of Φ
1
ε ,ε
τ .

4. Stochastic mechanical systems: Langevin equations. Since the foun-
dational work of Bismut [12], the field of stochastic geometric mechanics has grown in
response to the demand for tools to analyze the structure of continuous and discrete
mechanical systems with uncertainty [107, 60, 115, 30, 87, 86, 89, 72, 81, 18, 17, 19].
Like their deterministic counterparts, these integrators are structure preserving in
terms of statistical invariants.

In this section, FLAVORS are developed to be structure preserving integrators
for stiff stochastic mechanical systems, i.e., stiff Langevin equations of the form

(4.1)

{
dq =M−1p,

dp = −∇V (q) dt− 1
ε∇U(q) dt − cp dt+

√
2β−1c

1
2 dWt

and of the form

(4.2)

{
dq =M−1p,

dp = −∇V (q) dt− 1
ε∇U(q) dt− c

εp dt+
√
2β−1 c

1
2√
ε
dWt,

where c is a positive symmetric d× d matrix.
Remark 4.1. Provided that hidden fast variables remain locally ergodic, one can

also consider Hamiltonians with a mixture of both slow and fast noise and friction.
For the sake of clarity, we have restricted our presentation to (4.1) and (4.2).

Equations (4.1) and (4.2) model a mechanical system with Hamiltonian

(4.3) H(q, p) :=
1

2
pTM−1p+ V (q) +

1

ε
U(q).

The phase space is the Euclidean space R
d × R

d or a cotangent bundle T ∗M of a
configuration manifold M.

Remark 4.2. If c is not constant and M is not the usual R
d × R

d Euclidean
space, one should use the Stratonovich integral instead of the Itô integral.

4.1. FLAVORS for stochastic mechanical systems on manifolds. As in
section 2, we assume that we are given a mapping Φα

h acting on the phase space such

that for h ≤ h0 min(1, α− 1
2 )

(4.4)
∣∣∣Φα

h(q, p)− (q, p)− h
(
M−1p,−V (q)− αU(q)

)∣∣∣ ≤ Ch2(1 + α).

Next, consider the following Ornstein–Uhlenbeck equation:

(4.5) dp = −αcp dt+√
α
√
2β−1c

1
2 dWt.

The stochastic flow of (4.5) is defined by the following stochastic evolution map:

(4.6) Ψα
t1,t2(q, p) =

(
q, e−cα(t2−t1)p+

√
2β−1αc

1
2

∫ t2

t1

e−cα(t2−s)dWs

)
.
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Let δ ≤ h0 and τ ∈ (0, δ) such that τ ≤ τ0/
√
α. FLAVOR for (4.1) can then be

defined by

(4.7)

{
(q̄0, p̄0) = (q0, p0),

(q̄(k+1)δ , p̄(k+1)δ) = Φ0
δ−τ ◦Ψ1

kδ+τ,(k+1)δ ◦ Φ
1
ε
τ ◦Ψ1

kδ,kδ+τ (q̄kδ, p̄kδ)

and FLAVOR for (4.2) can be defined by

(4.8)

{
(q̄0, p̄0) = (q0, p0),

(q̄(k+1)δ , p̄(k+1)δ) = Φ0
δ−τ ◦ Φ 1

ε
τ ◦Ψ 1

ε

kδ,kδ+τ (q̄kδ , p̄kδ).

Theorem 3.3 establishes the accuracy of these integrators under Conditions 3.3

and 3.4 provided that τ 	 √
ε	 δ and

(
τ√
ε

) 3
2 	 δ 	 τ√

ε
.

4.2. Structure preserving properties of FLAVORS for stochastic me-

chanical systems on manifolds. First, observe that if Φα
h and Ψ

1
ε

h are symmetric
under a group action for all ε > 0, then the resulting FLAVOR, as a symmetric
composition of symmetric steps, is symmetric under the same group action (see the
comment below Theorem 2.4).

Similarly, the following theorem shows that FLAVORS inherit structure preserv-
ing properties from those associated with Φα

h (the component approximating the Ham-
iltonian part of the flow).

Theorem 4.1.

• If Φα
h is symplectic, then the FLAVORS defined by (4.7) and (4.8) are quasi-

symplectic as defined in Conditions RL1 and RL2 of [88] (it degenerates to a
symplectic method if friction is set equal to zero and the Jacobian of the flow
map is independent of (q, p)).

• If, in addition, c is isotropic, then FLAVOR defined by (4.7) is conformally
symplectic; i.e., it preserves the precise symplectic area change associated with
the flow of inertial Langevin processes [84].

Proof. Those properties are a consequence of the fact that FLAVORS are split-
ting schemes. The quasi symplecticity and symplectic conformality of the geometric
Langevin algorithm (GLA) has been obtained in a similar way in [17].

4.2.1. Example of quasi-symplectic FLAVORS. An example of a quasi-
symplectic FLAVOR can be obtained by choosing Φα

h to be the symplectic Euler
integrator defined by (2.9). This integrator is also conformally symplectic if c is
isotropic and friction is slow.

4.2.2. Example of quasi-symplectic and time-reversible FLAVORS. De-
fining Φα

h by (2.9) and Φα,∗
h by (2.10), an example of a quasi-symplectic and time-

reversible FLAVOR can be obtained by using the symmetric Strang splitting:

(4.9) (q̄(k+1)δ , p̄(k+1)δ) = Ψ1
kδ+ δ

2 ,(k+1)δ
◦ Φ 1

ε ,∗
τ
2

◦ Φ0,∗
δ−τ
2

◦ Φ0
δ−τ
2

◦ Φ 1
ε
τ
2
◦Ψ1

kδ,kδ+ δ
2
(q, p)

for (4.1) and

(4.10) (q̄(k+1)δ, p̄(k+1)δ) = Ψ
1
ε

(k+1)δ− τ
2 ,(k+1)δ ◦Φ

1
ε ,∗
τ
2

◦Φ0,∗
δ−τ
2

◦Φ0
δ−τ
2

◦Φ 1
ε
τ
2
◦Ψ 1

ε

kδ,kδ+ τ
2
(q, p)

for (4.2). This integrator is also conformally symplectic if c is isotropic and friction
is slow.
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4.2.3. Example of Boltzmann–Gibbs reversible Metropolis-adjusted
FLAVORS. Since the probability density of Ψt1,t2 can be computed explicitly, it
follows that the probability densities of (4.9) and (4.10) can be computed explic-
itly, and these algorithms can be metropolized and made reversible with respect to
the Gibbs distribution, as has been shown in [19] for GLA introduced in [17]. This
metropolization leads to stochastically stable (and ergodic if the noise applied on
momentum is not degenerate) algorithms. We refer the reader to [19] for details. Ob-
serve that if the proposed move is rejected, the momentum has to be flipped and the
acceptance probability involves a momentum flip. It is proved in [19] that GLA [17]
remains strongly accurate after a metropolization involving local momentum flips.
Whether this preservation of accuracy over trajectories transfers in a weak sense (in
distributions) to FLAVORS remains to be investigated.

5. Numerical analysis of FLAVOR based on VE.

5.1. Stability. Consider the following linear Hamiltonian system:

(5.1) H(x, y, px, py) =
1

2
p2x +

1

2
p2y +

1

2
x2 +

ω2

2
(y − x)2

with ω � 1. Here, x+y
2 is the slow variable and y − x is the fast variable.

It can be shown that, when applied to (5.1), symplectic Euler (2.9) is stable if and
only if h ≤ √

2/ω. Write Θδ,τ as the nonintrusive FLAVOR (2.5) obtained by using
symplectic Euler (2.9) as a legacy integrator. Write Θa

δ,τ as the artificial FLAVOR
described in subsection 2.1.4.

Theorem 5.1. The nonintrusive FLAVOR Θδ,τ with 1/
√
τ � ω � 1 is stable

if and only if δ ∈ (0, 2). The artificial FLAVOR Θa
δ,τ with 1/τ � ω � 1 is stable if

and only if δ ∈ (0, 2
√
2).

Proof. The numerical scheme associated with Θδ,τ can be written as

(5.2)

⎡
⎢⎢⎣

yn+1

xn+1

(py)n+1

(px)n+1

⎤
⎥⎥⎦ = T

⎡
⎢⎢⎣

yn
xn

(py)n
(px)n

⎤
⎥⎥⎦

with

T =

⎡
⎢⎢⎣
1 0 δ − τ 0
0 1 0 δ − τ
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

τ − δ 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 τ 0
0 1 0 τ
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

−τ (ω2 + 1) τω2 1 0

τω2 −τω2 0 1

⎤
⎥⎥⎦ .

The characteristic polynomial of T is

λ4 + (−4 + δ2 − δ2τ2 + 2δτ3 − τ4 + 2δτω2 − δ2τ2ω2 + 2δτ3ω2 − τ4ω2)λ3 + (6− 2δ2

+ 2δ2τ2 − 4δτ3 + 2τ4 − 4δτω2 + δ3τω2 + 2δ2τ2ω2 − 4δτ3ω2 − δ3τ3ω2 + 2τ4ω2

+ 2δ2τ4ω2 − δτ5ω2)λ2

+ (−4 + δ2 − δ2τ2 + 2δτ3 − τ4 + 2δτω2 − δ2τ2ω2 + 2δτ3ω2 − τ4ω2)λ+ 1.

(5.3)

Since ω � 1, τ 	 1/ω2, as long as δ � 1, roots to the above polynomial are (by
continuity; we refer the reader, for instance, to Theorem 1 of [34]) close to roots to
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(a) Nonintrusive FLAVOR (b) Artificial FLAVOR

Fig. 5.1. Stability domain of the nonintrusive and artificial FLAVORS applied to (5.1) as a
function of δ and τ/ε. ω = 1/

√
ε = 1000.

the asymptotic polynomial

(5.4) λ4 + (δ2 − 4)λ3 + (6− 2δ2)λ2 + (δ2 − 4)λ+ 1,

which can be shown to be 1 with multiplicity 2 and 1
2 (2− δ2± δ

√
δ2 − 4). It is easy to

see that all roots are complex numbers with moduli less than or equal to one if and
only if |δ| ≤ 2.

The numerical scheme associated with Θa
δ,τ can be written as in (5.2) with

(5.5)

T =

⎡
⎢⎢⎣
1 0 δ−τ

2
δ−τ
2

0 1 δ−τ
2

δ−τ
2

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

−τω2 τω2 1 0
τω2 −τω2 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
1 0 τ 0
0 1 0 τ
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
−δ 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

The characteristic polynomial of T is

2λ4 + (4ω2τ2 + τδ + δ2 − 8)λ3 + (12− 2δ2 − 2δτ − 8τ2ω2 + 2δ2τ2ω2)λ2

+ (4ω2τ2 + τδ + δ2 − 8)λ+ 2.(5.6)

Similarly, since ω � 1, τ 	 1/ω, as long as δ � 1, roots to the above polynomial are
close to roots to the asymptotic polynomial

(5.7) 2λ4 + (δ2 − 8)λ3 + (12− 2δ2)λ2 + (δ2 − 8)λ+ 1,

which can be shown to be 1 with multiplicity 2 and 1
4 (4 − δ2 ± δ

√
δ2 − 8). All roots

are complex numbers with moduli less than or equal to one if and only if |δ| ≤
2
√
2.
Figures 5.1(a) and 5.1(b) illustrate the domain of stability of the nonintrusive

FLAVOR (based on symplectic Euler (2.5) and (2.9)) and artificial FLAVOR (2.11)
applied to the flow of (5.1), i.e., values of δ and τ/ε ensuring stable numerical inte-
grations. We observe that the artificial FLAVOR has a much larger stability domain
than the nonintrusive FLAVOR. Specifically, for the nonintrusive FLAVOR and large
values of δ, τ = o(

√
ε) is not enough and one needs τ = o(ε) for a stable integration,

whereas the artificial FLAVOR requires only τ =
√
2ε, a minimum requirement for a

stable symplectic Euler integration of the fast dynamics.
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Notice that there is no resonance behavior in terms of stability; everything below
the two curves is stable and everything outside is not stable (plots not shown).

5.2. Error analysis. The flow of (5.1) has been explicitly computed and com-
pared with solutions obtained from the nonintrusive FLAVOR based on symplectic
Euler ((2.5) and (2.9)) and with artificial FLAVOR (2.11).

The total simulation time is T = 10, and absolute errors on the slow variable
have been computed with respect to the Euclidean norm of the difference in posi-
tions between analytical and numerical solutions. Stability is investigated using the
same technique used in subsection 5.1. Figures 5.2(a) and 5.2(b) illustrate errors as
functions of mesostep δ and renormalized small step τ/ε. Observe that the given
δ errors are minimized at specific values of τ/ε for both integrators, but the accuracy
of the nonintrusive FLAVOR is less sensitive to τ/ε. Figures 5.2(c) and 5.2(d) plot
the optimal value of τ/ε as a function of δ and the associated error. Observe also
that for the nonintrusive FLAVOR the dependence of the optimal value of τ/ε on δ
is weak, whereas for the artificial FLAVOR the optimal value of τ/ε roughly scales
linearly with δ. Figures 5.2(e) and 5.2(f) describe how error changes with small step τ
for mesostep δ fixed. Figure 5.2(e) can be viewed in correspondence with the con-
dition δ 	 τ/ε required for accuracy. This requirement, however, is just a sufficient
condition to obtain an error bound, as we can see in Figure 5.2(f). There the weak
dependence of the error on τ/ε for a fixed δ shows that one does not have to choose
the microstep with too much care or optimize the integrator with respect to its value
if the artificial FLAVOR is used. As a matter of fact, all the numerical experiments
illustrated in this paper (except for Figures 5.2(c) and 5.2(d)) have been performed
without any tuning of the value τ/ε. We have simply used the rule of thumb δ ∼ γ τ

ε ,
where γ is a small parameter (0.1, for instance).

Therefore, it appears that the benefits of artificial FLAVORS lie in their superior
accuracy and stability.

Notice that there is no resonant value of δ or τ .

5.3. Numerical error analysis for nonlinear systems. In this subsection,
we will consider the nonlinear Hamiltonian system

(5.8) H(x, y, z, px, py, pz) =
1

2
p2x+

1

2
p2y +

1

2
p2z +x

4+ ε−1ω1

2
(y−x)2 + ε−1ω2

2
(z− y)2.

Thus, the potential is U = ω1

2 (y− x)2 + ω2

2 (z − y)2 and V = x4. Here, x+y+z
3 acts as

a slow degree of freedom and y − x and z − y act as fast degrees of freedom.

Figure 5.3 illustrates t �→ x(t)+y(t)+z(t)
3 (slow variable, convergent point-wisely)

and t �→ (y(t) − x(t), z(t) − y(t)) (fast variables, convergent in measure) computed
with symplectic Euler and with the induced symplectic FLAVOR (2.5). Define q :=
(x, y, z). To illustrate the F -convergence property of FLAVOR, we fix H = 1, vary
the mesostep δ = H/M by changing M , and show the Euclidean norm error of the

difference between 1
M

∑M−1
i=0 q(T − ih/M) computed with FLAVOR and computed

with symplectic Euler in Figure 5.4(a). Notice that, without an averaging over time
length h, the error will be no longer monotonically but oscillatorily decreasing as
δ changes (plots not shown) because fast variables are captured only in the sense
of measure. As shown in Figure 5.4(a), the error scales linearly with 1

M for M not
too small, and therefore the global error is a linear function of the mesostep δ and
the method is first order convergent. Figure 5.4(b) shows that the error in general
grows linearly with the total simulation time, and this linear growth of the error has
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(a) Error of nonintrusive FLAVOR as a func-
tion of δ and τ/

√
ε. Notice that not all pairs

of step lengths lead to stable integrations.

(b) Error of artificial FLAVOR as a function
of δ and τ/

√
ε

(c) Optimal τ/
√
ε and error of nonintrusive

FLAVOR as functions of δ
(d) Optimal τ/

√
ε and error of artificial

FLAVOR as functions of δ

(e) Error dependence on τ/
√
ε for a given δ:

nonintrusive FLAVOR
(f) Error dependence on τ/

√
ε for a given δ:

artificial FLAVOR

Fig. 5.2. Error analysis of (5.1). Parameters are ω =
√
ε = 103, x(0) = 0.8, and y(0) =

x(0) + 1.1/ω.

been observed for a simulation time larger than ω (ε−1/2). Figure 5.4(c) shows that
the error does not depend on ω (ε−1/2) for a fixed δ, as long as ε is not too large
(i.e., ω is not too small); the error is instead controlled by M . This is not caused
by reaching the limit of machine accuracy; it is a characteristic of the method: the
plateau for large ω corresponds to the complete scale separation regime of FLAVOR
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Fig. 5.3. Comparison between trajectories integrated by VE and FLAVOR (defined by (2.5)
and (2.9)). FLAVOR uses mesostep δ = 0.01 and microstep τ = 0.0005, and symplectic Euler
uses time step τ = 0.0005. Time axes in the right column are zoomed in (by different ratios) to
illustrate the fact that fast variables are captured in the sense of measure. FLAVOR accelerated
the computation by roughly 20x (δ = 20τ). In this experiment, ε = 10−6, ω1 = 1.1, ω2 = 0.97,
x(0) = 0.8, y(0) = 0.811, z(0) = 0.721, px(0) = 0, py(0) = 0, and pz(0) = 0. Simulation time is
T = 50.

(a) Asymptotically linear er-
ror dependence on δ = 1/M

(b) Asymptotically linear er-
ror dependence on total sim-
ulation time T

(c) Asymptotically indepen-
dent of the scaling factor ω

Fig. 5.4. Error dependence on parameters in a FLAVOR simulation of (5.8).

as a multiscale method.
Notice that there is no resonant value of δ in the sense of convergence.
The fact that the error scales linearly with total simulation time is a much stronger

(numerical) result than our (theoretical) error analysis for FLAVORS (in which the
error is bounded by a term growing exponentially with the total simulation time).
We conjecture that the linear growth of the error is a consequence of the fact that
FLAVOR is symplectic and is true only for a subclass of systems, possibly integrable
systems. A rigorous analysis of the effects of the structure preservation of FLAVORS
on long term behavior remains to be done.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1296 MOLEI TAO, HOUMAN OWHADI, AND JERROLD E. MARSDEN

6. Numerical experiments.

6.1. Hidden Van der Pol oscillator (ODE). Consider the following system
of ODEs:

(6.1)

{
ṙ = 1

ε (r cos θ + r sin θ − 1
3r

3 cos3 θ) cos θ − ε r cos θ sin θ,

θ̇ = −ε cos2 θ − 1
ε (cos θ + sin θ − 1

3r
2 cos3 θ) sin θ,

where ε 	 1. Taking the transformation from polar coordinates to Cartesian coordi-
nates by [x, y] = [r sin θ, r cos θ] as the local diffeomorphism, we obtained the hidden
system

(6.2)

{
ẋ = −εy,
ẏ = 1

ε (x + y − 1
3y

3).

Taking the second time derivative of y, the system can also be written as the second
order ODE

(6.3) ÿ + y =
1

ε
(1 − y2)ẏ.

The latter is a classical Van der Pol oscillator [116]. The nonintrusive FLAVOR as
defined by (1.34) can be directly applied to (6.1) (with hidden slow and fast processes)
by turning the stiff parameter 1

ε on and off. More precisely, defining Φε,α(r, θ) by
(6.4)

Φα,ε
h (r, θ) :=

(
r
θ

)
+ αh

(
(r cos θ + r sin θ − 1

3r
3 cos3 θ) cos θ

−(cos θ + sin θ − 1
3r

2 cos3 θ) sin θ

)
− εh

(
r cos θ sin θ

cos2 θ

)
,

FLAVOR is defined by (1.34) with ū := (r̄, θ̄), i.e.,

(6.5) (r̄t, θ̄t) =
(
Φ0,ε

δ−τ ◦ Φ 1
ε ,ε
τ

)k
(r0, θ0) for kδ ≤ t < (k + 1)δ.

We refer the reader to Figure 6.1 for a comparison of integrations by forward Euler,
used as a benchmark, and FLAVORS. FLAVORS give trajectories close to forward
Euler and correctly capture the O(1ε ) period [116] of the relaxation oscillation. More-
over, a 200x acceleration is achieved using FLAVOR.

6.2. Hamiltonian system with nonlinear stiff and soft potentials. In this
subsection, we will apply the symplectic Euler FLAVOR defined by (2.5) and (2.9) to
the mechanical system whose Hamiltonian is

(6.6) H(y, x, py, px) :=
1

2
p2y +

1

2
p2x + ε−1y6 + (x − y)4.

Here, stiff potential ε−1U = ε−1y6 and soft potential V = (x−y)4 are both nonlinear.
Figure 6.2 illustrates t �→ y(t) (dominated by a fast process), t �→ x(t) − y(t) (a

slow process modulated by a fast process), and t �→ H(t) computed with symplectic
Euler, the induced symplectic FLAVOR ((2.5) and (2.9)), and IMEX [109]. Notice
that x − y is not a purely slow variable but contains some fast component, and
therefore the FLAVOR integration of it contains a modulation of local oscillations,
which could be interpreted as that fast component slowed down by FLAVOR. It is
not easy to find a purely slow variable or a purely fast variable in the form of (1.2) for
this example, but the integrated trajectory for such a slow variable will not contain
these slowed-down local oscillations.
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Fig. 6.1. Over a timespan of 5/ε are shown (a) the direct forward Euler simulation of (6.2)
with time steps resolving the fast time scale, (b) the (nonintrusive (1.34)) FLAVOR simulation of
(6.2), and (c) the polar to Cartesian image of the (nonintrusive (1.34)) FLAVOR simulation of
(6.1) with hidden slow and fast variables. Forward Euler uses time step h = 0.05ε = 0.00005. The
two FLAVOR simulations use δ = 0.01 and τ = 0.00005. Parameters are 1

ε
= 1000, x(0) = 1, and

y(0) = 1.

6.3. Fermi–Pasta–Ulam problem. In this subsection, we will consider the
Fermi–Pasta–Ulam (FPU) problem [43] illustrated by Figure 6.3 and associated with
the Hamiltonian

(6.7) H(q, p) :=
1

2

m∑
i=1

(p22i−1 + p22i) +
ω2

4

m∑
i=1

(q2i − q2i−1)
2 +

m∑
i=0

(q2i+1 − q2i)
4.

The FPU problem is a well-known benchmark problem [83, 57] for multiscale inte-
grators because it exhibits different behaviors over widely separated time scales. The
stiff springs behave nearly like harmonic oscillators with period ∼ O(ω−1). Then the
centers of masses linked by stiff springs (i.e., the midpoints of stiff springs) change
over a time scale O(1). The third time scale, O(ω), is associated with the rate of
energy exchange between stiff springs. Energy exchange among stiff springs extends
to even slower time scales, in either a periodic or a chaotic fashion [46, 45]. On the
other hand, the total energy of the stiff springs behaves almost like a constant. This
wide separation of time scales can be seen in Figures 6.4, 6.5, and 6.6, where four
subplots address different scales: Subplot1 shows the fast variables (q2i − q2i−1)/

√
2;

Subplot2 shows one of the slow variables (q2 + q1)/
√
2; Subplot3 shows the energy

transfer pattern among stiff springs, which is even slower; and Subplot4 shows the
near-constant total energy of three stiff springs. All four subplots are time series.
A comprehensive survey on geometric integration of the FPU problem can be found
in [57].

Figures 6.4(a) and 6.4(b) compare symplectic Euler (with time steps fine enough
to resolve FPU over the involved long time scale) and with the artificial FLAVOR
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Fig. 6.2. In this experiment, ε = 10−6, y(0) = 1.1, x(0) = 2.2, py(0) = 0, and px(0) = 0.
Simulation time is T = 2. FLAVOR (defined by (2.5) and (2.9)) uses mesostep δ = 10−3 and
microstep τ = 10−5, VE uses small time step τ = 10−5, and IMEX uses mesostep δ = 10−3. Since
the fast potential is nonlinear, IMEX is an implicit method and nonlinear equations have to be solved
at every step, and IMEX turns out to be slower than VE. FLAVOR is strongly accurate with respect
to slow variables and accurate in the sense of measures with respect to fast variables. Compared to
symplectic Euler, FLAVOR accelerated the computation by roughly 100x.

Fig. 6.3. Fermi–Pasta–Ulam problem [43]—one-dimensional chain of alternatively connected
harmonic stiff and nonharmonic soft springs.

(2.11). On a time scale O(ω) (ω � 1), FLAVOR captured the slow variable’s periodic
behavior with the correct period and phase, as well as the slower process of energy
transfer. At the same time, FLAVOR accelerated the computation by roughly 40x
(since δ = 40τ ′).

It is not worrisome that the artificial FLAVOR produces stiff spring energy tra-
jectories with rapid local oscillations, which exhibit both thicker individual energy
curves and total energy with larger variance. In fact, these local oscillations do not
seem to affect the global transfer pattern or its period and are caused by the numer-
ical error associated with microstep τ . This can be inferred by using the artificial
FLAVOR introduced in subsection 2.1.4 with θετ corresponding to the exact flow of
Hfast (rather than its VE approximation: this specific artificial Euler resembles the
impulse method, but the impulse method will yield unbounded trajectories if one
runs even longer time simulations, whereas FLAVORS do not seem to have an error
growing exponentially with the total simulation time). As illustrated in Figure 6.7,
exact flow helps to obtain thin energy curves of stiff springs with no rapid local oscil-
lations as well as a total energy with a variance smaller than that given by the fine
VE (Figure 6.4(a)), with the transfer pattern similar to Figure 6.4(b).
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(a) By VE with small time step τ ′ = 5×
10−5 = 0.05/ω. 38 periods in Subplot2
with zoomed-in time axis (∼ 380 in total
over the whole simulation span).

(b) By artificial FLAVOR (2.11) with
mesostep δ = 0.002 and microstep τ =
10−4 = 0.1/ω. 38 periods in Subplot2
with zoomed-in time axis (∼ 380 in to-
tal over the whole simulation span).

Fig. 6.4. Simulations of the FPU problem over T = 2ω. Subplot2 of both figures has zoomed-in
time axes so that if phase lag or any other distortion of trajectory exists, it could be investigated
closely. In this experiment, m = 3, ω = 103, x(0) = [0.4642,−0.4202, 0.0344, 0.1371, 0.0626, 0.0810]
is randomly chosen, and y(0) = [0, 0, 0, 0, 0, 0].

(a) By Velocity Verlet with small time step h =
10−5.

(b) By artificial FLAVOR (2.11) with mesostep
δ = 0.002 and microstep τ = 0.0005 = 0.1/ω.

(c) By IMEX with mesostep δ = 0.002. (d) By impulse method with mesostep δ =
0.002.

Fig. 6.5. Simulations of the FPU problem over T = 1
4
ω2. Initial conditions are x(0) =

[1, 0, 0, 1/ω, 0, 0] and y(0) = [0, 0, 0, 0, 0, 0] so that energy starts concentrated on the leftmost soft
and stiff springs, propagates to the right, bounces back, and oscillates among springs. We chose a
smaller ω = 200 because with a larger ω it would take weeks to run Velocity Verlet on a laptop.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1300 MOLEI TAO, HOUMAN OWHADI, AND JERROLD E. MARSDEN

Fig. 6.6. Harmonic FPU, T = 50ω, exact
solution.

Fig. 6.7. By artificial FLAVORS (subsection
2.1.4) based on exact fast flow with mesostep δ =
0.002 and microstep τ = 10−4. Less oscillatory
stiff spring energies. 38 periods in Subplot2 with
zoomed-in time axis (∼ 380 in total over the whole
simulation span).

Now we reach further to O(ω2) total integration time to investigate different inte-
grators’ performances in capturing long time energy exchange patterns (Figure 6.5).

There is a significant difference among stiff spring energy transfer patterns pro-
duced by Velocity Verlet, FLAVOR, IMEX, and the impulse method. Here, there is
no analytic solution or provably accurate method for comparison. FLAVOR is the
only method that shows periodic behavior on the long time scale, and convergence
tests show that FLAVOR’s trajectories remain stable under small variations of step
sizes.

Notice that the system would be integrable and periodic if nonlinearity did not
exist (see Figure 6.6 for integration of a system in which the slow potential is quadratic;
that system, by the way, will be perfectly integrated by all FLAVORS, Velocity Verlet,
IMEX, and the impulse method). When the number of springs is fixed and very small,
in general only strong nonlinearity will destroy the periodicity of the system (see, for
instance, [80] for an example of a chaotic threshold on nonlinearity), which should
not be the case here since ω is very large.

It is worth discussing why Velocity Verlet with a time step much smaller than the
characteristic length of the fast scale (O(1/ω)) is still not satisfactory. Being a second
order method, it has an error bound of O(eTh2). On the other hand, backward error
analysis guarantees that the energy of the integrated trajectory oscillates around the
true conserved energy, hence eliminating the possibility of exponential growth of the
numerical solution. Nevertheless, at this moment there is no result known to the
authors to link these two analytical results to guarantee long term accuracy on the
stiff springs’ energies. The energy exchange among stiff springs is in fact a delicate
phenomenon, and a slight distortion in stiff spring lengths could easily disrupt its
period or even its periodicity.

These numerical observations seem to indicate that symplectic FLAVORS may
have special long time properties. Specifically, although we could not quantify the
error here because there is no benchmark to compare to when the total simulation
time is O(ω2), the long term behavior seems to indicate an error growing much slower
than exponentially (please refer to Remark 1.7 for a discussion on exponential error
bounds and Figure 5.4(b) for another example of conjectured linear error growth). A
rigorous investigation on FLAVORS’ long time behavior remains to be done.
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(a) FLAVOR (b) Velocity Verlet

Fig. 6.8. Quantities of interest in integrations of FPU over different time scales. FLAVOR
(2.11) captures the fastest time scale in the sense of measure, while Velocity Verlet cannot accurately
capture the slowest (O(ω2)) time scale despite the small time step it uses. Here, FLAVOR is 200
times faster than Velocity Verlet. All parameters are the same as in Figures 6.5(a) and 6.5(b), e.g.,
ω = 200, δ = 0.002, τ = 0.0005, and h = 10−5.

Figure 6.8 summarizes FLAVOR’s performance on various time scales in a com-
parison to Velocity Verlet.

Notice that there are many sophisticated methods designed for integrating the
FPU problem (see [57] for a review), as well as general multiscale methods that can
be applied to the FPU problem. HMM, as one state-of-the-art method in the latter
category, together with identification of slow variables [5], captured the energy transfer
between stiff springs over a time span of the order of ω. Simulations shown here are
over a time span of the order of O(ω2).

6.3.1. On resonances. Multiscale in time integrators are usually plagued by
two kinds of resonances.

The first kind, called Takens resonance [111], is related to the case in which there
are no closed equations for slow variables [15]. FLAVORS avoid Takens resonance
because, thanks to F -convergence, the information on the local invariant measure of
fast variables is not lost. Observe that the FPU problem has Takens resonance (the
eigenfrequencies of the strong potential are identical). Nevertheless, FLAVORS still
capture the solution trajectories given any large value of ω with mesostep δ � 1/ω
independent of ω.

The second kind [25] is related to instabilities created by interactions between
parameters ε, τ , and δ. For instance, if ε−1 = ω2, resonance might happen at ωδ
or ωτ equal to multiples of π/2. The analysis provided in section 5 shows that such
unstable interaction does not occur, either in the sense of stability or in terms of peaks
of error function. This can be intuitively understood by observing that FLAVORS
never approximate cos(δω), while, on the other hand, it does approximate cos(τω),
whose resonance frequency τ = 2π/ω is ruled out by the requirement that τ 	 ε for
the nonintrusive FLAVOR and τ 	 √

ε for the artificial FLAVOR.

6.4. Nonlinear two-dimensional primitive molecular dynamics. Now
consider a two-dimensional, two degrees of freedom example in which a point mass
is linked through a spring to a massless fixed hinge at the origin. While the spring
as well as the point mass are allowed to rotate around the hinge (the spring remains
straight), the more the spring mass tilts away from its equilibrium angle the more
restorative force it will experience. This example is a simplified version of prevailing
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Fig. 6.9. Simulation of (6.8). Symplectic Euler uses small time step τ = 0.0002, and the
induced symplectic FLAVOR ( (2.5) and (2.9)) uses mesostep δ = 0.01 and microstep τ = 0.0002.
In this simulation, ω = 500, x(0) = 1.1, y(0) = 0.8, px(0) = 0, py(0) = 0, and simulation time
T = 100.

molecular dynamics models, in which bond lengths and angles between neighboring
bonds are both spring-like; other potential energy terms are ignored.

Denote by x and y the Euclidean coordinates of the mass and by px and py the
corresponding momentums. Also introduce polar coordinates (r, θ), with x = r cos θ
and y = r sin θ. Then the Hamiltonian reads as

H =
1

2
p2x +

1

2
p2y +

1

2
ω2(r − r0)

2 + (cos θ)2

=
1

2
p2x +

1

2
p2y +

1

2
ω2(

√
x2 + y2 − r0)

2 +
x2

x2 + y2
,(6.8)

where r0 is an equilibrium bond length parameter and ω is a large number denoting
bond oscillation frequency.

Remark 6.1. This seemingly trivial example is not easy to integrate.
1. If the system is viewed in Euclidean coordinates (x, y, px, py), it is completely

nonlinear with a nonpolynomial potential, and hence the impulse method or its
variations [54, 113, 47, 101], or IMEX [109], or the homogenization method
introduced in [20] cannot be applied using a mesostep.

2. If the Hamiltonian is rewritten in generalized coordinates (r, θ, pr, pθ), H =
1
2p

2
r+

1
2
p2
θ

r2 +
1
2ω

2(r−r0)2+ 1
2 cos(θ)

2, a fast quadratic potential can be identified.

However, the mass matrix
[
1 0
0 r2

]
is not constant, but rapidly oscillating, and

hence methods that work for quasi-quadratic fast potentials (i.e., a “harmonic
oscillator” with a slowly changing frequency) ( [20], for example) cannot be
applied.

Figure 6.9 compares symplectic Euler with the induced symplectic FLAVOR
((2.5) and (2.9)) applied to (6.8) in Euclidean coordinates.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FLOW AVERAGING INTEGRATORS (FLAVORS) 1303

Fig. 6.10. One example configuration of a propane molecule.

FLAVOR reproduced the slow θ trajectory while accelerating the simulation time
by roughly 50x (since δ = 50τ). It can also be seen from both energy fluctuations and
the trajectory of the fast variable that the fast process’s amplitude is well captured,
although its period has been lengthened.

6.5. Nonlinear two-dimensional molecular clipper. We now consider a
united-atom representation of a three atom polymer with two bonds (e.g., propane
or water molecule). This is a simplified version of several prevailing molecular dy-
namics force fields (for example, CHARMM [21], AMBER [33], or a simpler exam-
ple of butane [96, 97]). Using conservation of momentum, we fix the coordinate
system in the two-dimensional plane defined by the three atoms. We introduce
both Cartesian coordinates (x1, y1, x2, y2, x3, y3), as well as generalized coordinates
r1 =

√
(x2 − x1)2 + (y2 − y1)2 and r2 =

√
(x3 − x2)2 + (y3 − y2)2 for bond lengths

and θ for the angle between the two bonds (Figure 6.10). The kinetic energy is

(6.9) K.E. =
1

2
m1(ẋ

2
1 + ẏ21) +

1

2
m2(ẋ

2
2 + ẏ22) +

1

2
m3(ẋ

2
3 + ẏ23),

where m1, m2, and m3 denote the masses of the atoms.
The potential energy consists of a bond term and a bond angle term, both of

which are of harmonic oscillator type:

P.E. = Vbond + Vangle,(6.10)

Vbond =
1

2
Kr[(r1 − r0)

2 + (r2 − r0)
2],(6.11)

Vangle =
1

2
Kθ(cos(θ)− cos(θ0))

2.(6.12)

Notice that the system is in fact fully nonlinear: if written in generalized co-
ordinates, the kinetic energy will correspond to a nonlinear and position-dependent
mass matrix, whereas in Cartesian coordinates, both terms in the potential energy
are nonpolynomial functions of the configuration.

In the case of propane, m1 = 15μ, m2 = 14μ, and m3 = 15μ, where μ = 1.67 ·
10−27kg, r0 = 1.53Å, Kr = 83.7kcal/(molÅ2), θ0 = 109.5◦, and Kθ = 43.1kcal/mol
[96].

The propane system is characterized by a separation of time scales to some ex-
tent: bond stretching and bond-angle bending are characterized by 1014 and 1013 Hz
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Fig. 6.11. Simulations of an exaggerated propane molecule (subsection 6.5). Symplectic Euler
uses h = 0.01, and the induced symplectic FLAVOR ( (2.5) and (2.9)) parameters are δ = 0.1
and τ = 0.01. Initial conditions are [x1, y1, x2, y2, x3, y3] = [0, 0, 1.533, 0, 2.6136, 1.0826] and
[m1ẋ1,m1ẏ1,m2ẋ2, m2ẏ2, m3ẋ3,m3ẏ3] = [−0.4326,−1.6656, 0.1253, 0.2877,−1.1465, 1.1909].

vibrational frequencies, respectively [120]. To examine FLAVORS, we use unitless
parameters and exaggerate the time scale separation by setting Kr to be 8370 and Kθ

to be 4.31. We also let μ = 1, without loss of generality, for arithmetic considerations.

In this system, the bond potential is the fast potential and the bond-angle po-
tential is the slow one. It is well known that using a large time step at the time
scale corresponding to the bond-angle potential by freezing bond lengths produces
biased results, and many physics-based methods have been proposed to remedy this
difficulty (for example, by the approach of Fixman [44]; see also a review in [120]).
On the other hand, few multiscale methods work for this fully nonlinear system.

Figure 6.11 compares symplectic Euler with the induced symplectic FLAVOR
((2.5) and (2.9)) applied in Euclidean coordinates. 10x acceleration is achieved. A
simulation movie is also available at http://www.cds.caltech.edu/∼mtao/Propane.avi
and http://www.acm.caltech.edu/∼owhadi/.

6.6. Forced nonautonomous mechanical system: Kapitza’s inverted
pendulum. As the famous Kapitza’s inverted pendulum shows [66] (for recent ref-
erences, see [6] for numerical integration and [102] for generalization to the stochastic
setting), the up position of a single pendulum can be stabilized if the pivot of the
pendulum experiences external forcing in the form of vertical oscillation. Specifically,
if the position of the pivot is given by y = sin(ωt), the system is governed by

(6.13) lθ̈ = [g + ω2 sin(2πωt)] sin θ,

where θ denotes the clockwise angle of the pendulum from the positive y direction, l
is the length of the pendulum, and g is the gravitational constant. In this case, the
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Fig. 6.12. Simulations of the inverted pendulum. The integration by VE and the d’Alembert
principle uses time step h = 0.2/ω/

√
l ≈ 0.000067, while FLAVOR (defined by (6.15)) uses δ = 0.002

and τ = 0.2/ω/
√
l. Also, g = 9.8, l = 9, θ(0) = 0.2, θ̇(0) = 0, and ω = 1000.

rapid vibration causes the pendulum to oscillate slowly around the positive y direction
with a O(1) frequency.

A single scale integration of this system could be done by VE with the discrete
d’Alembert principle for external forces [82]

(6.14)

⎧⎪⎨
⎪⎩
fi = ω2 sin(2πωih),

pi+1 = pi + h[g + fi] sin θi,

θi+1 = θi + hpi+1/l,

where the time step length h has to be smaller than O(1/ω).
FLAVOR is given by

(6.15)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
qnδ+τ = qnδ + τpnδ/l,

pnδ+τ = pnδ + τg sin(qnδ+τ ) + ω2 sin(2πωnτ),

q(n+1)δ = qnδ+τ + (δ − τ)pnδ+τ/l,

p(n+1)δ = pnδ+τ + (δ − τ)g sin(q(n+1)δ).

Observe that the time-dependent force is synchronized on the τ time scale instead
of the δ time scale, specifically ω2 sin(2πωnτ) instead of ω2 sin(2πωnδ) in (6.15).

Numerical results are illustrated in Figure 6.12 (also available as a movie at
http://www.cds.caltech.edu/∼mtao/InvertedPendulum.avi and http://www.acm.
caltech.edu/∼owhadi/). Notice in this example that θ, being the only degree of free-
dom, contains a combination of slow and fast dynamics. FLAVOR could capture only
the fast dynamics in the sense of measures, and this is why dents appear as modulation
on the slow oscillation of θ. On the other hand, although this forced system does not
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admit a conserved energy, the value of the Hamiltonian should oscillate periodically
due to the periodic external driving force. While a nonmechanics-based method such
as forward Euler often produces an unbounded growth or a decrease in the energy,
FLAVORS do not have this drawback.

Remark 6.2. Consider the case of a rapid potential of the form Ω2(q1)q
2
2/ε

2

(where q1 is the slow variable and q2 the fast variable). In the limit of a vanishing
ε, it is known that the term contributes to the effective Hamiltonian with a contribu-
tion V (q1) (the so-called Fixman term). One may suppose that FLAVOR would be
consistent only with a term of the form γV (q1), where 0 < γ < 1, because the rapid
force is accounted for only over a time τ < δ. This intuition is not correct because
the effect of FLAVOR is not to account for the rapid force over a time τ < δ but
to slow down the rapid force by a fraction τ/ε. This effect can also be seen in the
algorithm (6.15), where the force term ω2 sin(2πωnτ) has been slowed down by a fac-
tor τ/δ (Kapitza’s inverted pendulum illustrates a similar phenomenon where rapid
oscillations contribute a stabilizing term to the effective Hamiltonian; nevertheless,
FLAVORS remain accurate).

6.7. Nonautonomous SDE system with hidden slow variables. Consider
the following artificial nonautonomous SDE system:
(6.16)⎧⎨
⎩
du = 4

3(u+v)2

(
− 1

2

(
v−u
2

)2
+ 5 sin(2πt)

)
dt− 1

ε

((
u+v
2

)3
+ c− v−u

2

)
dt−

√
2
εdWt,

dv = 4
3(u+v)2

(
− 1

2

(
v−u
2

)2
+ 5 sin(2πt)

)
dt+ 1

ε

((
u+v
2

)3
+ c− v−u

2

)
dt+

√
2
εdWt,

where c is a positive constant and the two dWt terms refer to the same Brownian
motion. The system (6.16) can be converted via the local diffeomorphism

(6.17)

{
u = (x− c)1/3 − y,

v = (x− c)1/3 + y

into the following hidden system separating slow and fast variables:

(6.18)

{
dx = − 1

2y
2dt+ 5 sin(2πt)dWt,

dy = 1
ε (x− y)dt+

√
2
εdWt.

Nonintrusive FLAVOR (3.7) can be directly applied to (6.16) using a time step δ � ε
without prior identification of the slow and fast variables, i.e., without prior identifi-
cation of the slow variable x or of the system (6.18). The expected values of solutions
of (6.16) integrated by FLAVORS with mesostep δ and Euler–Maruyama with a small
time step τ are presented in Figure 6.13. FLAVOR has accelerated the computation
by 100x.

6.8. Langevin equations with slow noise and friction. In this subsection,
we consider the one-dimensional, two degrees of freedom system modeled by the SDEs
(now both springs are quartic rather than harmonic)

(6.19)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
dy = pydt,

dx = pxdt,

dpy = −ε−1y3dt− 4(y − x)3dt− cpydt+ σdW 1
t ,

dpx = −4(x− y)3dt− cpxdt+ σdW 2
t .
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Fig. 6.13. (a) Integration of (6.16) by nonintrusive FLAVOR (3.7) using mesostep δ = 0.01.
(b) Integration of (6.16) by Euler–Maruyama using fine time step h = 10−4. (c) Integration of
(6.18) by Euler–Maruyama using the same small step h = 10−4. Expectations of the slow variable
(whether or not hidden) are obtained by empirically averaging over an ensemble of 100 independent
sample trajectories. ε = 10−4, x(0) = 1+ε, y(0) = 1, and T = 2 (the expectation of the real solution
will blow up around T = 3). We have chosen c = 10 so that the transformation is a diffeomorphism.

We compare several autocorrelation functions and time-dependent moments of
this stochastic process integrated by a quasi-symplectic FLAVOR ((4.7) and (2.9))
and the geometric Langevin algorithm (GLA) [17]. FLAVOR and GLA gave results
in agreement (Figures 6.14, 6.15(a), and 6.15(b)). Since GLA is weakly convergent
and Boltzmann–Gibbs preserving, this is numerical evidence that the quasi-symplectic
FLAVOR is too.

Expectations are empirically calculated by averaging over an ensemble of 100
sample trajectories with T = 30, ε = 10−8, τ = 0.001, and δ = 0.01. y(0) = 2.1/ω
(with ω := 1/

√
ε), x(0) = y(0) + 1.8, c = 0.1, and σ = 0.5. GLA uses time step

h = 0.001. Noise and friction are slow here in the sense that they are not of the order
O(ω) or larger.

As shown in the plots, in the regime dominated by deterministic dynamics (rough-
ly from t = 0 to t = 8) various moments calculated empirically by FLAVORS and
GLA are in agreement, indicating that the same rate of convergence towards the
Boltzmann–Gibbs distribution is obtained. And in that regime, autocorrelation func-
tions of the slow variables agree, serving as numerical evidence that FLAVORS are
weakly converging towards the SDE solution, whereas autocorrelation functions of the
fast variables agree only in the sense of measures (after time averaging over a meso-
scopic (o(1)) time span). The fluctuations between FLAVORS and GLA for large
times are an effect of the finite number of samples (100) used to compute sample
averages.

Recall that if the noise is applied to slow variables, FLAVORS do not converge
strongly but only in the sense of distributions.
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Fig. 6.14. SDE (6.19): autocorrelation functions of E[y(t)y(0)] (dominantly fast) and of
E[(x(t) − y(t))(x(0) − y(0))] (dominantly slow), empirically obtained by GLA and FLAVORS.

(a) E
(
x(t)− y(t)

)
(b) E

(
(x(t) − y(t))2

)

Fig. 6.15. SDE (6.19): empirical moments obtained from simulations of ensembles of (6.19)
with GLA and a quasi-symplectic FLAVOR (subsection 4.2.1).

6.9. Langevin equations with fast noise and friction. Consider a system
with the same configuration as above. The difference is that the soft spring oscillates
at a frequency nonlinearly dependent on the stiff spring’s length, and the left mass
experiences strong friction and noise while the right mass does not. The Hamiltonian is

(6.20) H(y, x, py, px) =
1

2
p2y +

1

2
p2x +

1

4
ω4y4 + ey(x − y)2,

and the governing SDEs are

(6.21)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
dy = pydt,

dx = pxdt,

dpy = −ω4y3dt− (2 + y − x)(y − x)eydt− ω2cpydt+ ωσdW t,

dpx = −2(x− y)eydt.
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Fig. 6.16. E[x(t) − y(t)], E[y(t)], and E[x(t) − y(t)]2 obtained by GLA and a quasi-symplectic
FLAVOR (subsection 4.2.1). Expectations are empirically calculated by averaging over an ensemble
of 50 sample trajectories with T = 10, ω = 100, τ = 10−4, δ = 0.01, y(0) = 1.1/ω, x(0) = y(0)+1.8,
c = 0.1, and σ = 1. GLA uses time step h = 10−4.

In this system, the deterministic dynamics and the effects of noise and friction both
involve a O(1/ω2) time scale. We have implemented the fast noise and friction version
of FLAVORS ((4.8) and (2.9)).

In Figure 6.16, we have plotted the first and second moments of the dominantly
slow variable x(t) − y(t) as well as the first moment of the dominantly fast variable
y(t) as functions of time. Moments of the dominantly slow variable integrated by a
quasi-symplectic FLAVOR (subsection 4.2.1) and GLA [17] concur, numerically sug-
gesting weak convergence and preservation of Boltzmann–Gibbs. 100x computational
acceleration is achieved.

Appendix.

A.1. Proof of Theorems 1.2 and 1.3. Define the process t �→ (x̄t, ȳt) by

(A.1) (x̄t, ȳt) := η(ūt).

It follows from the regularity of η that it is sufficient to prove the F -convergence of
(x̄t, ȳt) towards δXt ⊗ μ(Xt, dy). Moreover, it is also sufficient to prove inequalities
(A.2) and (A.3) in order to obtain inequalities (1.24) and (1.25):

(A.2) |xεt − x̄t| ≤ CeCtψ1(u0, ε, δ, τ)

and
(A.3)∣∣∣∣∣ 1T

∫ t+T

t

ϕ(x̄s, ȳs) ds−
∫
Rp

ϕ(Xt, y)μ(Xt, dy)

∣∣∣∣∣ ≤ ψ2(u0, ε, δ, τ, T, t)(‖ϕ‖L∞+‖∇ϕ‖L∞).
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Now define ψε
τ by

(A.4) ψε
τ (x, y) := η ◦ θετ ◦ η−1(x, y).

Define ψg
h by

(A.5) ψg
h(x, y) := η ◦ θGh ◦ η−1(x, y).

Proposition A.1. The vector fields f and g associated with the system of equa-
tions (1.2) are Lipschitz continuous. We also have

(A.6) (x̄t, ȳt) =
(
ψg
δ−τ ◦ ψε

τ

)k
(x0, y0) for kδ ≤ t < (k + 1)δ.

Moreover, there exists C > 0 such that for h ≤ h0 and τ
ε ≤ τ0 we have

(A.7)
∣∣∣ψε

τ (x, y)− (x, y)− τ (g(x, y), 0)− τ

ε

(
0, f(x, y)

)∣∣∣ ≤ C
(τ
ε

)2
and

(A.8)
∣∣ψg

h(x, y)− (x, y)− h
(
g(x, y), 0

)∣∣ ≤ Ch2.

Furthermore, given x0, y0, the trajectories of (xεt , y
ε
t ) and (x̄t, ȳt) are uniformly bound-

ed in ε, δ ≤ h0, and τ ≤ min(τ0ε, δ).
Proof. Since (x, y) = η(u), we have

ẋ =

(
G+

1

ε
F

)
∇ηx ◦ η−1(x, y),(A.9)

ẏ =

(
G+

1

ε
F

)
∇ηy ◦ η−1(x, y).(A.10)

Hence, we deduce from (1.2) of Condition 1.1 that

g(x, y) = G∇ηx ◦ η−1(x, y),(A.11)

f(x, y) = F∇ηy ◦ η−1(x, y).(A.12)

We deduce the regularity of f and g from the regularity of G, F , and η. Equation
(A.6) is a direct consequence of the definition of ψε

τ and ψg
h and (1.27) (we write

(x0, y0) := η(u0)). Observe that (1.2) of Condition 1.1 also requires that

(A.13) F∇ηx = 0, G∇ηy = 0.

Now observe that

ψε
τ (x, y)− (x, y) − (

g(x, y), 0
)
τ − (

0, f(x, y)
)τ
ε

=
(
η ◦ θετ − η − τ

(
G∇ηx, 0)− τ

ε

(
0, F∇ηy)) ◦ η−1(x, y).

(A.14)

Using (A.13), (1.29), Taylor expansion, and the regularity of η, we obtain (A.7).
Similarly,

(A.15) ψg
h(x, y)− (x, y)−h(g(x, y), 0) := (

η ◦θGh −η(x, y)−h(G∇ηx, 0))◦η−1(x, y).
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Using (A.13), (1.28), Taylor expansion, and the regularity of η, we obtain (A.8). The
uniform bound (depending on x0, y0) on the trajectories of (xεt , y

ε
t ) and (x̄t, ȳt) is a

consequence of the uniform bound (given u0) on the trajectories of uεt and ūt.
It follows from Proposition A.1 that it is sufficient to prove Theorems 1.2 and 1.3

in the situation where η is the identity diffeomorphism. More precisely, the F -
convergence of ūt is a consequence of the F -convergence of (x̄t, ȳt) and the regularity
of η. Furthermore, from the uniform bound (depending on (x0, y0)) on the trajectories
of (xεt , y

ε
t ) and (x̄t, ȳt), we deduce that g and f are uniformly bounded and Lipschitz

continuous (in ε, δ ≤ h0, τ ≤ min(τ0ε, δ)) over those trajectories.
Define

ḡ :=

∫
g(x, y)μ(x, dy),

where μ is the family of measures introduced in Condition 1.2. Let us prove the
following lemma.

Lemma A.2.

(A.16) |xεnδ − x̄nδ| ≤ CeCnδ

(
δ +

(τ
ε

)2 1

δ
+ sup

1≤l≤n
|J(l)|

)

with J(k) = J1(k) + J2(k),

(A.17) J1(k) :=

k−1∑
n=0

(∫ (n+1)δ

nδ

g(xεnδ, y
ε
s) ds− δḡ(xεnδ)

)
,

and

(A.18) J2(k) :=
k−1∑
n=0

δ
(
ḡ(x̄nδ)− g(x̄nδ, ȳnδ)

)
.

Proof. Observe that

(A.19) xε(n+1)δ = xεnδ +

∫ (n+1)δ

nδ

g(xεnδ, y
ε
s) ds+

∫ (n+1)δ

nδ

(g(xεs, y
ε
s)− g(xεnδ, y

ε
s)) ds.

Hence,

(A.20) xε(n+1)δ − x̄(n+1)δ = xεnδ − x̄nδ + I1 + I2(n) + I3 + I4(n) + I5

with

I1 :=

∫ (n+1)δ

nδ

(g(xεs, y
ε
s)− g(xεnδ, y

ε
s))ds,(A.21)

I2(n) :=

∫ (n+1)δ

nδ

g(xεnδ, y
ε
s) ds− δḡ(xεnδ),(A.22)

I3 := δ
(
ḡ(xεnδ)− ḡ(x̄nδ)

)
,(A.23)

I4(n) := δ
(
ḡ(x̄nδ)− g(x̄nδ, ȳnδ)

)
,(A.24)

I5 := δg(x̄nδ, ȳnδ)− (x̄(n+1)δ − x̄nδ).(A.25)
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Now observe that

(A.26) |I1| ≤ ‖∇xg‖L∞δ2

and

(A.27) |I3| ≤ δ‖∇xg‖L∞|xεnδ − x̄nδ|.
Using (A.7) and (A.8), we obtain

(A.28) |I5| ≤ C

(
δ2 +

(τ
ε

)2)
.

Combining the previous equations, we obtain

(A.29) xε(n+1)δ− x̄(n+1)δ ≤ xεnδ− x̄nδ+C
(
δ2+

(τ
ε

)2)
+Cδ|xεnδ− x̄nδ|+(I2+I4)(n)

and

(A.30) xε(n+1)δ− x̄(n+1)δ ≥ xεnδ− x̄nδ−C
(
δ2+

(τ
ε

)2)
−Cδ|xεnδ− x̄nδ|+(I2+I4)(n).

Write

(A.31) J(n) :=

n−1∑
k=0

(I2 + I4)(k).

Summing the first n inequalities (A.29) and (A.30), we obtain

(A.32) xεnδ − x̄nδ ≤ C

(
δ2 +

(τ
ε

)2)
n+ Cδ

n−1∑
k=0

|xεkδ − x̄kδ |+ J(n)

and

(A.33) xεnδ − x̄nδ ≥ −C
(
δ2 +

(τ
ε

)2)
n− Cδ

n−1∑
k=0

|xεkδ − x̄kδ|+ J(n).

Hence

(A.34) |xεnδ − x̄nδ| ≤ C

(
δ2 +

(τ
ε

)2)
n+ Cδ

n−1∑
k=0

|xεkδ − x̄kδ |+ |J(n)|.

And we obtain by induction

|xεnδ − x̄nδ| ≤ C

(
δ2 +

(τ
ε

)2)(
n+ Cδ

n∑
k=1

(n− k)(1 + Cδ)k−1

)

+ |J(n)|+ Cδ

n∑
l=2

(1 + Cδ)l−2|J(n− l + 1)|.
(A.35)

Equation (A.35) concludes the proof of Lemma A.2.
We now need to control J1(k) and J2(k). First, let us prove the following lemma.
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Lemma A.3. For N ∈ N
∗, we have

(A.36) |J1(k)| ≤ (δk)C

(
δeC

δ
Nε + E

(
δ

Nε

))
.

Proof. Define ŷεt such that ŷεt = yεt for t = (n+ j/N)δ, j ∈ N
∗, and

(A.37)
dŷεt
dt

=
1

ε
f(xεnδ, ŷ

ε
t ) for (n+ j/N)δ ≤ t < (n+ (j + 1)/N)δ.

Using the regularity of f and g, we obtain

(A.38) |ŷεt − yεt | ≤ CδeC
δ

Nε .

First, observe that

(A.39)
1

δ

∫ (n+1)δ

nδ

g(xεnδ, y
ε
s) ds− ḡ(xεnδ) = K1 +K2

with

(A.40) K1 :=
1

δ

N−1∑
j=0

∫ (n+(j+1)/N)δ

(n+j/N)δ

(
g(xεnδ, y

ε
s)− g(xεnδ, ŷ

ε
s)
)
ds

and

(A.41) K2 :=
1

N

N−1∑
j=0

(
N

δ

∫ (n+(j+1)/N)δ

(n+j/N)δ

g(xεnδ, ŷ
ε
s) ds− ḡ(xεnδ)

)
.

We have

(A.42) |K1| ≤ ‖∇yg‖L∞
1

N

N−1∑
j=0

sup
(n+j/N)δ≤s≤(n+(j+1)/N)δ

|yεs − ŷεs|.

Hence, we obtain from (A.38)

(A.43) |K1| ≤ CδeC
δ

Nε .

Moreover, we obtain from Conditions 1.2 and 1.3

(A.44) |K2| ≤ CE

(
δ

Nε

)
.

This concludes the proof of Lemma A.3.
Lemma A.4. We have for m ∈ N

∗

(A.45)
∣∣J2(k)∣∣ ≤ Cδk

(
mδ + E

(mτ
ε

)
+

(
τ

ε
+mδ +m

(τ
ε

)2)
eC

mτ
ε

)
.

Proof. Let m ∈ N
∗. Define (x̃s, ỹs) such that for j ∈ N

∗, n ∈ N
∗

(A.46)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx̃s

dt = g(x̃s, ỹs) for jmδ ≤ s < (j + 1)mδ,
dỹs

dt = 1
ε f(x̃s, ỹs) for nδ ≤ s < nδ + τ,

ỹs = ỹnδ+τ for nδ + τ ≤ s < (n+ 1)δ,

ỹ(n+1)δ = ỹnδ+τ for n+ 1 �= jm,

(x̃jm, ỹjm) = (x̄jmδ , ȳjmδ).
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Define ỹas by

(A.47)

{
dỹa

t

dt = 1
ε f(x̄jmδ , ỹ

a
t ) for jmτ ≤ t < (j + 1)mτ,

ỹajmτ = ȳjmδ

and define x̃an by

(A.48) x̃an = x̄jmδ for jm ≤ n < (j + 1)m.

Observe that

(A.49) J2(k) = K3 +K4 +K5 +K6 +K7

with

K3 :=

k−1∑
n=0

(∫ (n+1)δ

nδ

g(x̃s, ỹs) ds− δg(x̄nδ, ȳnδ)

)
,(A.50)

K4 :=

k−1∑
n=0

δ

(
1

τ

∫ (n+1)τ

nτ

g(x̃an, ỹ
a
s ) ds−

1

δ

∫ (n+1)δ

nδ

g(x̃s, ỹs) ds

)
,(A.51)

K5 :=
δ

τ

k−1∑
n=0

(
τ ḡ(x̃an)−

∫ (n+1)τ

nτ

g(x̃an, ỹ
a
s ) ds

)
,(A.52)

K6 := δ

k−1∑
n=0

(
ḡ(x̄nδ)− ḡ(x̃an)

)
.(A.53)

Using the regularity of g, we obtain

(A.54) |K6| ≤ δkCδm.

Arranging the right-hand side of (A.51) into groups of m terms corresponding to the
intervals of (A.47), we obtain, from Conditions 1.2 and 1.3,

(A.55) |K5| ≤ CkδE
(mτ
ε

)
.

Using (A.48) and the regularity of f and g, we obtain

(A.56) |ỹaδ
τ t

− ỹt| ≤ CmδeC
mτ
ε .

It follows that

(A.57) |K4| ≤ CδkmδeC
mτ
ε .

Similarly, using (A.7) and (A.8), we obtain

|ỹnδ − ȳnδ| ≤ C

(
τ

ε
+mδ +m

(τ
ε

)2) mτ

ε
eC

mτ
ε ,(A.58)

|x̃nδ − x̄nδ| ≤ Cm

(
δ +

(τ
ε

)2)
.(A.59)
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It follows that

(A.60) |K3| ≤ Cδk

(
τ

ε
+mδ +m

(τ
ε

)2)
eC

mτ
ε .

This concludes the proof of Lemma A.4.
Combining Lemmas A.2, A.3, and A.4, we obtain

|xεnδ − x̄nδ| ≤ CeCδn

(
δ +

(τ
ε

)2 1

δ
+ δeC

δ
Nε + E

(
δ

Nε

)
+ E

(mτ
ε

)

+

(
τ

ε
+mδ +m

(τ
ε

)2)
eC

mτ
ε

)
.

(A.61)

Choosing N such that eC
δ

Nε ∼ δ−
1
2 (observe that we need ε ≤ δ/(−C ln δ)) and m

such that mτ
ε e

C mτ
ε ∼ (

δε
τ + τ

ε

)− 1
2 , we obtain for δε

τ + τ
ε ≤ 1

|xεnδ − x̄nδ| ≤ CeCδn

(√
δ +

(τ
ε

)2 1

δ
+ E

(
1

C
ln

1

δ

)

+

(
δε

τ

) 1
2

+
(τ
ε

) 1
2

+ E

(
1

C
ln

((
δε

τ
+
τ

ε

)−1
)))

.

(A.62)

This concludes the proof of inequality (A.2). The proof of (A.3) is similar and is also
a consequence of (A.2).

A.2. Proof of Theorem 3.2. Define the process t �→ (x̄t, ȳt) by

(A.63) (x̄t, ȳt) := η(ūt).

It follows from the regularity of η that it is sufficient to prove the F -convergence of
(x̄t, ȳt) towards δXt ⊗ μ(Xt, dy). Now define ψε

τ by

(A.64) ψε
τ (x, y, ω) := η ◦ θετ (., ω) ◦ η−1(x, y).

Define ψg
h by

(A.65) ψg
h(x, y, ω) := η ◦ θGh (., ω) ◦ η−1(x, y).

Proposition A.5. The vector fields f , g and matrix fields σ, Q associated with
the system of equations (3.2) are uniformly bounded and Lipschitz continuous. We
also have

(A.66)

⎧⎪⎨
⎪⎩
(x̄0, ȳ0) = η(u0),

(x̄(k+1)δ , ȳ(k+1)δ) = ψg
δ−τ (., ω

′
k) ◦ ψε

τ

(
(x̄kδ , ȳkδ), ωk

)
,

(x̄t, ȳt) = (x̄kδ , ȳkδ) for kδ ≤ t < (k + 1)δ,

where ωk, ω
′
k are i.i.d. samples from the probability space (Ω,F ,P). Moreover, there

exist C > 0 and d-dimensional centered Gaussian vectors ξ′(ω), ξ′′(ω) with identity
covariance matrices such that for h ≤ h0 and τ

ε ≤ τ0 we have

(
E

[∣∣ψg
h(x, y, ω)− (x, y) − h

(
g(x, y), 0

)−√
h
(
σ(x, y)ξ′(ω), 0

)∣∣2])
1
2

≤ Ch
3
2 ,(A.67)
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(
E

[∣∣∣∣ψε
τ (x, y, ω)− (x, y)− τ

(
g(x, y), 0

)− τ

ε

(
0, f(x, y)

)−√
τ
(
σ(x, y)ξ′′(ω), 0

)

−
√
τ

ε

(
0, Q(x, y)ξ′′(ω)

)∣∣∣∣
2
]) 1

2

≤ C
(τ
ε

) 3
2

.

(A.68)

Proof. Since (x, y) = η(u), we obtain from (3.1) and Itô’s formula

dx =

((
G+

1

ε
F

)
∇ηx ◦ η−1(x, y)

)
dt+

(
∇ηx

(
H +

1√
ε
K

))
◦ η−1(x, y) dWt

+
1

2

∑
ij

∂i∂jη
x

((
H +

1√
ε
K

)(
H +

1√
ε
K

)T
)

ij

dts,

(A.69)

dy =

((
G+

1

ε
F

)
∇ηy ◦ η−1(x, y)

)
dt+

(
∇ηy

(
H +

1√
ε
K

))
◦ η−1(x, y) dWt

+

⎛
⎝1

2

∑
ij

∂i∂jη
y

((
H +

1√
ε
K

)(
H +

1√
ε
K

)T
)

ij

⎞
⎠ ◦ η−1 dt.

(A.70)

Hence we deduce from (3.2) of Condition 3.1 that

g(x, y) =

(
G∇ηx +

1

2

∑
ij

∂i∂jη
x(HHT )ij

)
◦ η−1(x, y),(A.71)

σ(x, y) =
(∇ηxH) ◦ η−1(x, y),(A.72)

f(x, y) =

(
F∇ηy + 1

2

∑
ij

∂i∂jη
y(KKT )ij

)
◦ η−1(x, y),(A.73)

Q(x, y) =
(∇ηyK) ◦ η−1(x, y).(A.74)

Remark A.1. Observe that (3.2) of Condition 3.1 requires that

F∇ηx = 0, G∇ηy = 0,(A.75) ∑
ij

∂i∂jη
x
(
KKT

)
ij
= 0,(A.76)

∑
ij

∂i∂jη
y
(
HHT

)
ij
= 0,(A.77)

∑
ij

∂i∂jη
x
(
KHT +HKT

)
ij
= 0,(A.78)

and

(A.79)
∑
ij

∂i∂jη
y
(
KHT +HKT

)
ij
= 0.
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Equations (A.78) and (A.79) are satisfied if KHT is skew-symmetric. One particular
case could be, of course, KHT = 0, which translates into the fact that for all u the
ranges of H(u) and K(u) are orthogonal; i.e., the noise with amplitude 1/

√
ε is applied

to degrees of freedom orthogonal to those with O(1) noise.
We deduce the regularity of f , g, σ, and Q from the regularity of G, F , H , K,

and η. Equation (A.6) is a direct consequence of the definition of ψε
τ and ψg

h and
(A.66). Now observe that

ψε
τ (x, y, ω)− (x, y)− τ

(
g(x, y), 0

)− τ

ε

(
0, f(x, y)

)−√
τ
(
σ(x, y)ξ′(ω), 0

)
−
√
τ

ε

(
0, Q(x, y)ξ′(ω)

)
=

(
η ◦ θετ − η − τ

(
G∇ηx +

1

2

∑
ij

∂i∂jη
x(HHT )ij , 0

)

− τ

ε

(
0, F∇ηy + 1

2

∑
ij

∂i∂jη
y(KKT )ij

)
−√

τ
(∇ηxHξ′(ω), 0)

−
√
τ

ε

(
0,∇ηyKξ′(ω))

)
◦ η−1(x, y).

(A.80)

Using (A.75), (A.76), (A.77), (A.78), and (A.79), the Taylor–Itô expansion of η ◦ θετ ,
and the regularity of η, and setting ξ′ equal to ξ defined in (3.14), we obtain (A.68).
The proof of (A.67) is similar.

It follows from Proposition A.5 that it is sufficient to prove Theorem 3.2 in the
situation where η is the identity diffeomorphism. More precisely, the F -convergence
of ūt is a consequence of the F -convergence of (x̄t, ȳt) and the regularity of η.

Let x �→ ϕ(x) be a function with continuous and bounded derivatives up to
order 3. Let us prove the following lemma.

Lemma A.6. We have

E
[
ϕ(x̄(n+1)δ)

]− E
[
ϕ(x̄nδ)

]
= δE

[
g(x̄nδ, ȳnδ)∇ϕ(x̄nδ) + σσT (x̄nδ, ȳnδ) : Hessϕ(x̄nδ)

]
+ I0

(A.81)

with

(A.82) |I0| ≤ C

(
δ

3
2 +

(τ
ε

) 3
2

)
.

Proof. Write (x̄nδ+τ , ȳnδ+τ ) := ψε
τ (x̄nδ, ȳnδ, ωn). Using (A.68), we obtain that

there exists an N (0, 1) random vector ξn, independent from (x̄nδ , ȳnδ), such that

(A.83) x̄nδ+τ − x̄nδ = g(x̄nδ)τ +
√
τσ(x̄nδ, ȳnδ)ξn + I1

with

(A.84)
(
E[(I1)

2]
) 1

2 ≤ C
(τ
ε

) 3
2

.

Hence ∣∣∣∣∣E[ϕ(x̄nδ+τ )
]− E

[
ϕ(x̄nδ)

]− τE
[
g(x̄nδ, ȳnδ)∇ϕ(x̄nδ)

+ σσT (x̄nδ, ȳnδ) : Hessϕ(x̄nδ)
]∣∣∣∣∣ ≤ C

(τ
ε

) 3
2

.

(A.85)
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Similarly, using (A.67), we obtain that there exists an N (0, 1) random vector ξ′n,
independent from (x̄nδ+τ , ȳnδ+τ ), such that

(A.86) x̄(n+1)δ − x̄nδ+τ = g(x̄nδ+τ , ȳnδ+τ )(δ − τ) + σ(x̄nδ+τ , ȳnδ+τ )
√
δ − τξ′n + I2

with

(A.87)
(
E[(I2)

2]
) 1

2 ≤ C(δ − τ)
3
2 .

Whence ∣∣∣∣∣E[ϕ(x̄(n+1)δ)
]− E

[
ϕ(x̄nδ+τ )

]− (δ − τ)E
[
g(x̄nδ+τ , ȳnδ+τ )∇ϕ(x̄nδ+τ )

+ σσT (x̄nδ+τ , ȳnδ+τ ) : Hessϕ(x̄nδ+τ )
]∣∣∣∣∣ ≤ C

(
δ − τ

) 3
2 .

(A.88)

Using the regularity of σ, we obtain

(A.89)
(
E

[∣∣σ(x̄nδ+τ , ȳ(n+1)δ)− σ(x̄nδ , ȳnδ)
∣∣2]) 1

2 ≤ C

(
δ

1
2 +

√
τ

ε

)
.

The proof of (A.81) follows from (A.68), (A.85), (A.88), (A.89), and the regularity of
g and ϕ.

Lemma A.7. We have

(A.90)

∣∣∣∣∣E
[
ϕ(x̄nδ)

]− ϕ(x0)

nδ
− Lϕ(x0)

∣∣∣∣∣ ≤ J5

with (for δ ≤ Cτ/ε)

(A.91) |J5| ≤ C

((
δε

τ

) 1
4

+
(τ
ε

) 3
2 1

δ
+

√
τ

ε

)
+ CE

(
1

C
ln
τ

δε

)
.

Proof. Define B̂t by B̂0 = 0 and

(A.92) B̂t − B̂nτ = Bnδ+t −Bnδ for nτ ≤ t ≤ (n+ 1)τ.

Define ỹs by ỹ0 = y0 and

(A.93) dỹt =
1

ε
f(x0, ỹt) dt+

1√
ε
Q(x0, ỹt)dB̂t.

Write

(A.94) ḡ(x0) :=

∫
g(x0, y)μ(x0, dy).

Using Lemma A.6, we obtain

(A.95)
E
[
ϕ(x̄nδ)

] − ϕ(x0)

nδ
= Lϕ(x0) + J1 + J2 + J3 + J4
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with

Lϕ(x0) := ḡ(x0)∇ϕ(x0) + σ̄σ̄T (x0) : Hessϕ(x0),(A.96)

J1 =
1

n

n−1∑
k=0

E

[
g(x̄kδ, ȳkδ)∇ϕ(x̄kδ) + σσT (x̄kδ, ȳkδ) : Hessϕ(x̄kδ)

]

− 1

n

n−1∑
k=0

E

[
g(x̄0, ȳkδ)∇ϕ(x̄0) + σσT (x̄0, ȳkδ) : Hessϕ(x̄0)

]
,

(A.97)

J2 =
1

n

n−1∑
k=0

(
E

[
g(x̄0, ȳkδ)∇ϕ(x̄0) + σσT (x̄0, ȳkδ) : Hessϕ(x̄0)

]

− 1

τ

∫ (k+1)τ

kτ

E

[
g(x0, ỹs)∇ϕ(x0) + σσT (x0, ỹs) : Hessϕ(x0)

]
ds

)
,

(A.98)

J3 =
1

nτ

∫ nτ

0

E

[
g(x0, ỹs)∇ϕ(x0) + σσT (x0, ỹs) : Hessϕ(x0)

]
ds− Lϕ(x0),(A.99)

|J4| ≤ C

(
δ

1
2 +

(τ
ε

) 3
2 1

δ

)
.(A.100)

Using the regularity of σ, g, ϕ, (A.6), and (A.7), we obtain

(A.101) |J1| ≤ C

(
(nδ)

1
2 + nδ + n

(τ
ε

) 3
2

)
.

Using property 3 of Condition 3.1 and property 3 of Condition 3.2, we obtain

(A.102) |J3| ≤ CE
(nτ
ε

)
.

Using (A.67) and (A.68), we obtain

(A.103)
(
E

[∣∣ȳnδ − ỹnτ
∣∣2]) 1

2 ≤ C

(√
τ

ε
+ (nδ)

1
2 + nδ + n

(τ
ε

) 3
2

)
nτ

ε
eC

nτ
ε ,

which leads to

(A.104) |J2| ≤ C

(√
τ

ε
+ (nδ)

1
2 + nδ + n

(τ
ε

) 3
2

)
eC

nτ
ε .

Hence, we obtain

(A.105)

∣∣∣∣∣E
[
ϕ(x̄nδ)

]− ϕ(x0)

nδ
− Lϕ(x0)

∣∣∣∣∣ ≤ J5

with

(A.106) |J5| ≤ C

(√
τ

ε
+ (nδ)

1
2 + nδ + n

(τ
ε

) 3
2

)
eC

nτ
ε + E

(nτ
ε

)
+ C

(τ
ε

) 3
2 1

δ
.

Choosing n such that
√

nτ
ε e

C nτ
ε ∼ (

τ
εδ

) 1
4 , we obtain (A.91) for δ ≤ Cτ/ε.
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We now combine Lemma A.7 with Theorem 1 of Chapter 2 of [108], which states

that the uniform convergence (in x0, y0) of
E[ϕ(x̄nδ)]−ϕ(x0)

nδ to Lϕ(x0) as ε ↓ 0, τ ≤ δ,
τ
ε ↓ 0, δε

τ ↓ 0, and
(
τ
ε

) 3
2 1
δ ↓ 0 implies the convergence in distribution of x̄nδ to the

Markov process generated by L.
The F -convergence of (x̄t, ȳt) can be deduced from the convergence in distribution

of x̄t and (3.4) of Condition 3.1. The proof follows the same lines as above, which
will not be repeated here.
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Sibirskoe Otdelenie, Institut Vychislitel′nŏı Matematiki i Matematicheskŏı Geofiziki,
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