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An Improved Wave-Vector Frequency-Domain 
Method for Nonlinear Wave Modeling

Yun Jing, Molei Tao, and Jonathan Cannata

Abstract—In this paper, a recently developed wave-vector 
frequency-domain method for nonlinear wave modeling is im-
proved and verified by numerical simulations and underwater 
experiments. Higher order numeric schemes are proposed that 
significantly increase the modeling accuracy, thereby allowing 
for a larger step size and shorter computation time. The im-
proved algorithms replace the left-point Riemann sum in the 
original algorithm by the trapezoidal or Simpson’s integration. 
Plane waves and a phased array were first studied to numeri-
cally validate the model. It is shown that the left-point Rie-
mann sum, trapezoidal, and Simpson’s integration have first-, 
second-, and third-order global accuracy, respectively. A highly 
focused therapeutic transducer was then used for experimental 
verifications. Short high-intensity pulses were generated. 2-D 
scans were conducted at a prefocal plane, which were later 
used as the input to the numerical model to predict the acous-
tic field at other planes. Good agreement is observed between 
simulations and experiments.

I. Introduction

Accurate and efficient numerical simulations for non-
linear/shock wave propagation are critical for under-

standing many interesting nonlinear acoustic behaviors 
and could assist the design of therapeutic and imaging 
ultrasound arrays. Although the Khokhlov–Zabolotskaya–
Kuznetsov (KZK) equation [1] has been used for decades 
for nonlinear wave simulations [2]–[5], new methods have 
been emerging that are based on the Westervelt equa-
tion [6]–[15], which is more accurate, especially in the 
near field and for highly focused transducers [16]. The 
Westervelt equation also allows one to model nonlinear 
scattering, whereas the KZK equation does not [17]. Dif-
ferent types of approaches have been proposed for solv-
ing the Westervelt equation. For example, the Westervelt 
equation can be decomposed into three equations, repre-
senting the diffraction, absorption, and nonlinearity [10], 
[11], [14]. The equation for diffraction can be solved by 
the angular spectrum approach, and the equation for non-
linearity can be solved either in the frequency domain [4], 
[18] or time domain [14]. In the time domain, typically the 
Godunov-type scheme is used if shock waves are present. 
It is a conservative numerical scheme for solving partial 
differential equations [19]. The total solution is acquired 

by a splitting scheme [10], [20], [21]. These approaches 
typically assume that the nonlinearity builds up mainly 
in the direction normal to the transducer surface, and 
thus have been considered less accurate for highly focused 
transducers and steering beams [6], [13]. The Westervelt 
equation can be also solved entirely in the time domain by 
using the finite-difference time-domain (FDTD) method 
[22] or k-space method [8], [12]. These methods require 
more computational resources (even though the k-space 
method is typically more computationally efficient than 
the FDTD method), but are typically preferred if the me-
dium under study is heterogeneous. This is because the 
medium properties (speed, density, and absorption) can be 
functions of the position, which is generally not possible in 
angular spectrum methods. Other approaches include an 
iterative scheme for solving the Westervelt equation [13], 
in which the nonlinearity and absorption are modeled as 
contrast source terms. This approach needs the complete 
time history of the acoustic field (a 4-D matrix) to be 
stored, which could potentially be a limitation in terms 
of memory requirement when large-scale problems are to 
be modeled.

This paper is a follow-up to a recently proposed wave-
vector frequency-domain (WVFD) approach [6], [9], [23], 
which has been proven valid for both weakly nonlinear 
and acoustic shock waves through numerical simulations. 
This approach is devised for homogenous media with the 
potential to be extended to layered structures. It accounts 
for nonlinearity in arbitrary direction and interaction of all 
waves propagating in every direction, therefore is expected 
to be accurate, particularly for highly focused transduc-
ers. Because this approach operates in the frequency do-
main, dispersion and frequency-dependent absorption can 
be naturally taken into account. In addition, this model 
can be conveniently used for implementing backward wave 
propagation, to examine the pressure distribution on the 
transducer surface or the pressure field on a plane close to 
the source [6], [23]. In this paper, two modified stepping 
algorithms in the z-axis are proposed which progressively 
improve the accuracy of the original WVFD. Although 
the original algorithm is based on the left-point Riemann 
sum, the two new algorithms are based on the trapezoidal 
and Simpson’s integrations. Systematic comparisons are 
carried out between the three algorithms against bench-
mark solutions. Finally, underwater field measurements 
using a therapeutic transducer are conducted to further 
validate the model.

In Section II, the two new stepping algorithms for the 
WVFD model are formulated, based on the Westervelt 
equation. Section III discusses comparison between the 
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original and present algorithms for their accuracies and 
time costs. The accuracy is determined by comparing 
different approaches with benchmark solutions for plane 
waves and a phased array problem. Experimental results 
using the focused transducer are also shown in this sec-
tion. Section IV concludes the paper.

II. Theory

We begin with the time-domain Westervelt equation 
[7], [16]
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where p is the sound pressure, c0 is the speed of sound, δ 
is the diffusivity, β is the nonlinearity coefficient, and ρ0 is 
the density. The last four parameters define the medium 
properties.

Fourier transformation of the x, y, and t dimensions 
yields a wave-vector frequency-domain equation:
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where P(kx, ky, z, ω) is the Fourier transform of p(x, y, z, t), 
and
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where ω is the angular frequency, kx and ky are the wave 
numbers, and ⊗ represents the convolution in terms of kx, 
ky, and ω.

The solution to (2) is shown to be an integral equation 
[6], [15],
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To solve this integral equation, a stepping algorithm 
along the z-direction can be derived based on the left-
point Riemann sums, and is written as
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By projecting the planar acoustic field at the initial/
source plane in the forward direction in increments of Δz, 
it is possible to predict the acoustic field at any plane 
parallel to the source plane (x-y plane). This approach has 
been applied to plane waves and nonlinear acoustic field 
characterization for phased-array transducers [6]. This 
scheme based on the left-point Riemann sum is robust 
for weakly nonlinear wave modeling, but it suffers from 
low accuracy when moderately nonlinear or acoustic shock 
waves are to be modeled. In these cases, because a large 
number of harmonics are modeled (more than 100 har-
monics for shock wave modeling), an extremely small step 
size Δz is necessary for stability and reasonable accuracy, 
which leads to intolerably long computation time. To this 
end, a first modified scheme is proposed:
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This numerical scheme is based on a trapezoidal ap-
proximation of the integral. To acquire the acoustic field 
P1 at z + Δz, two steps are required. In the first step, an 
approximate acoustic field P0 at z + Δz is estimated us-
ing the left-point Riemann sum, i.e., (6). This essentially 
provides the right-end point value (with a certain error) 
for the trapezoidal integration, which is then carried out 
in the second step. Note that the acoustic field at z [P(z)] 
readily provides the left-end point value. The computation 
time for this scheme is roughly double that of the original 
one (left-point Riemann-sum-based scheme), because two 
steps are needed to project the field by Δz. Nevertheless, 
as will be shown, the significantly higher accuracy gained 
from this new scheme compensates for its longer computa-
tion time. This new scheme can be further improved. The 
middle and right-end point values can be estimated by 
the trapezoidal integration and a final step will be imple-
mented via Simpson’s rule for integration. Such a scheme 
can be written as (8), see next page.

The inverse Fourier transform of P2 provides the final 
solution, i.e., the pressure at z. For the same Δz, this 
scheme is roughly 2.5 times more time consuming than 
the one based on the trapezoidal integration (therefore 5 
times more time consuming than the left-point Riemann-
sum-based scheme), because it involves five separate steps 
rather than two steps. However, an improvement in ac-
curacy is also expected. In fact, if we could use the exact 
Simpson approximation of the Riemann sum, the method 
will have fourth-order global accuracy, because it is well 
known that Simpson quadrature has fifth-order local ac-
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curacy. However, because we do not have the exact right 
point value, we use a numerical approximation here. We 
show in the Appendix that the method based on (8) in 
fact has fourth-order local accuracy, and therefore third-
order global accuracy. (It is well known in numerical anal-
ysis that global error is one order less than local error, 
given stability [24].)

III. Numerical Studies

A. Plane Waves

Plane waves were first tested to determine the accuracy 
of the three algorithms by varying the step size Δz. The 
L2 norm errors were calculated by comparing the numeri-
cal results to benchmark solutions. The L2 norm error is 
defined as

	 error num exact
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=
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( ) ,

p t p t
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where || p(t)|| is the least-square norm, pnum is the numeri-
cal result, and pexact is the benchmark solution.

Initially, the Fubini solution was used as the benchmark 
solution. However, it was found that for both schemes 
based on the trapezoidal integration and Simpson’s inte-
gration, the L2 norm errors quickly dropped to a small 
quantity and converged, when reducing the step size Δz. 
This may have occurred because there are other types 
of errors involved that are independent of the step size, 
e.g., Fourier transform and convolution. For this reason, 
numerical solutions with extremely fine step sizes were 
instead used as the benchmark solutions to examine the 
error. A sinusoidal burst of ten circles was used as the 
excitation signal. The frequency was 5 MHz, the initial 
pressure amplitude was 5 MPa. For the medium, the 
nonlinearity coefficient was 3.5 and the speed of sound 
was 1500 m/s. One set of simulations was implemented 
in which relatively strong nonlinearity was involved. The 
propagation distance was 0.8 σ (σ is the shock forma-

tion distance). The diffusivity was 5 × 10−5 m2s−1. The 
second harmonic was 9.5 dB lower than the fundamental 
frequency. In the simulation, 40 harmonics were consid-
ered in the simulation (this was found to be sufficient to 
minimize the Gibbs effect), and the step size Δz varied 
with regard to the wavelength (or σ ) to generate different 
results for comparison with the benchmark solution. The 
benchmark solutions were calculated using a step size of 
λ/512, and were based on the most accurate Simpson’s in-
tegration. Results of the simulations are shown in Table I. 
A comparison between different approaches is also shown 
in Fig. 1. Results are shown in both time- and frequency-
domain. This comparison only includes the results at Δz 
= 4λ. Fig. 1(a) shows the results from 35 to 55 MHz. Low-
er frequencies are not shown here because the difference 
is not significant. There is no visual difference between 
the Simpson’s integration and the benchmark solution. 
Small differences (a few decibels) are observed between 
the trapezoidal integration and the benchmark solution. 
The left-point Riemann sum significantly underestimates 
the results and provides the poorest result.

At this point, we have several comments:

	 1) 	The left-point Riemann sum error is proportional to 
the step size, so that as the step size is reduced by 
half, the error is also approximately reduced by half. 
Therefore, as expected, the left-point Riemann sum 
has first-order accuracy [25]. The trapezoidal inte-
gration error is proportional to the step size square, 
i.e., as the step size is reduced by half, the error 
is reduced to a quarter of its previous magnitude. 
Therefore, this new scheme has second-order accu-
racy. The Simpson’s integration error is proportional 
to the step size cubic, and therefore has third-order 
accuracy and is more accurate than the previous two 
schemes.

	 2) 	The Simpson’s integration is shown here to be at 
least an order of magnitude more accurate than the 
trapezoidal integration and two orders of magnitude 
more accurate than the Riemann sum method, pro-
vided that the step size is equal or less than 0.2σ. 
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The Simpson’s integration is expected to be progres-
sively more accurate as the step size decreases. This 
is particularly useful for acoustic shock wave model-
ing, because the step size will be much smaller than 
σ. For example, in the last row of Table I, the errors 
produced by the trapezoidal integration and left-
point Riemann sum are 153 and 20 526 times larger 
than the error produced by Simpson’s integration.

	 3) 	When considering the same computation time, the 
Simpson’s integration is still significantly advanta-
geous. For a step size of 1/2λ, the Simpson’s integra-
tion error is 0.0000014. For the same computation 
time, trapezoidal integration allows a step size of 
around 0.5/2.5 = 0.2λ because it is 2.5 times fast-
er, as shown in Section II. The estimated error is 
0.00011/2.52 = 0.000018 (here, we take 2 as the or-
der of the accuracy for estimation; 0.00011 is the 
error at the step size of 1/2λ), which is more than 
12 times larger than the Simpson’s integration er-
ror. Similarly, for the same computation time, the 
estimated error using the left-point Riemann sum is 
0.0078/5 = 0.0016 (0.0078 is the error at a step size 
of 1/2λ and the left-point Riemann sum is five times 
faster than the Simpson’s integration), which is more 
than 1000 times larger than the Simpson’s integra-
tion error.

B. Phased Arrays

To further validate the proposed new algorithms, 3-D 
simulations were also carried out. A 2-D circular phased 
array was simulated; the simulated medium was human 
muscle. For simplification, each grid point was assumed 
to be an element whose phase was varied so that the focal 
distance was 40 mm. The delay time used to create the fo-
cus was calculated by (d − d0)/c0, where d is the distance 
from a point on the transducer to the focus and d0 is the 
distance from the center of the transducer to the focus. 
The diameter of the phased array was 20 mm. The size of 
the x-y plane for the computational domain was 54.2 × 
54.2 mm. The excitation signal was a 6-cycle burst with a 
center frequency at 1 MHz. The spatial resolution (dx and 
dy) was λ/4, where λ is the wavelength in the muscle. The 
pressure on the transducer surface was 1.35 MPa. (For 
reference, the shock formation distance for a plane wave 
at this amplitude is 120 mm; the actual shock formation 
distance is expected to be smaller because it is a focused 
beam.) For the simulated human muscle, the sound speed 
was 1549.9 m/s, the density was 1060 kg/m3, the nonlin-
ear parameter β was 3.9, and the attenuation α( f ) = a × 
f b, where a was 0.52 dB/cm and b was 1.1 [6]. The disper-
sion follows the Kramers–Kronig relations [26]. Up to 40 
harmonics were considered in the simulation. A bench-

TABLE I. L2 Norm Errors at the Distance of 0.8σ. 

Step size (Δz)
Riemann sum  

error
Trapezoidal sum  

error
Simpson’s  

integration error

4λ (0.2σ) 0.066 0.0097 0.00065
2λ (0.1σ) 0.033 0.0025 0.000087
1λ (0.05σ) 0.016 0.00063 0.000011
1/2λ (0.025σ) 0.0078 0.00016 0.0000014
1/4λ (0.0125σ) 0.0039 0.00004 0.00000019

A step size of λ/512 and the Simpson’s integration were used to generate the benchmark solution.

Fig. 1. Comparison between different algorithms for a plane wave in (a) the frequency domain and (b) the time domain. Results with Δz = 4λ are 
shown. 
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mark solution was first generated by using the Simpson’s 
integration with a step size Δz = λ/160. Δz was then var-
ied for different algorithms to evaluate their effectiveness.

Fig. 2 shows the pressure at the focal point in both 
time and frequency domains, with a same step size Δz = 
0.8λ for the three algorithms. Although the difference is 
not appreciable in the time domain, the frequency-domain 
plot shows that the high-frequency harmonics deviate sig-
nificantly between different algorithms. The Simpson’s 
integration method agrees closely with the benchmark so-
lution. The trapezoidal integration method overestimates 
the harmonics, and the left-point Riemann sum underes-
timates the harmonics with the largest error. To evaluate 
the computational efficiency of the three algorithms, the 
step size was varied so that the least-square errors of dif-
ferent approaches are approximately the same. To achieve 
a reasonably small L2 norm error, which is 1.5 × 10−4 as 
randomly chosen in this study, the Simpson’s integration 
method requires a step size of 0.8λ with a computation 
time of 423 s, the trapezoidal integration method requires 
a step size of 0.2λ with a computation time of 605 s, 
and the left-point Riemann sum requires a step size of 
0.00625λ with a computation time of 8500 s. This is about 
20 times longer than the time taken by the Simpson’s 
integration method. The computations were implemented 
by Matlab 2011b (The MathWorks Inc., Natick, MA), on 
a quad-core 3.60-GHz Intel Xeon 5687 CPU (Intel Corp., 
Santa Clara, CA).

In this specific problem, where the nonlinearity is still 
moderate (the second harmonic is about 12 dB lower than 
the fundamental frequency), the Simpson’s method is only 
slightly better than the trapezoidal method, and they are 
both significantly more efficient and accurate than the 
original method based on the left-point Riemann sum. It 
is expected that for ultrasound with a higher intensity, the 

Simpson’s integration will be even more superior. This is 
because more harmonics must be considered, which calls 
for a smaller step size to avoid the Gibbs effect. To numer-
ically compare the results for higher intensity ultrasound 
(acoustic shock wave cases) against a benchmark solution 
is difficult, because computing a benchmark solution is 
extremely time-consuming, considering that the number 
of harmonics to be taken into account could be a few 
hundreds or even thousands, and the step size should be 
extremely small as well. However, because the Simpson’s 
integration is the highest order approach, in theory it will 
yield the highest accuracy for small Δz.

IV. Experiments

A. Experimental Setup

Experiments were carried out to verify the proposed new 
algorithm. The experimental setup is illustrated in Fig. 3. 
We used a custom-made 100-μm-diameter fiber optic hy-
drophone (HistoSonics Inc., Ann Arbor, MI) for acoustic 
field mapping [27]. This hydrophone was calibrated with a 
reference hydrophone (HGL-0085, SN:1258, Onda Corp., 
Sunnyvale, CA) from 0.25 MHz to 40 MHz following IEC 
Standard 62127–2: Ultrasonics–Hydrophones–Part 2: Cal-
ibration [28] for ultrasonic fields up to 40 MHz. Based on 
the calibration curve for the reference hydrophone, the 
uncertainty for the fiber optic hydrophone is 1.5 dB for 
the range 0.5 to 1 MHz, 1 dB for 1 to 15 MHz, 1.5 dB for 
15 to 20 MHz, and 2.2 dB for 20 to 40 MHz.

A spherically focused therapy transducer (Imasonic, 
Voray-sur-l’Ognon, France) driven by a power amplifier 
(HistoSonics Inc.) was placed in a distilled water bath 
degassed to a dissolved oxygen level of 60% or less and 

Fig. 2. Comparison between different algorithms for computing the sound field from a phased array in (a) the frequency domain and (b) the time 
domain. Results with Δz = 0.8λ are shown here. 
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maintained at a temperature of 23.5°C to 24°C. The di-
ameter of the transducer is 13 cm. The focal length of 
the transducer is 110 mm and the −6 dB axial length for 
peak positive pressure is 7.7 mm. The excitation signal 
was a 2-cycle pulse with a center frequency of 700 kHz 
and a pulse repetition frequency (PRF) of 2 Hz, which 
was chosen to minimize cavitation on the hydrophone. 
The transducer focus was located using the fiber optic 
hydrophone and a 3-axis computer-controlled positioning 
system (Therus Corp., Redmond, WA). The hydrophone 
was then repositioned to automatically acquire the data 
on the 30 mm pre-focal plane with a PCI 5112 acquisition 
card (National Instruments Corp., Austin, TX).

The scanning area was 60 × 60 mm with a resolution 
of 0.5 mm. The average of 100 voltage waveforms obtained 
by the hydrophone at each point in space was converted to 
a pressure waveform using the calibration data obtained 
from the reference hydrophone to produce a 3-D (x, y, 
and time) pressure data set. The sampling frequency was 
80 MHz. Three line scans were obtained, crossing the focal 
point along the x-, y-, and z-axes to obtain a benchmark 
for comparison. For the x- and y-axis scans, 8 averages 
were taken. For the z-axis line scan, unaveraged pressure 
waveforms were obtained to limit error resulting from oc-
casional cavitation on the hydrophone tip. 2-D scans were 
not conducted on the focal plane, again because of the 
potential for cavitation artifacts.

As the result of our measurement, the 30 mm pre-focal 
plane was the source plane, whose acoustic field was used 
as the input to the nonlinear wave propagation program. 
The acoustic fields on other planes can be consequently 
predicted and compared with the measured one.

B. Results

The numerical simulation was broken down into three 
steps to reduce computational load. In the first step, the 
propagation distance was 15 mm, and the data was inter-
polated to have a spatial resolution of 0.25 mm. The tem-
poral resolution was interpolated to be 6.24 ns (114 har-
monics), and Δz was 0.21 mm (λ/10). In the second step, 
the propagation distance was 10 mm, the spatial resolu-
tion was 0.125 mm, the temporal resolution was 3.12 ns 
(228 harmonics), and Δz was 0.043 mm (λ/50). An artifi-

cial diffusivity 7.5 × 10−5 m2s−1 was added to reduce the 
Gibbs noise and maintain the stability of the algorithm. 
In the last step, the propagation distance was 15 mm, 
the spatial resolution was 0.125 mm, the temporal resolu-
tion was 1.04 ns (687 harmonics), and Δz was 0.024 mm 
(λ/90). An artificial diffusivity 17.5 × 10−5 m2s−1 was 
added to reduce the Gibbs noise. The step size Δz is rela-
tively small because the temporal resolution was small, 
i.e., a large number of harmonics were considered. Never-
theless, an even smaller step size would be required if the 
previous Riemann-sum-based numerical scheme was used 
because of its large error, leading to considerably longer 
computation times. For the medium properties, the speed 
of sound in the water was assumed to be 1493 m/s, the 
nonlinearity coefficient was 3.5, and the attenuation coef-
ficient α/f 2 was 25 × 1015 Np/m/Hz2. Fig. 4(a) shows 
the pressure at the geometrical focus. Shock fronts can 
be clearly observed, as demonstrated by Fig. 4(b). Fig. 
4(c) shows the comparison in the frequency domain. We 
obtained good agreement up to the fifth harmonics, with 
a maximum difference of around 2 dB. Fig. 5(a) illustrates 
the positive and negative peak pressures along the z-axis 
from the 30 mm pre-focal to the 10 mm post-focal plane. 
The line scan started from only around 10 mm pre-focal 
plane to maximize the signal-to-noise ratio. Figs. 5(b) and 
5(c) show the comparison along x- and y-axes crossing the 
focus. It is noted that experiment results show a lower 
positive peak pressure around the focal region especially. 
This is also evident in Fig. 4(b). This could be because 
the hydrophone was not exactly aligned at the focus [29]. 
Uncertainty of the hydrophone at high frequencies and 
a spatial averaging effect of the hydrophone are also ex-
pected to add to the inaccuracy of the hydrophone mea-
surements [30].

Other sources of error also exist. For example, accord-
ing to the Nyquist–Shannon sampling theorem, under 
perfect conditions (no time jittering and infinite accuracy 
in amplitude) it is sufficient to use two points per pe-
riod to define a harmonic signal, which is the case for our 
measurement. However, a good practice requires using a 
factor of 5 to mitigate the imperfect conditions. Further-
more, the signal-to-noise ratio degrades quickly with the 
order of the harmonics and the distance to the center, and 
this makes accurate measurements extremely challenging. 
Nevertheless, simulation results and experimental data are 
in overall good agreement.

V. Conclusions

A wave-vector frequency-domain nonlinear wave propa-
gation model was studied in this paper. Compared with a 
previous study, improved numerical schemes which utilize 
the trapezoidal and Simpson’s integrations were proposed 
and both were shown numerically to yield significantly 
higher accuracy than the original left-point Riemann-sum-
based scheme. We both numerically and mathematically 
showed that the trapezoidal and Simpson’s integrations 

Fig. 3. Diagram of the experimental setup. 
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have second-order and third-order global accuracy, respec-
tively. Experimental studies with a therapeutic transducer 
were carried out which successfully validated the numeri-
cal model. Good agreement was found on both pre-focal 
plane and focal plane. In the future, the model will be ex-
tended to allow for the incorporation of layered structures 
which better represent human bodies.

VI. Appendix

In this appendix, we prove that the trapezoidal inte-
gration-based algorithm has third-order local accuracy 
(therefore second-order global accuracy provided stabil-
ity), and the Simpson’s integration-based algorithm has 
fourth-order local accuracy (therefore third-order global 
accuracy provided stability).

By applying differentiation with regard to z on both 
sides of (4), we have
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This is an ODE in the form of �x = Ax + f (x) with x(0) 
= x0. Here, to be consistent with standard notations in 
ODE dynamical systems [31], x is the discretization of P, 
z is replaced by t, h is the step size (equivalent to dz), A = 

Fig. 4. (a) Simulated and measured waveform at the center of the focal plane; (b) depicts the shock fronts in (a). (c) Results in the frequency  
domain. 
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iK, f (x) is (M/(2iK))F(P(z)), and x0 is the value of P at 
the beginning of a step.

Theorem 1 Consider �x = Ax + f (x) with x(0) = x0. 
Suppose f ∈ C 4. Let G(t) = exp (At). Let
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Fig. 5. (a) Simulated and measured positive peak and negative peak pressures along the z-axis. (b) Simulated and measured positive peak and nega-
tive peak pressures along the x-axis. (c) Simulated and measured positive peak and negative peak pressures along the y-axis. 
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i.e., the updating rule given by X has a fourth-order local 
error, which means third-order global error provided sta-
bility because of the Lax equivalence theorem [32].
Proof. 1) See (21), above, which proves that the trapezoi-
dal method has third-order local error.
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By the same argument in part 1 (the only difference is the 
starting time; here, the exact solution starts at x(h/2), 

spends h/2 time, and arrives in x(h); the numerical solu-
tion starts at x(h/2), spends h/2 time, and arrives at ˆ ),x 1  
we have:
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Similarly, we have
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3) See (22), above. The solution to �x = Ax + f (x) can 
be written as
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	 x h G h x G h s f x s s
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The well-known Simpson’s rule (quadrature approxima-
tion at s = 0, h/2, h with weights 1/6, 4/6, 1/6) leads to
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That is, x(h) = X + O( )4h  + O( )5h  = X + O( )4h . (Note: 
instead of fourth-order convergence, we only have third-
order convergence of the resulting Simpson’s-integration-
based method. This is due to numerically approximated 
mid- and right points.)

References

[1]	 V. Kuznetsov, “Equations of nonlinear acoustics,” Sov. Phys.–
Acoust., vol. 16, pp. 467–470, 1971.

[2]	Y .-S. Lee and M. F. Hamilton, “Time-domain modeling of pulsed 
finite-amplitude sound beams,” J. Acoust. Soc. Am., vol. 97, no. 2, 
pp. 906–917, 1995.

[3]	 M. A. Averkiou and R. O. Cleveland, “Modeling of an electrohy-
draulic lithotripter with the KZK equation,” J. Acoust. Soc. Am., 
vol. 106, no. 1, pp. 102–112, 1999.

[4]	 V. A. Khokhlova, R. Souchon, J. Tavakkoli, O. A. Sapozhnikov, 
and D. Cathignol, “Numerical modeling of finite-amplitude sound 
beams: Shock formation in the near field of a cw plane piston 
source,” J. Acoust. Soc. Am., vol. 110, no. 1, pp. 95–108, 2001.

[5]	Y . Jing and R. O. Cleveland “Modeling the propagation of nonlin-
ear three-dimensional acoustic beams in inhomogeneous media,” J. 
Acoust. Soc. Am., vol. 122, no. 3, pp. 1352–1364, 2007.

[6]	Y . Jing, M. Tao, and G. Clement, “Evaluation of a wave vector fre-
quency domain method for nonlinear wave propagation,” J. Acoust. 
Soc. Am., vol. 129, no. 1, pp. 32–46, 2011.

[7]	Y . Jing, D. Shen, and G. T. Clement, “Verification of the Westervelt 
equation for focused transducers,” IEEE Trans. Ultrason. Ferroelec-
tr. Freq. Control, vol. 58, no. 5, pp. 1097–1101, 2011.

[8]	Y . Jing, T. Wang, and G. Clement, “A k-space method for mod-
erately nonlinear wave propagation,” IEEE Trans. Ultrason. Fer-
roelectr. Freq. Control, vol. 59, no. 8, pp. 1664–1673, 2012.

[9]	Y . Jing and G. T. Clement, “On the use of gegenbauer reconstruc-
tions for shock wave propagation modeling,” J. Acoust. Soc. Am., 
vol. 130, no. 3, pp. 1115–1124, 2011.

[10]	R. J. Zemp, J. Tavakkoli, and R. S. C. Cobbold, “Modeling of non-
linear ultrasound propagation in tissue from array transducers,” J. 
Acoust. Soc. Am., vol. 113, no. 1, pp. 139–152, 2003.

[11]	T. Varslot and G. Taraldsen, “Computer simulation of forward wave 
propagation in soft tissue,” IEEE Trans. Ultrason. Ferroelectr. Freq. 
Control, vol. 52, no. 9, pp. 1473–1482, 2005.

[12]	B. E. Treeby, J. Jaros, A. P. Pendell, and B. T. Cox, “Modeling non-
linear ultrasound propagation in heterogeneous media with power 
low absorption using a k-space pseudospectral method,” J. Acoust. 
Soc. Am., vol. 131, no. 6, pp. 4324–4336, 2012.

[13]	J. Huijssen and M. D. Verweij, “An iterative method for the com-
putation of nonlinear, wide-angle, pulsed acoustic fields of medical 
diagnostic transducers,” J. Acoust. Soc. Am., vol. 127, no. 1, pp. 
33–44, 2010.

[14]	P. V. Yuldashev and V. A. Khokhlova, “Simulation of three-dimen-
sional nonlinear fields of ultrasound therapeutic arrays,” Acoust. 
Phys., vol. 57, no. 3, pp. 334–343, 2011.

[15]	F. Prieur, T. F. Johansen, S. Holm, and H. Torp, “Fast simulation 
of second harmonic ultrasound field using a quasi-linear method,” J. 
Acoust. Soc. Am., vol. 131, no. 6, pp. 4365–4375, 2012.

[16]	M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics. San 
Diego, CA: Academic, 1998, pp. 42–56.

[17]	G. T. Silva and A. Bandeira, “Difference-frequency generation in 
nonlinear scattering of acoustic waves by a rigid sphere,” Ultrason-
ics, vol. 53, no. 2, pp. 470–478, 2013.

[18]	F. P. Curra, P. D. Mourad, V. A. Khokhlova, R. O. Cleveland, and 
L. A. Crum, “Numerical simulations of heating patterns and tis-
sue temperature response due to high-intensity focused ultrasound,” 
IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 47, no. 4, pp. 
1077–1089, 2000.

[19]	N. S. Bakhvalov, Y. M. Zhileikin, and E. A. Zabolotskaya, Nonlin-
ear Theory of Sound Beams. New York, NY: American Institute of 
Physics, 1987, pp. 1–184.

[20]	P. T. Christopher and K. J. Parker, “New approaches to nonlinear 
diffractive field propagation,” J. Acoust. Soc. Am., vol. 90, no. 1, pp. 
488–499, 1991.

[21]	F. Dagrau, M. Rénier, R. Marchiano, and F. Coulouvrat, “Evalua-
tion of a wave vector frequency domain method for nonlinear wave 
propagation,” J. Acoust. Soc. Am., vol. 130, no. 1, pp. 20–32, 2011.

[22]	 I. M. Hallaj, R. O. Cleveland, and K. Hynynen, “Simulations of the 
thermo-acoustic lens effect during focused ultrasound surgery,” J. 
Acoust. Soc. Am., vol. 109, no. 5, pt. 1, pp. 2245–2253, 2001.

[23]	Y. Jing, J. Cannata, and T. Wang, “Experimental verification of 
transient nonlinear acoustical holography,” J. Acoust. Soc. Am., vol. 
133, no. 5, pp. 2533–2540, 2013.

[24]	E. Hairer, S. P. Norsett, and G. Wanner, Numerical Methods in 
Scientific Computing, 2nd ed., Berlin, Germany: Springer, 1993.

[25]	G. Dahlquist and A. Bjorck, Solving Ordinary Differential Equations 
I. Philadelphia, PA: SIAM, 2008, pp. 521–538.

[26]	K. R. Waters, M. S. Hughes, G. H. Brandenburger, and J. G. Miller, 
“On a time-domain representation of the Kramers-Kronig dispersion 
relations,” J. Acoust. Soc. Am., vol. 108, no. 2, pp. 556–563, 2000.

[27]	J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective as-
sembly of a basic fiber-optic hydrophone for measurement of high-
amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am., vol. 
119, no. 3, pp. 1432–1440, 2006.

[28]	Ultrasonics–Hydrophones–Part 2: Calibration, IEC standard IEC 
62127-2, 2007.

[29]	W. Kreider, P. Yuldashev, O. Sapozhnikov, N. Farr, A. Partanen, 
M. Bailey, and V. Khokhlova, “Characterization of a multi-element 
clinical HIFU system using acoustic holography and nonlinear mod-
eling,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 60, no. 
8, pp. 1683–1698, 2013.

[30]	M. S. Canney, M. R. Bailey, L. A. Crum, V. A. Khokhlova, and 
O. A. Sapozhnikov, “Acoustic characterization of high intensity fo-
cused ultrasound fields: A combined measurement and modeling 
approach,” J. Acoust. Soc. Am., vol. 129, no. 4, pp. 2406–2420, 2008.

[31]	L. Perko, Differential Equations and Dynamical Systems. New York, 
NY: Springer-Verlag, 2000, p. 60, ch. 1.10.

[32]	G. D. Smith, Numerical Solution of Partial Differential Equations: 
Finite Difference Methods, 3rd ed., Oxford, UK: Oxford University 
Press, 1985, pp. 67–68.

Yun Jing received a B.S. degree in electronic sci-
ence and engineering from Nanjing University, 
China, in 2006 and an M.S. degree from Rensse-
laer Polytechnic Institute in 2007. He received his 
Ph.D. degree in architectural acoustics from Rens-
selaer Polytechnic Institute in 2009. Prior to join-
ing the NC State faculty as an assistant professor 
at 2011, he was a research fellow at Brigham and 
Women’s Hospital, Harvard Medical School. He 
specializes in the development of analytic and nu-
merical methods for linear and nonlinear wave 

propagation in fluids. He is interested in biomedical ultrasound, includ-
ing ultrasound imaging, therapeutic ultrasound, and ultrasound medi-
ated drug delivery.

Photographs and biographies for Molei Tao and Jonathan Cannata 
were unavailable at time of publication.


