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Abstract

We consider the temporal homogenization of linear ODEs of the form ẋ =
Ax + εP(t)x + f (t), where P(t) is periodic and ε is small. Using a 2-scale
expansion approach, we obtain the long-time approximation x(t) ≈ exp(At)(
�(t) + ∫ t

0 exp(−Aτ) f (τ ) dτ
)
, where � solves the cell problem �̇ = εB� +

εF(t) with an effective matrix B and an explicitly-known F(t). We provide neces-
sary and sufficient conditions for the accuracy of the approximation (over aO(ε−1)

time-scale), and show how B can be computed (at a cost independent of ε). As a
direct application, we investigate the possibility of using RLC circuits to harvest
the energy contained in small scale oscillations of ambient electromagnetic fields
(such as Schumann resonances). Although a RLC circuit parametrically coupled
to the field may achieve such energy extraction via parametric resonance, its resis-
tance R needs to be smaller than a threshold κ proportional to the fluctuations of
the field, thereby limiting practical applications. We show that if n RLC circuits are
appropriately coupled via mutual capacitances or inductances, then energy extrac-
tion can be achieved when the resistance of each circuit is smaller than nκ . Hence,
if the resistance of each circuit has a non-zero fixed value, energy extraction can
be made possible through the coupling of a sufficiently large number n of circuits
(n ≈ 1000 for the first mode of Schumann resonances and contemporary values of
capacitances, inductances and resistances). The theory is also applied to the control
of the oscillation amplitude of a (damped) oscillator.

1. Introduction

1.1. Main Mathematical Results

Consider time-dependent non-homogeneous linear ODE

ẋ = Ax + εP(t)x + f (t) (1)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00205-015-0932-4&domain=pdf


262 Molei Tao & Houman Owhadi

on Rn , where A is a constant n × n real matrix, P(t) is a square-integrable 2π/ω-
periodic function taking real matrix values, f (t) is a vector-valued function satisfy-
ing that exp(−At) f (t) is integrable on [0, Ĉε−1] for some Ĉ > 0, and 0 < ε � 1.

Ourmain purpose is to approximate the solution of (1) over aO(ε−1) timescale,
without resolving oscillations of P(t) over that (long) interval of time. Our first
result is as follows:

Theorem 1. Let x(t) be the solution of the non-autonomous ODE system (1). If
exp(−At)P(t) exp(At) is uniformly bounded in t, then there exists a constant
matrix B, independent of f (·), such that

x(t) = exp(At)

(
�(t) +

∫ t

0
exp(−Aτ) f (τ ) dτ + E(t, ε)

)
, (2)

with

�̇ = εB� + εF(t)

F(t) := exp(−At)P(t) exp(At)
∫ t

0
exp(−Aτ) f (τ ) dτ, (3)

where �(0) = x(0) and, noting ‖y‖ :=
√
y21 + · · · + y2n the Euclidean 2-norm of

y, the error [E(t, ε) in (2)] satisfies, for 0 ≤ t ≤ Cε−1,

‖E(t, ε)‖ ≤ Cε exp(ε2Ct)

(
max

τ∈[0,t] ‖�(τ)‖ + max
τ∈[0,t]

∥∥∥∥
∫ τ

0
exp(−As) f (s) ds

∥∥∥∥
)

,

(4)

for some constant C independent of t and ε. Moreover, B can be identified by either

B = G[exp(−At)P(t) exp(At)], (5)

where G is defined in Definition 5, or

B = lim
T→∞

1

T

∫ T

0
exp(−Aτ)P(τ ) exp(Aτ) dτ, (6)

where the limit exists if and only if e−At P(t)eAt is uniformly bounded in t.

Theorem 1 shows that if exp(−At)P(t) exp(At) remains uniformly bounded,
then up to time O(ε−1), the solution of (1) can be approximated by

x(t) ≈ exp(At)

(
exp(εBt)x(0) +

∫ t

0
exp(εB(t − τ))εF(τ ) dτ

+
∫ t

0
exp(−Aτ) f (τ ) dτ

)
. (7)

The analytical expression in the right side of (7) can be explicitly computed for
a large class of f ’s (for example, f (t) = p(t, cos t, sin t) for polynomial p). B acts
as an effective matrix characterizing the time-homogenized action of fast periodic
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oscillations. We provide two methods for the identification of B: the first one (5) is
algebraic and described in Proposition 9; the second one (6) is computational and
described in Proposition 7.

Uniform boundedness of exp(−At)P(t) exp(At) is not only sufficient for the
accuracy of the approximation, but also necessary as shown by the following the-
orem.

Theorem 2. Consider system (1). Given a constant matrix B, define the approxi-
mation error

E(t, ε) := exp(−At)x(t) − �(t) −
∫ t

0
exp(−Aτ) f (τ ) dτ,

where � satisfies (3). If exp(−At)P(t) exp(At) is not uniformly bounded in time,
then for any constant matrix B independent of f (·), there exists at least one initial
condition x0 and a constant C̄ (independent of ε), such that there is no constant C
(independent of ε) that satisfies

‖E(t, ε)‖ ≤ Cε

(
max

τ∈[0,t] ‖�(τ)‖ + max
τ∈[0,t]

∥∥∥∥
∫ τ

0
exp(−As) f (s) ds

∥∥∥∥
)

for t ≤ C̄ε−1.

Section 2 establishes these results. Sections 3 and 4 describe how the method
can be applied to (i) control the oscillation amplitude of a (damped) oscillator,
and (ii) couple oscillators in order to lower the threshold on fluctuation amplitude
needed for harvesting energy.

1.2. Mathieu’s Equation

Mathieu’s equation is an example that can be expressed as (1), with

A =
[

0 1
−ω2 0

]
, P(t) =

[
0 0
−ω2 cos(2ωt) 0

]
, f (t) =

[
0
0

]
.

It is a prototype for the study of parametric resonance (see Section 3.1). For instance,
[60] used averaging and perturbation analysis to captureO(ε−1)-time dynamics of
the system, and the technique was extended to multi-dimensional oscillators in [22]
(see also [18]) and applied in structural engineering for stablization purposes [21].
We also refer to [3,8,10,40,42,46,64] for examples of applications of parametric
resonance in science and engineering. Parametric resonance can lead to not only
the exponential growth of oscillation amplitudes (a well known phenomenon used
by children to make a playground swing go higher by pumping their legs) but also
exponential decays (see Corollary 15 and its remarks; this aspect appears to have
received less attention in the literature).
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1.3. Relation with Floquet Theory and Perturbation Analysis

It is in general difficult to obtain a closed-form solution of a non-autonomous
system of the form

ẋ(t) = F(t)x(t), (8)

where F(t) is a periodic matrix-valued function.
Floquet theory [24] (known as Bloch’s theorem [6] in physics) shows that

the fundamental matrix associated with (8), that is, the matrix-valued solution of
�̇ = F(t)� with �(0) = I , satisfies

�(t) = Q(t) exp(t R), (9)

where Q(t) is a periodicmatrix and R is a constant matrix. Although Floquet theory
provides important information on the solution structure, it does not, in general,
help identify R or Q(t).

If f ≡ 0 in our system of interest (1), then F(t) is the sum of a constant
matrix and a small periodic perturbation, and perturbation analysis [41,47,52,56]
can be combined with Floquet theory to obtain a long-time approximation of the
fundamental matrix.More precisely, using an asymptotic expansionAnsatz�(t) =
�0(t) + ε�1(t) + O(ε2) and matching orders yields

�0(t) = exp(At), �1(t) = exp(At)
∫ t

0
exp(−Aτ)P(τ ) exp(Aτ)dτ. (10)

At the same time, (9) leads to

�(nT + t) = Q(nT + t) exp ((nT + t)R) = Q(t) exp(t R) exp(nT R)

= �(t)�(T )n,

where n is an integer, and T is the period. Let

�̃(t) = (�0(t − nT ) + ε�1(t − nT ))(�0(T ) + ε�1(T ))n, when

nT ≤ t < (n + 1)T .

When t = O(ε−1), n = 
t/T � = O(ε−1), and a standard local-to-global error
analysis leads to

�(t) = �̃(t) + O(ε).

Therefore, when f ≡ 0, Floquet theory provides an alternative to Theorem 1.
Now consider the f �= 0 case. It is natural to consider the approximation:

x(t) ≈ x̃(t) := �̃(t)

(
x(0) +

∫ t

0
�̃(τ )−1 f (τ ) dτ

)
. (11)

However, there are two issues with this approach:
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(i) The calculation of (11) can get quite complex. Indeed, since �̃ is piecewise
defined, the non-homogeneous term in (11) can be expressed as

∫ t

0
�̃(τ )−1 f (τ ) dτ =


t/T �−1∑
n=0

∫ (n+1)T

nT
�̃(τ )−1 f (τ ) dτ

+
∫ t


t/T �T
�̃(τ )−1 f (τ ) dτ

=

t/T �−1∑
n=0

(�0(T ) + ε�1(T ))−n

×
(∫ T

0
(�0(τ ) + ε�1(τ ))−1 f (τ + nT ) dτ

)

+ (�0(T ) + ε�1(T ))−
t/T �

×
(∫ t mod T

0
(�0(τ ) + ε�1(τ ))−1 f (τ +
t/T �T ) dτ

)
,

which cannot be reduced further when f is arbitrary.
(ii) The O(ε) error in �̃(t) may (depending on the choice of f ) result in an O(1)

error after integration to t = O(ε−1) in (11). This issue could be addressed
by further including a 2nd order term ε2�2(t) in the approximation �̃(t), but
this comes with the price of more complex calculations.
Note that our method approximates the fundamental matrix by (up to t =
O(ε−1))

�(t) = exp(At)

(
exp

(
ε

∫ t

0
G [

exp(−Aτ)P(τ ) exp(Aτ)
]
dτ

)
+ o(ε)

)
,

(12)

whereas the aforementioned perturbative Floquet approach uses (when t < T ),

exp(At)

(
I + ε

∫ t

0
exp(−Aτ)P(τ ) exp(Aτ)dτ + o(ε)

)
. (13)

Since the integral of G[exp(−Aτ)P(τ ) exp(Aτ)] − exp(−Aτ)P(τ ) exp(Aτ)

is small (Lemma 13), (13) could be seen as a 1st-order approximation of
(12). Including 2nd-order terms in (13) would improve its accuracy at a price
of increased computational complexity, whereas (12) provides a simple high
order approximation.

1.4. Relation with Averaging

Averaging methods (for example, [41,47,52,56]) approximate the solution of

ẏ = ε f (y, t) (14)
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by the solution of ż = ε f̄ (z). These methods can be divided into two categories:
(i) when f (y, t) is T -periodic in t , the effective dynamics can be obtained using

f̄ (x) := 1

T

∫ T

0
f (x, t) dt,

with a z(t) − y(t) = O(ε) upper-error-bound for t = O(ε−1); (ii) when f (y, t) is
not periodic, the effective dynamics can be obtained using

f̄ (x) := lim
T→∞

1

T

∫ T

0
f (x, t) dt, (15)

with a z(t) − y(t) = o(1) upper-error-bound for t = O(ε−1) under certain addi-
tional assumptions (see Definition 4.2.4 and Theorem 4.3.6 of [52]).

When f = 0, our approximation can be reproduced by averaging: introduce
a change of variables 	(t) = exp(−At)x(t) (when A has only imaginary eigen-
values, this is a common trick used in perturbation analysis [57]); then system (1)
transforms into

	̇ = ε exp(−At)P(t) exp(At)	. (16)

Since exp(−At)P(t) exp(At) may be non-periodic in t , general averaging theory
is required, and it approximates (16) by (when the limit exists)

ϒ̇ = ε

(
lim

T→∞
1

T

∫ T

0
exp(−At)P(t) exp(At) dt

)
ϒ. (17)

This limit is identical to (6), and can be shown to be equivalent to our algebraic
approach (5) (see Proposition 9 and Section 2.3).

Therefore, in the homogeneous case, the contribution of this paper is not to
provide a new approximation but to (i) prove a sharperO(ε) error bound, (ii) prove
that the assumption that exp(−At)P(t) exp(At) remains uniformly bounded in time
is both necessary and sufficient for the accuracy of the approximation (17), and (iii)
illustrate an algebraic alternative for computing the effectmatrix (see Propositions 8
and 9), which could be used as a guiding tool for designing systems with distinct
effective dynamics (see Sections 3 and 4).

When f �= 0, approximation (2) is new. One can still introduce slow variables
	(t) = exp(−At)x(t) − ∫ t

0 exp(−Aτ) f (τ ) dτ and show

	̇ = ε exp(−At)P(t) exp(At)

(
	 +

∫ t

0
exp(−Aτ) f (τ ) dτ

)
.

However, ε
∫ t
0 exp(−Aτ) f (τ ) dτ might be exponentially large and this prohibits

the application of classical averaging. For example, if A = −1 and f (t) = 1 (both
scalars), 	̇ = εP(t)	 + O(ε exp(ε−1)) when t = O(ε−1).
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1.5. Relation with Classical Homogenization

As in classical homogenization theory (for example, [5,7,28,43]), the constant
matrix B in Theorem1 can be seen as an effectivematrix capturing the homogenized
effect of the periodic perturbation on the dynamics.

Our results are built on a two-scale expansion technique analogous to the one
used in classical homogenization theory (see also [29]). One major difference is
the lack of ellipticity in (1). See also [16,20,25] for homogenization problems
involving time (with different systems of interest).

In the special case of f = 0, another analogy with classical homogenization
is as follows: let F(t) = ε−1A + P(t/ε), then after rescaling time our system
becomes

Ẋ = F(t)X. (18)

Let A(t) be the matrix-valued solution of

Ȧ(t) = −A(t)F(t), (19)

and Y be the solution of the 1D problem

d

dt

(
A(t)

dY

dt

)
= 0, (20)

then it can be shown that X = Ẏ . Here (20) is akin to the divergence form PDE used
as a prototypical example in classical homogenization theory [7,43]. Unfortunately,
obtaining A(t) via (19) is as difficult as solving the original problem (18).

Note also that, in the context of stochastic homogenization [31,45], as in (6),
the calculation of the effective conductivity requires taking the asymptotic limit of
local cell problems.

1.6. Other Related Work

Magnus expansion [34] allows for a representation of the solution of (8) (note
f has to be 0) as an infinite series of integrals of increasingly many matrix commu-
tators. For practical applications (see [11] for a review), the infinite series has to be
truncated to a finite number of terms. In many cases convergence after truncation
is not guaranteed or slow (for example, [12]), and one often faces such problem
when studying O(ε−1) long time behavior of our system of interest (1).

Alternative strategies become available when additional restrictions are placed
on the system (8) or only coarse estimates are needed. For instance, stability theory
exists forLappo-Danilevskii systems (which is a small subclass of (8), characterized
by the commutation of F(t) with its integrals [2]), or when F(t) is almost constant
and the constant part is asymptotically stable [2]. There are also loose bounds of
the characteristic matrix R in (9) (for example, [62,63] and IV.6 of [2]). There
is also a rich literature on the resolution and analysis of periodic time-dependent
Schrödinger equation (for example, [49,51,53]) and, in particular, on the steady
state Schrödinger operatorwithmulti-dimensional periodic potentials (for example,
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[13,17,54]).Wilcox [61] and Chu and Telnov [14] are examples of reviews. We
also refer to [4,26,38] for an incomplete list of additional methods.

This article is restricted to linear systems. Only partial results are available for
nonlinear systems. For instance, [33,56] provide nonlinear generalizations of Flo-
quet theory. Nonlinear analogies to parametric resonance (for example, autopara-
metric resonance) have been studied using averaging and perturbation analysis
[23,58,59]; see also [1,36,66,67] for more references. We also refer to [30] for the
control of a nonlinear model of double-strand DNA via parametric resonance.

2. Theory

2.1. Algebraic Structure

Condition 3. Let t ∈ R, and P(t) = P(t+2π/ω) be a real-matrix-valued periodic
function in L2. Assume that A ∈ R

n×n is a real matrix (not necessarily diagonal-
izable and, possibly, with complex eigenvalues). Assume without loss of generality
that A is in Jordan canonical form.

Remark. The assumption of Jordan canonical form is without loss of generality,
because it can be achieved via a change of basis, which affects P(t) but not its
periodicity. This assumption is not required by Theorem 1 or 2 either, and is only
needed by the specific algebraic calculation in Propositions 8 and 9.

Lemma 4. Under Condition 3, exp(−At)P(t) exp(At) can be uniquely expressed
(in L2 sense, which will no longer be stated in the rest of the paper unless confusion
arises) as a linear combination (with coefficients being constant real matrices) of
tkeat cos(bt) and tkeat sin(bt), where (a, b, k) ∈ � for some countable set �, in
which a, b and k components respectively take values in a finite subset of R, a
countable subset of R, and {0, 1, . . . , 2n − 3, 2n − 2}.

Proof. As awell-known corollary of Jordan canonical form theory (see for instance
[48]), both exp(−At) and exp(At) can be uniquely expressed as linear combinations
of tr e±λt cos(μt) and tr e±λt sin(μt), where for each triplet (r, λ, μ), λ and μ

correspond to the real and imaginary parts of one of A eigenvalues, and r is less or
equal to the number of off-diagonal 1’s in the associated Jordan block.

Also, represent P(t) in Fourier series. Since products of cos and sin can be
uniquely represented as sums of cos and sin, the lemma is proved. k, a and b
depend on λ, μ, r , and Fourier coefficients of P(t). 
�

Definition 5. (Growth operator) Using the representation given by Lemma 4:

exp(−At)P(t) exp(At) =
∑

(a,b,k)∈�

(
Cabkt

keat cos(bt) + Dabkt
keat sin(bt)

)
,

(21)
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we define the growth component of exp(−At)P(t) exp(At) by

G[exp(−At)P(t) exp(At)]

:=
⎛
⎝ ∑

(a,b,k)∈�,a>0

+
∑

(a,b,k)∈�,a=0,k �=0

+
∑

(a,b,k)∈�,a=0,k=0,b=0

⎞
⎠

×
(
Cabkt

keat cos(bt) + Dabkt
keat sin(bt)

)
. (22)

Proposition 6. exp(−At)P(t) exp(At) remains bounded for all t , if and only if
G[exp(−At)P(t) exp(At)] is time-independent, that is, when described in the form
given by (22), it does not contain (a > 0, k, b) or (a = 0, k �= 0, b) terms.

Proof. This directly follows from Definition 5. 
�
Remark. When A is diagonalizable and real parts of all its eigenvalues are the
same, exp(−At)P(t) exp(At) remains bounded for all t . In general, however,
whether it is bounded depends not only on A but also on entries of P(t).

Proposition 7. (Growth operator is equivalent to time-averaging)

lim
T→∞

1

T

∫ T

0
exp(−Aτ)P(τ ) exp(Aτ) dτ (23)

exists if and only if exp(−At)P(t) exp(At) remains bounded for all t , and in this
case

B = G[exp(−At)P(t) exp(At)] = lim
T→∞

1

T

∫ T

0
exp(−Aτ)P(τ ) exp(Aτ) dτ.

(24)

Proof. If bounded, exp(−At)P(t) exp(At) can be written as

C0 +
∑
i

(Ci cos(ωi t) + Di sin(ωi t))

+
∑

(a,b,k)∈�,a<0

(
Cabkt

keat cos(bt) + Dabkt
keat sin(bt)

)
, (25)

where C0 and Ci ’s are constant matrices, ωi ’s are constant quasi-periods that not
necessarily have a finite least common multiple, and i may take finitely-many or
countably-many values (depending on whether Fourier series of P terminates at
finite terms). In this case,

G[exp(−At)P(t) exp(At)] = C0. (26)
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Since0 = limT→∞
∫ T
0 eat tk cos(ωt) dt/T and0 = limT→∞

∫ T
0 eat tk sin(ωt) dt/T

for a < 0 or (a = 0, t = 0), we have

C0 = lim
T→∞

1

T

∫ T

0

(
C0 +

∑
i

(Ci cos(ωi t) + Di sin(ωi t))

+
∑

(a,b,k)∈�,a<0

(
Cabkt

keat cos(bt) + Dabkt
keat sin(bt)

) )
dt, (27)

where in the case of infinite summation swapping the limit and infinite sum is
justified by dominated convergence.

If exp(−At)P(t) exp(At) is unbounded, its representation obtained from
Lemma 4 contains terms that grow as tk (k > 0) or exp(at) (a > 0), and therefore
the integral in (23) does not exist. 
�

Proposition 8. (Algebraic calculation of growth operator) Let M(t) = exp(−At)
P(t) exp(At). Denote A’s eigenvalues by λi ±

√−1μi (assumingμi ≥ 0). Let Pcos
i j,l

and Psin
i j,l be the l

th Fourier coefficients of P(t). Let Li j be the set of all nonnegative

integers l such that lω = ∣∣μi ± μ j
∣∣ (recall ω ≥ 0 is the largest frequency of P(t)).

For all i , let αi be the identity matrix of the size of Aii , and

βi :=

⎡
⎢⎢⎢⎣

0 1

−1 0 . . .
. . . 0 1

−1 0

⎤
⎥⎥⎥⎦

be the canonical symplectic matrix when μi �= 0, and 0 if μi = 0, also of the size
of Aii .

Then, G[M(t)]i j = G[M(t)i j ] for all (i, j) pairs. Moreover, under Condition 3
and boundedness of M(t), Li j is of finite size, and G[M(t)i j ] ≡ ∑

l∈Li j
M̄i j,l ,

where M̄i j,l := 0 if λi �= λ j ; if λi = λ j ,

M̄i j,l :=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(βi Pcos
i j,l α j + αi Psin

i j,lα j + αi Pcos
i j,l β j − βi Psin

i j,lβ j )/4, if μi − μ j = lω,

(βi Pcos
i j,l α j − αi Psin

i j,lα j + αi Pcos
i j,l β j − βi Psin

i j,lβ j )/4, if μ j − μi = lω,

(−βi Pcos
i j,l α j − αi Psin

i j,lα j + αi Pcos
i j,l β j − βi Psin

i j,lβ j )/4, if μi + μ j = lω,

0, otherwise.

(28)

Proof. It is not difficult to see from its definition that G is a linear operator and
G[M]i j = G[Mi j ].

Since M(t) is bounded, each term in Mi j that possibly persists after the appli-
cation of G is a product of at most 3 trigonometric functions (decaying components
will be removed). Let their frequencies be respectivelyμi , lω, andμ j . This product
yields a non-zero constant term if and only if ±μi ± lω ± μ j = 0. Since only the
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constant terms will persist after the application of G, it is sufficient to consider only
lth-modes in the Fourier expansion of P(t) with l ∈ Li j , that is,

G[Mi j ] =
∑
l∈Li, j

M̄i j,l ,

where

M̄i j,l = G
[
exp(−Aii t)

(
Pcos
i j,l cos(lωt) + Psin

i j,l sin(lωt)
)
exp(A j j t)

]
.

When λi > λ j , by the definition of G, M̄i j,l = 0. When λi < λ j , boundedness of

M ensures
(
Pcos
i j,l cos(lωt) + Psin

i j,l sin(lωt)
)

= 0, and therefore M̄i j,l = 0 too.

Now consider only the case of λi = λ j . Since boundedness of M rules out
presence of tk ,

M̄i j,l = G
[
exp(− Ãii t)

(
Pcos
i j,l cos(lωt) + Psin

i j,l sin(lωt)
)
exp( Ã j j t)

]
,

where Ãii ’s are matrices in canonical Jordan form with eigenvalues ±√−1μi

without Aii ’s off-diagonal blocks, that is,

Ãii =

⎡
⎢⎢⎢⎣

0 μi

−μi 0 . . .
. . . 0 μi

−μi 0

⎤
⎥⎥⎥⎦ .

Therefore,

M̄i j,l = G
[
(αi cos(μi t) − βi sin(μi t))

(
Pcos
i j,l cos(lωt) + Psin

i j,l sin(lωt)
)

(
α j cos(μ j t) + β j sin(μ j t)

) ]
.

It can be computed by basic trigonometric identities that (for arbitrary parame-
ters a, b, c, d, e, f, μ, ν,�)

(a sinμt + b cosμt)(c sin�t + d cos�t)(e sin νt + f cos νt)

= cos((μ − ν − �)t)(−bce + ade + ac f + bd f )/4

+ cos((μ + ν − �)t)(bce − ade + ac f + bd f )/4

+ cos((μ − ν + �)t)(−bce − ade + ac f + bd f )/4

+ cos((μ + ν + �)t)(−bce − ade − ac f + bd f )/4

+ four more sin terms,

and hence we have (28). 
�
Proposition 9. (Algebraic calculation of effective matrix) Under Condition 3,
denote A’s Jordan blocks by Aii . Let λi ± √−1μi be the eigenvalue(s) associated
to Aii . Let Li j be the set of all nonnegative integers l such that

∣∣μi ± μ j
∣∣ = lω.

Then Li j is a finite set, and expressing B = G[exp(−At)P(t) exp(At)] in the same
block division as A, we have that:
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• Bi j = 0, if λi > λ j .
• Bi j = 0, if λi < λ j and Pi j = 0.
• ‖Bi j‖ = ∞, if λi < λ j and Pi j �= 0.
• ‖Bi j‖ = ∞, if λi = λ j and the representation of exp(−Aii t)Pi j (t)

exp(A j j t) obtained from Lemma 4 contains terms in tk with k ≥ 1.
• Bi j = ∑

l∈Li j
M̄i j,l , if λi = λ j and the representation of exp(−Aii t)Pi j (t)

exp(A j j t) obtained from Lemma 4 does not contain terms in tk with k ≥ 1;
M̄i j,l is defined by (28) in Proposition 8.

Observe that the presence of terms in tk with k ≥ 1 in the representation of
exp(−Aii t)Pi j (t) exp(A j j t)obtained fromLemma4 can be checked analytically. If
this representation does not contain such elements, the caseλi = λ j is characterized
by only a finite number of Fourier coefficients of Pi j (t). Therefore, whether B
exists can be checked and its exact expression can be obtained, both in a number
of computational steps independent from ε.

2.2. Preparatory Analysis

Lemma 10. For fixed a > 0, k ∈ {0, 1, 2, · · · }, b ∈ R or a = 0, k ∈
{1, 2, · · · }, b ∈ R, if T � 0, the following integrals have asymptotic behavior

∫ T

0
eat tk cos(bt) dt ∼ +a cos(bT ) + b sin(bT )

a2 + b2
eaT T k

∫ T

0
eat tk sin(bt) dt ∼ −b cos(bT ) + a sin(bT )

a2 + b2
eaT T k

in the sense that f (T ) ∼ g(T ) if and only if

lim
T→∞

‖ f (T ) − g(T )‖
max (‖ f (T )‖, ‖g(T )‖) = 0.

Proof. (i) When a > 0, recall that the upper incomplete gamma function is
defined as

�(s, z) =
∫ ∞

z
t s−1e−t dt.

Therefore,

I :=
∫ T

0
eat tk cos(bt) dt = 1

2

( (
(−a − ıb)−1−k + (−a + ıb)−1−k

)
(1 + k)!

−
(
−(a − ıb)−1−k�(1 + k,−(a − ıb)T )

+ − (a + ıb)−1−k�(1 + k,−(a + ıb)T )
) )

.
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Note that �(s, z), when s fixed, |z| large and | arg z| < 3
2π , has asymptotic

behavior (for example, [19,44])

�(s, z) = zs−1e−z(1 + O(z−1)).

Therefore,

I = 1

2

((
(−a − ıb)−1−k + (−a + ıb)−1−k

)
(1 + k)!

+ 1

a − ıb
T ke(a−ıb)T

(
1 + O

(
1

T

))

+ 1

a + ıb
T ke(a+ıb)T

(
1 + O

(
1

T

)))

∼ 1

2

(
1

a − ıb
T keaT (cos(bT ) − ı sin(bT ))

+ 1

a + ıb
T keaT (cos(bT ) + ı sin(bT ))

)

= +a cos(bT ) + b sin(bT )

a2 + b2
eaT T k .

(ii) When a = 0, k ∈ {1, 2, · · · }, integration by parts gives

∫ T

0
tk cos(bt) dt ∼ 1

b
sin(bT )T k

when T is large. That is, the same expression in (i) works.
(iii) A procedure similar to (i) and (ii) shows

∫ T

0
eat tk sin(bt) dt ∼ −b cos(bT ) + a sin(bT )

a2 + b2
eaT T k .


�
Definition 11. Given exp(−At)P(t) exp(At) = ∑

(a,b,k)∈�

(
Cabktkeat cos(bt)

+tk Dabkeat sin(bt)
)
(the representation of exp(−At)P(t) exp(At) obtained from

Lemma 4) and constant vectors ϒ and �, define the growth component of
ϒ − exp(−At)P(t) exp(At)� as

G[ϒ − exp(−At)P(t) exp(At)�]

:= ϒ −
⎛
⎝ ∑

(a,b,k)∈�,a>0

+
∑

(a,b,k)∈�,a=0,k �=0

+
∑

(a,b,k)∈�,a=0,k=0,b=0

⎞
⎠

×
(
tkeat cos(bt)Cabk� + tkeat sin(bt)Dabk�

)

= ϒ − G[exp(−At)P(t) exp(At)]�, (29)

where G[exp(−At)P(t) exp(At)] is defined in (22).
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Lemma 12. Given constant vectors ϒ and �, the solution of ODE

ẏ = −ϒ + exp(−At)P(t) exp(At)� (30)

remains bounded if and only if

G [
ϒ − exp(−At)P(t) exp(At)�

] = 0. (31)

Proof. By Lemma 4, we can assume that

ϒ − exp(−At)P(t) exp(At)� =
∑

(a,b,k)∈�1

tkeat cos(bt)cabk

+
∑

(a,b,k)∈�2

tkeat sin(bt)dabk (32)

for some sets �1 and �2, and nonzero vectors cabk , dabk . We adopt the convention
that (a, b = 0, k) �∈ �2 so that this decomposition is unique.

Consider the solutions ycosabk and ysinabk to

ẏcosabk = −tkeat cos(bt)cabk

ẏsinabk = −tkeat sin(bt)dabk .

Naturally, when a > 0, the solutions will not remain bounded. When a = 0
and k > 0 (recall k ≥ 0), they will not be bounded either. When a = 0 and k = 0,
ycosabk remains bounded if and only if b �= 0, and ysinabk is bounded for b �= 0 and
undefined for b = 0.

Note y(t) = ∑
(a,b,k)∈�1

ycosabk(t)+
∑

(a,b,k)∈�2
ysinabk(t) is the unique solution to

(30). If all ycosabk and y
sin
abk remain bounded, so do y(t); on the other hand, if some ycosabk

and/or ysinabk y(t) are unbounded, y(t) will be unbounded too, because cancelation
will not happen due to different growth rates of ycosabk and ysinabk .

Hence, the necessary and sufficient condition for bounded y is�1 and�2 being
subsets of {(a, b, k)|(a < 0) or (a = 0, k = 0, b �= 0)} (note b = 0 is meaningless
for �2), which by Definition 11 is equivalent to

G [
ϒ − exp(−At)P(t) exp(At)�

] = 0. (33)


�

Lemma 13. Let R(t) = exp(−At)P(t) exp(At) − G[exp(−At)P(t) exp(At)].
Then there exists a constant C such that ‖R(t)‖ ≤ C for all t ≥ 0. Further-
more, it has an antiderivativeR(t) (that is, d

dtR(t) = R(t)) such that ‖R(t)‖ ≤ C
for all t ≥ 0 too.
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Proof. By the definition of growth operator

R(t) =
⎛
⎝ ∑

(a,b,k)∈�,a=0,k=0,b �=0

+
∑

(a,b,k)∈�,a<0

⎞
⎠ (Cabkt

keat cos(bt)

+ Dabt
keat sin(bt)). (34)

Since eat tk is bounded for a < 0 and t ≥ 0, and cos(bt) and sin(bt) are bounded
for real b and t , ‖R(t)‖ ≤ C for some constant C for all t ≥ 0.

Moreover, when a = 0, k = 0, b �= 0, antiderivatives of cos(bt) and sin(bt) are
bounded. As for a < 0, b, k terms, we note the indefinite integral of tkeat converges
because (i) the integrand is positive, and (ii) t × tkeat → 0 as t → +∞. Therefore,
the antiderivative of tkeat cos(bt) remains bounded as t → +∞, because it is
bounded by the indefinite integral of tkeat .

Therefore, ‖R(t)‖ ≤ C for all t ≥ 0 too. 
�

2.3. Temporal Homogenization

Heuristic Derivation The intuition behind Theorem 1 lies in the introduction
of the 2-scale asymptotic expansion ansatz, popular in perturbation analysis and
classical homogenization (see, for instance, [41] or [7]):

x(t) = x0(η, ξ) + εx1(η, ξ) + O(ε2), (35)

where η := εt and ξ := t correspond to slow and fast timescales, and are treated
as independent variables as ε → 0; xi ’s are such that ‖x0‖ � ε‖x1‖ � · · · for at
least t = O(ε−1) as ε → 0.

Due to the separation of timescales, formally differential operator d
dt = ∂

∂ξ
+

ε ∂
∂η
. Consequently, (1) can be written as

∂x

∂ξ
+ ε

∂x

∂η
= Ax + εP(ξ)x + f (ξ). (36)

Plot the expansion of x(t) [Eq. (35)] into the above PDE. MatchingO(1) terms
leads to

∂x0
∂ξ

= Ax0 + f (ξ), (37)

and matching O(ε) terms leads to

∂x1
∂ξ

+ ∂x0
∂η

= Ax1 + P(ξ)x0. (38)

Solving (37), we get

x0 = exp(Aξ)

(
�(η) +

∫ ξ

0
exp(−Aτ) f (τ ) dτ

)
(39)

for some vector-valued function �(·).
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Substituting (39) into (38), we obtain

∂x1
∂ξ

+ exp(Aξ)�′(η) = Ax1 + P(ξ) exp(Aξ)�(η)

+P(ξ)

∫ ξ

0
exp(A(ξ − τ)) f (τ ) dτ. (40)

Let y(ξ, η) := exp(−Aξ)x1(ξ, η), then we have

∂y

∂ξ
= −�′(η) + e−Aξ P(ξ)eAξ�(η) + F(ξ), (41)

where F(s) := e−As P(s)eAs
∫ s
0 e−Aτ f (τ ) dτ .

To satisfy ‖x0‖ � ε‖x1‖, we require y(ξ) to be bounded by a constant inde-
pendent of ε. Formally, let

F̄(η) := ε

∫ (η+1)/ε

η/ε

F(ξ) dξ . (42)

Make a decomposition y = y1 + y2, where

∂y1
∂ξ

= −�′(η) + e−Aξ P(ξ)eAξ�(η) + F̄(η),

∂y2
∂ξ

= F(ξ) − F̄(η).

Since η and ξ are independent variables as ε → 0, F̄(η), �′(η) and �(η) are
viewed as constant vectors at the fast timescale of ξ . By definition of F̄ , y2 is
bounded as ε → 0; at the same time, Lemma 12 suggests y1 is bounded if and
only if G[�′(η) − exp(−Aξ)P(ξ) exp(Aξ)�(η) + F̄(η)] = 0, which leads to (see
Definition 5):

�′(η) = G [
exp(−Aξ)P(ξ) exp(Aξ)

]
�(η) + F̄(η). (43)

When exp(−Aξ)P(ξ) exp(Aξ) is bounded, G[exp(−Aξ)P(ξ) exp(Aξ)] is a con-
stant (denoted by B), and � is a function of η only, consistent with the ansatz of
scale separation. Going back to original time variable t , the above equation is

�̇(t) = εB�(t) + ε F̄(εt). (44)

However, one problem remains: does the right side of (42) have a limit as ε → 0?
Rather than imposing extra restrictions on f (such as it is fast/slow), we prefer a
general result, and heuristically replace the cell problem (44) by

�̇(t) = εB�(t) + εF(t). (45)

We then prove the effective solution (39) generated by this � still has small error.
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Rigorous Justification

Proof of Theorem 1. Let 	(t) = exp(−At)x(t) − ∫ t
0 exp(−Aτ) f (τ ), then

	̇(t) = ε exp(−At)P(t) exp(At)

(
	(t) +

∫ t

0
exp(−Aτ) f (τ ) dτ

)

= ε exp(−At)P(t) exp(At)	(t) + εF(t), 	(0) = x(0).

Since exp(−At)P(t) exp(At) is bounded, G[exp(−At)P(t) exp(At)] is a constant.
Let it be B. Consider

�̇(t) = εB�(t) + εF(t), �(0) = x(0).

Let E(t) = 	(t) − �(t) and R(t) = exp(−At)P(t) exp(At) − B. Then

Ė(t) = εBE(t) + εR(t)	(t), E(0) = 0.

Let P(t) = exp(εBt), then

E(t) = P(t)E(0) + P(t)
∫ t

0
P(τ )−1εR(τ )	(τ) dτ

= εP(t)
∫ t

0
P(τ )−1R(τ )(E(τ ) + �(τ)) dτ

= εP(t)
∫ t

0
P(τ )−1R(τ )E(τ ) dτ + I (t), (46)

where

I (t) := εP(t)
∫ t

0
P(τ )−1R(τ )�(τ) dτ.

Treat t as fixed for now and let P(τ ) = P(t)P(τ )−1. Then

P ′ = −P(t)P(τ )−1P ′(τ )P(τ )−1 = −P(t)P(τ )−1εBP(τ )P(τ )−1 = −εPB,

where prime means derivative with respect to τ .
Let R be the antiderivative of R defined in Lemma 13. Then

I (t) = ε

∫ t

0
P(τ )R(τ )�(τ) dτ

= ε

∫ t

0
P(τ ) dR(τ )�(τ)

= εP(t)R(t)�(t) − εP(0)R(0)�(0) − ε

∫ t

0
P ′(τ )R(τ )�(τ) dτ

− ε

∫ t

0
P(τ )R(τ )�′(τ ) dτ

= εR(t)�(t) − ε exp(εBt)R(0)�(0) + ε2
∫ t

0
P(τ )BR(τ )�(τ) dτ

− ε2
∫ t

0
P(τ )R(τ )(B�(τ) + F(τ )) dτ.
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Note B, exp(εBt), and hence P(t) all remain bounded till t = O(ε−1). Also,R(t)
remains bounded for all time by Lemma 13. Therefore,

‖I (t)‖ ≤ C1ε max
τ∈[0,t] ‖�(τ)‖ + C2ε max

τ∈[0,t] ‖F(τ )‖

for |t | ≤ C3ε
−1 and some constants C1,C2,C3 > 0. Since

F(t) = exp(−At)P(t) exp(At)
∫ t

0
exp(−Aτ) f (τ ) dτ

and exp(−At)P(t) exp(At) is bounded by assumption, there is some C > 0 such
that

‖I (t)‖ ≤ Cε

(
max

τ∈[0,t] ‖�(τ)‖ + max
τ∈[0,t]

∥∥∥∥
∫ τ

0
exp(−As) f (s) ds

∥∥∥∥
)

.

Similarly, we have

E(t) = ε

∫ t

0
P(τ )R(τ )E(τ ) dτ + I (t)

= εP(t)R(t)E(t) − εP(0)R(0)E(0) − ε

∫ t

0
P ′RE dτ

− ε

∫ t

0
PRE ′ dτ + I (t)

=εR(t)E(t)+ε

∫ t

0
εPBRE dτ −ε

∫ t

0
PRε(BE+RE+R�) dτ + I (t).

(47)

Let J (t) := −ε
∫ t
0 PRεR� dτ + I (t). It can be analogously shown that

‖J (t)‖ ≤ Cε

(
max

τ∈[0,t] ‖�(τ)‖ + max
τ∈[0,t]

∥∥∥∥
∫ τ

0
exp(−As) f (s) ds

∥∥∥∥
)

for some C > 0. Rearranging terms in (47), we obtain

E(t) = (1 − εR(t))−1
(

ε2
∫ t

0
(PBR − PRB − PRR)(τ )E(τ ) dτ + J (t)

)
.

Let e(t) = ‖E(t)‖. Since (PBR−PRB−PRR)(τ ) remains bounded till at least
t = O(ε−1), we have

e(t) ≤ ε2
∫ t

0
Ce(τ ) dτ + Cε

(
max

τ∈[0,t] ‖�(τ)‖ + max
τ∈[0,t]

∥∥∥∥
∫ τ

0
exp(−As) f (s) ds

∥∥∥∥
)

.

Gronwall’s inequality gives

e(t) ≤ exp(ε2Ct)Cε

(
max

τ∈[0,t] ‖�(τ)‖ + max
τ∈[0,t]

∥∥∥∥
∫ τ

0
exp(−As) f (s) ds

∥∥∥∥
)

.


�
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Remark. The relative error is quantified in (4) by comparing the absolute error
with the approximated solution after an appropriate scaling.

Remark. The inhomogeneous term f (·) may not be small nor periodic. When it
is, it can be homogenized. This can be done in our framework by concatenating x
with an extra dummy variable z, with z(0) = 1, ż = 0, and f (t) replaced by f (t)z.

The following corollary shows that, in the homogeneous case, one can drop the
εP(t)x term in (1) without loss of accuracy if P(t) does not oscillate at a resonant
frequency (defined as the difference between the imaginary parts of two eigenvalues
of A). Unlike Theorems 1 and 2, this is only a sufficient condition.

Corollary 14. Consider system (1). Assume without loss of generality that the
Fourier expansion of P(t) does not contain constant terms (such terms can be
absorbed into A), and denote by 2π/ω the smallest period of P(t). Suppose
f (t) ≡ 0. Assume that A is diagonalizable and that all its eigenvalues (indicated
by λi + √−1μi ) have the same real part (that is, λi = λ for all i).1 If there is no
integer l such that

|μi ± μ j | = lω (48)

for some i, j ∈ {1, . . . ,m}, then
x(t) = exp(At)(x(0) + E(t, ε)),

with

‖E(t, ε)‖ ≤ Cε exp(ε2Ct), (49)

for some constant C independent from t and ε when t ≤ Cε−1.

Proof. Proposition 8 shows that B = G[exp(−At)P(t) exp(At)] = 0. Then apply
Theorem 1. 
�
Proof of Theorem 2. Let G(t) := exp(−At)P(t) exp(At). Since G(t) is
unbounded in t , when written in canonical form (Lemma 4), it contains at least
one eat tk cos(bt) or eat tk sin(bt) term with either a > 0 or (a = 0, k > 0). Choose
a, k, b that correspond to the fastest growing term. The proof is by contradiction:

Suppose there exists a constant matrix B, independent of the choice of f , such
that for all initial condition x0 and all t ≤ C̄ε−1 for some C̄ ,

‖E(t, ε)‖ ≤ Cε

(
max

τ∈[0,t] ‖�(τ)‖ + max
τ∈[0,t]

∥∥∥∥
∫ τ

0
exp(−As) f (s) ds

∥∥∥∥
)

for some C . Then the above should hold for a particular choice of f ≡ 0. In this
case,

�(t) = exp(εBt)x(0),

1 An example is a mechanical system subject to isotropic dissipation and with bounded
trajectory.
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and therefore as long as t ≤ C̄ε−1,

‖E(t, ε)‖ ≤ Cε.

As before, we have

Ė(t) = εBE(t) + ε(G(t) − B)	(t), E(0) = 0, (50)

where 	(t) = exp(−At)x(t) satisfies 	̇(t) = εG(t)	(t) and 	(0) = x0.
Variation of constants leads to

E(t) =
∫ t

0
exp(εB(t − τ))ε(G(τ ) − B)(�(τ) + E(τ )) dτ.

Rearranging terms, we have

ε

∫ t

0
eεB(t−τ)G� dτ = E(t) + ε

∫ t

0
eεB(t−τ)B(� + E) dτ

−ε

∫ t

0
eεB(t−τ)GE dτ. (51)

Assume without loss of generality C̄ = 1 and choose t = ε−1, then right hand side
(RHS) of (51) satisfies

‖RHS of (51)‖ ≤ Cε + ε

∫ ε−1

0
C · C · (C + Cε) dτ

+ ε

∫ ε−1

0
C max

0≤s≤τ
‖G(s)‖Cε dτ

≤ Cε2
∫ ε−1

0
eaτ τ k dτ.

Lemma 10 leads to

‖RHS of (51)‖ ≤ Cε2ea/ε(ε−1)k .

On the other hand, the left hand side (LHS) of (51) is

LHS of (51) = ε

∫ t

0
eεB(t−τ)G(τ )eεBτ x(0) dτ.

Write B in Jordan canonical form B = V−1 JV , where

J =

⎡
⎢⎢⎢⎣

λ1 d1

λ2
. . .
. . . dn−1

λn

⎤
⎥⎥⎥⎦ ,

λ’s are B eigenvalues, superdiagonal elements d’s are either 0 or 1, and V is
orthonormal. Then

LHS of (51) = εV−1
∫ t

0
eεJ (t−τ)VG(τ )V−1eεJτV x(0) dτ.
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Let Ḡ(τ ) = VG(τ )V−1. Since the conjugate transform preserves the matrix norm,
G(t), when written in canonical form, still has at least one element that contains
an eat tk cos(bt) or eat tk sin(bt) term. Because LHS of (51) is a linear functional
of G(·), assume without loss of generality that

Ḡi j (τ ) = eaτ τ k cos(bτ)

for some i, j ∈ {1, 2, · · · , n} (the eaτ τ k sin(bτ) case is completely analogous).
Also, let y(0) = V x(0), then

LHS of (51) = εV−1
∫ t

0
eεJ (t−τ)Ḡ(τ )eεJτ y(0) dτ.

For notational convenience, let

L =
∫ t

0
eεJ (t−τ)Ḡ(τ )eεJτ dτ.

Suppose λi and λ j are respectively located in J inm1-by-m1 andm2-by-m2 Jordan
diagonal blocks

J1 =

⎡
⎢⎢⎢⎣

λi 1

λi
. . .
. . . 1

λi

⎤
⎥⎥⎥⎦ and J2 =

⎡
⎢⎢⎢⎣

λ j 1

λ j
. . .
. . . 1

λ j

⎤
⎥⎥⎥⎦ .

Isolate the corresponding m1-by-m2 blocks in L and Ḡ and call them L̂ and Ĝ.
Then

L̂ =
∫ t

0
eεJ1(t−τ)Ĝ(τ )eεJ2τ dτ

=
∫ t

0
eελi (t−τ)+ελ j τ

⎡
⎢⎢⎢⎢⎣

1 ε(t − τ) · · · (ε(t−τ))m1−1

(m1−1)!
1 . . .

...
. . . ε(t − τ)

1

⎤
⎥⎥⎥⎥⎦

Ĝ(τ )

⎡
⎢⎢⎢⎢⎣

1 ετ · · · (ετ )m2−1

(m2−1)!
1 . . .

...
. . . ετ

1

⎤
⎥⎥⎥⎥⎦

dτ.

Let Ĝαβ(τ ) be the new location of Ḡi j (τ ) = eaτ τ k cos(bτ) in submatrix Ĝ. Con-
sider

[
u1 · · · um

] = [
Ĝα1 · · · Ĝαβ · · · Ĝαm

]

⎡
⎢⎢⎢⎢⎣

1 ετ · · · (ετ )m2−1

(m2−1)!
1 . . .

...
. . . ετ

1

⎤
⎥⎥⎥⎥⎦

,
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then

uβ = Ĝαβ +
β−1∑
i=1

Ĝαi
(ετ )β−i

(β − i)! .

Either uβ(ε−1) is still at the order of ea/ε(ε−1)k (in ε) as Ĝαβ(ε−1) is, or some

later term Ĝαi
(ετ )β−i

(β−i)! cancels this leading order.

If the latter case (cancellation), because ετ = O(1), Ĝαi must be at this leading
order too. In this case, choose a new β to be i , and repeat the above procedure.

Because 1 ≤ i < β is always true, this procedure will terminate eventually.
In the end, there will be some β ∈ {1, · · · ,m} such that uβ is at the order of
ea/ε(ε−1)k .

Now, pick m2-dimensional vector ŷ(0) = [
0 · · · 0 1 0 · · · 0

]
, where the only

nonzero element is in column β. Pick y(0) by padding ŷ(0) with 0 elements, such
that the location of ŷ(0) in y(0) corresponds to the location of J2 in J . If we
introduce notation

⎡
⎢⎢⎣

v1
v2
. . .

vm1

⎤
⎥⎥⎦ = Ĝ

⎡
⎢⎢⎢⎢⎣

1 ετ · · · (ετ )m2−1

(m2−1)!
1 . . .

...
. . . ετ

1

⎤
⎥⎥⎥⎥⎦
ŷ(0),

then vα = [
u1 · · · um2

]
ŷ(0) = uβ .

Using the upper triangularmatrix structure again, an analogous argument shows

⎡
⎢⎢⎢⎢⎣

1 ε(t − τ) · · · (ε(t−τ))m1−1

(m1−1)!
1 . . .

...
. . . ε(t − τ)

1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

v1
v2
. . .

vm1

⎤
⎥⎥⎦

also contains an element at the leading order of ea/ε(ε−1)k . Lemma 10 implies
L̂ ŷ(0) also contains an element at this leading order (up to a constant prefactor due
to the eελi (t−τ)+ελ j τ factor involved in ε−1 time integral), and therefore so does
Ly(0).

Since V−1 is orthonormal and hence vector-norm preserving,

‖LHS of (51)‖ = ‖εV−1Ly(0)‖ = ε‖Ly(0)‖,
and it is at least at the order of εea/ε(ε−1)k . Since

εea/ε(ε−1)k � Cε2ea/ε(ε−1)k > ‖RHS of (51)‖,
when ε is small enough, (51) cannot be an equality. This is a contradiction, and
hence B does not exist. 
�
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3. Application 1: Control Via Parametric Resonance

3.1. Parametric Resonance in a Variant of Mathieu’s Equation

Consider the system

ẍ + ω2(1 + ε cos(2ωt + θ))x = 0. (52)

Without the additional phase θ , this isMathieu’s equation, which is known to corre-
spond to parametric resonance (PR for short; see [24,27,39] for seminal discussions
on Mathieu’s equation and its generalization known as Hill’s equation, with moti-
vations in celestial mechanics; see also [32,35,63] for somemore modern reviews).

This system corresponds to the canonical form (1) with

A =
[

0 1
−ω2 0

]
, P(t) =

[
0 0

−ω2 cos(2ωt + θ) 0

]
, f (t) =

[
0
0

]
.

A direct computation gives

B = G[exp(−At)P(t) exp(At)] = −1

4

[
ω sin θ cos θ

ω2 cos θ −ω sin θ

]
.

This matrix has 0 trace and −ω2/16 determinant, and therefore

exp(εBt) =
[
cosh ωεt

4 − sin θ sinh ωεt
4 − cos θ sinh ωεt

4 /ω

−ω cos θ sinh ωεt
4 cosh ωεt

4 + sin θ sinh ωεt
4

]
.

Hence, we have, till at least t = O(ε−1),

x(t) =
[
x(0) cosh

(εω

4
t
)

−
(
ẋ(0)

ω
cos θ + x(0) sin θ

)
sinh

(εω

4
t
)]

cosωt

+
[
ẋ(0)

ω
cosh

(εω

4
t
)

−
(
x(0) cos θ − ẋ(0)

ω
sin θ

)
sinh

(εω

4
t
)]

sinωt + O(ε). (53)

Corollary 15. (Exponential decay) When tan θ
2 = x(0)−ẋ(0)/ω

x(0)+ẋ(0)/ω ,

x(t) = exp(−εωt/4)(x(0) cos(ωt) + x ′(0) sin(ωt)/ω) + O(ε)

till at least t = O(ε−1).

Proof. Since cosh(x) ≡ exp(x)/2 + exp(−x)/2 and sinh(x) ≡ exp(x)/2 −
exp(−x)/2 for all x , it suffices to show the equivalency of tan θ

2 = x(0)−ẋ(0)/ω
x(0)+ẋ(0)/ω ,

x(0) = ẋ(0)/ω cos θ + x(0) sin θ and ẋ(0)/ω = x(0) cos θ − ẋ(0)/ω sin θ .
This is immediate upon using basic trigonometric identities 1 = cos2 θ

2+sin2 θ
2 ,

cos θ = cos2 θ
2 − sin2 θ

2 and sin θ = 2 sin θ
2 cos

θ
2 . 
�
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Remark. Although parametric resonance oftentimes leads to exponentially grow-
ing oscillations, it may, as observed in [32], also lead to exponentially decaying
solutions. For a 2-dimensional periodic linear ODE system (52) with trace-free
time-averaged coefficient matrix, Floquet theory (see for instance [57]) guarantees
that exponentially growing and decaying solutions always come in pairs. Corol-
lary 15 shows how to obtain this decaying solution. Note that the decay can either
be achieved by a careful choice of initial condition (such that x(0) = ẋ(0)/ω), or
by adding a phase in the perturbation to adjust to arbitrary initial condition.

Remark. For θ such that tan θ
2 �= x(0)−ẋ(0)/ω

x(0)+ẋ(0)/ω , when t is large x(t) will be domi-

nated by exponentially growth. However, when θ/2 = arctan a−b
a+b + O(ε), it can

be shown that x(t) decays when t is not too large; this is why the proposed method
of control (see Section 3.2) is robust to small perturbations in θ caused by imple-
mentation errors.

3.2. Control of Oscillations

Given a smooth enough, positive-valued function f (t), our purpose is to control
the amplitude of the oscillations of the solution of

ẍ + ω2 (1 + ε cos(2ωt + θ)) x = 0 (54)

so that it follows approximately f (t). We will achieve this control by changing the
values of ε and θ over a finite number of time intervals.

Assumption. We will assume that f is slowly varying when compared to the time
scale 0 < 1/ω < ∞, that is, that f (t) ∈ C1([0, T ]) and

∣∣∣∣
1

ω

d

dt
log f (t)

∣∣∣∣ � 1 (55)

and
∣∣∣∣
1

ω

d

dt
f (t)

∣∣∣∣ � 1 (56)

for all t ∈ [0, T ], where T is the end time of the control.
The following algorithm describes how the solution of (54) can be controlled

by changing values of ε and θ on time intervals of length H .

Algorithm 16. (Control of oscillations by parametric resonance)

• Let H := M/ω, where M is a pre-set O(1) constant (M = 2 in this paper).
• At each time step, that is, t = nH for n ∈ N, compute r := f (t +
H)

/√
x(t)2 + ẋ(t)2/ω2; Let a = x(t) and b = ẋ(t)/ω.

• If r ≥ 1, let ε = log(r)
ωH and θ = 2 arctan a+b

b−a for t ∈ [nH, (n + 1)H).

• If r ≤ 1, let ε = − log(r)
ωH and θ = 2 arctan a−b

a+b for t ∈ [nH, (n + 1)H).
• n → n + 1 and iterate until n = 
T/H�.
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This algorithm works in the sense that it leads to a solution x(t) such that√
x(t)2 + ẋ(t)2/ω2 ≈ f (t) for all t ∈ [0, T ]. The idea is to approximate f (·) by

a piecewise-exponential function with piece-width H .
The condition given by (56) ensures that f (·) changes very little within a step

of length H , so that it is well approximated by a piecewise-linear function with
piece-width H .

The condition given by (55) leads to
∣∣∣∣
log f (t + H) − log f (t)

ωH

∣∣∣∣ � 1.

That is, if f (t + H)/ f (t) = exp(εωH/4), then ε � 1. Therefore, as Corollary 15
shows, the choice of θ in the algorithm enables a decrease of oscillation amplitude
from ≈ f (nH) at step n to ≈ f ((n + 1)H) at step n + 1 (or increase by an
analogous reason). Furthermore, since εωH/4 = εM/4 � 1, the envelope of
f (nH) exp(εω(τ − nH)/4), τ ∈ [nH, (n + 1)H ] is close to a piecewise-linear
approximation of f (τ ), τ ∈ [nH, (n + 1)H ].

In addition, since we use r = f (t + H)
/√

x(t)2 + ẋ(t)2/ω2 but not r =
f (t + H)/ f (t), the approximation error from the previous step will not affect the
current step.

Remark. Conditions (55) and (56) can be satisfied by choosing ω large enough, as
long as log f (t) is C1. This is due to the extreme value theorem and the compactness
of [0, T ]. That is to say, as long as the desired signal is differentiable, it can be
approximated by the envelope of high (enough) frequency oscillations.

Numerical Illustration We arbitrarily chose a function f (t) = (t−6)(t−5)(t−
4)(t − 3)(t + 0.1) + 10 to demonstrate Algorithm 16. f is chosen to be a high
degree polynomial so that its graph is nontrivial, and the constant is chosen such
that f (t) > 0 for all t > 0.

As can be seen from Fig. 1, control is achieved in the sense that the oscillation
amplitude of x(t) approximates f (t) when ω is big enough. The initial condition
is x(0) = 1 and ẋ(0) = 0. Even though f (0) = 46 significantly differs from x(0),
the amplitude

√
x(t)2 + ẋ(t)2/ω2 rapidly converges to f (t) (at rate ∼ 1/ω, and

therefore barely observable in Fig. 1a). Naturally, larger ω (and hence smaller ε)
leads tomore accuratematch. Longer simulation times do not degrade the quality of
the approximation; however they obscure important details of the results (because
f (t) is large and rapidly increasing when t is large), hence we have truncated the
plot at T = 7.

3.3. The Initialization Problem

One drawback of PR is if initially the oscillator contains no initial energy
[x(0) = ẋ(0) = 0 in (52)] then parametric excitation has no effect. A remedy is to
also add a nonparametric perturbation ( f (t) �= 0). For instance, if

A =
[

0 1
−ω2 0

]
, P(t) =

[
0 0

−ω2 cos(2ωt) 0

]
, f (t) =

[
0
δ

]
(δ �= 0),
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Fig. 1. x(t), the solution of the canonical equation with ε and θ chosen by the algorithm pro-
posed in Section 3.2, compared with the graph of f (t). x(t) is obtained obtained numerically
by Velocity-Verlet with timestep 0.1/ω

an exp(εt/4) growth in the solution can be demonstrated by Theorem 1. This
growth is due to the interaction between the small periodic and the nonparametric
perturbations, because if either P(t) or f (t) is zero then the solution will not grow.

4. Application 2: Energy Harvest Via Parametric Super-Resonance and
Coupled RLC Circuits

Consider the effect of time-periodic oscillations in inductance or capacitance on
the dynamic of RLC circuits. For example, suppose that the capacitance fluctuates
according to C̄(1 − η cos(2ωt)), where η � 1. It is known that the dynamic of
such circuits is characterized by parametric resonance if ω ≈ ωn , where ωn is
the intrinsic frequency of the oscillator. It can also be shown that, if ω = ωn and
2RC̄ < η/ω then the energy injected into the circuit by parametric resonance
overcomes the dissipation induced by R, and the energy stored in circuit grows
exponentially (see [37] for early experiments).

This phenomenon could, in principle, be used for energy harvesting. For
instance, the earth-ionosphere behaves like a dielectric cavity with specific resonant
frequencies. This leads to small oscillatory fluctuations in the ambient electromag-
netic field at these frequencies [50]. Since these oscillations can result (through
nonlinear effects) in oscillations of circuit parameters, one natural question is the
possibility of extracting the energy of these oscillations by tuning the intrinsic fre-
quency of the circuit to hit parametric resonance (such questions can be traced back
to Tesla’s investigations on energy harvesting [55]).

The main limitation on the implementation of single parametrically-resonant
circuit for harvesting energy is that the amplitude ε of induced parametrical fluc-
tuations is usually too small to compensate the dissipative effect of the resistance
(2RC̄ωn < η is needed for the compensation). We will use the temporal homog-
enization framework developed here to show that a large number of such circuits
can, under the right coupling, overcome the dissipation.
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1+ 1−

2+ 2−

super−
capacitor

(a) (b)
Fig. 2. Coupled RLC circuits for energy harvest (n = 2 for demonstration). a The circuit. b
Schematic of the supercapacitor. Only conductive layers (electrodes) are shown; insulating
dielectrics between adjacent layers are not drawn

4.1. Coupled RLC Circuits

Consider n RLC circuits as illustrated in Fig. 2a, coupled through the super-
capacitor illustrated in Fig. 2b. This supercapacitor is analogous to a wound film
capacitor (for example, [9]), where alternating conductive layers and dielectric lay-
ers are wound together, and it generates an electromotive force according to the
sum of currents in all circuits, yet keeping these circuits insulated from each other.

Due to the electrostriction property of dielectrics (for example, [65]), the ambi-
ent electric field introduces a small periodic variation in the capacitance of this
supercapacitor. This variation could be further enhanced, for instance, by attaching
positive and negative charges respectively to two edges of electrodes via stiff non-
conducting materials, which will stretch/compress the conducting plates according
to the ambient electric field, and consequently change the capacitance (recall that
parallel-plate conductor has a capacitance proportional to the plate area).

Denote by Ii the current in the i th circuit. Assume the supercapacitor is sym-
metric with respect to permutations of electrodes (this is approximately true if
sufficiently many turns are wound), such that the voltage difference V1 across the
public supercapacitor satisfies

C(t)
dV1
dt

=
n∑

i=1

Ii , (57)

where C(t) = C̄(1 − η cos(2ωt)) for some η � 1. Meanwhile, the voltage dif-
ferences across the capacitor, inductor, and resistor of sub-circuit i respectively
satisfy

Ci
dV2,i
dt

= Ii , Li
dIi
dt

= V3,i , Ri Ii = V4,i .

Kirchoff law of V1 + V2,i + V3,i + V4,i = 0 leads to the following dynamics:
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1

C(t)

n∑
j=1

I j + 1

Ci
Ii + Ri

dIi
dt

+ Li
d2 Ii
dt2

= 0, i = 1, . . . , n.

Remark. The model described here is conceptual. For example, the choice of
constant η and ω is based on the assumption that the ambient electromagnetic
fluctuations are sustained by an infinite energy reservoir. Also, when n is large, it
is an engineering challenge to pack all layers into a supercapacitor.

4.2. Parametric Super-Resonance

For simplicity, consider identical circuits, that is, Ci = C , Li = L , Ri = R.
Let ε = η/(LC̄), then 1/(LC(t)) = 1/(LC̄) + ε cos(2ωt) + O(ε2). Let x =
[I1, İ1, · · · , In, İn], then

ẋ = Ax + εP(t)x + O(ε2), with

A =

⎡
⎢⎢⎢⎣

B D · · · D

D . . .
. . .

...
...

. . .
. . . D

D · · · D B

⎤
⎥⎥⎥⎦ and P =

⎡
⎢⎢⎢⎣

Q Q · · · Q

Q . . .
. . .

...
...

. . .
. . . Q

Q · · · Q Q

⎤
⎥⎥⎥⎦ , where

B=
[

0 1
−1/(LC) − 1/(LC̄) −R/L

]
, D=

[
0 0

−1/(LC̄) 0

]
,

Q=
[

0 0
cos(2ωt) 0

]
.

We will show that, provided ω =
√
1/(LC) + n/(LC̄) − R2/(4L2), the solution

grows exponentially if

ε
n

ω
> 2

R

L
, that is, η

n

C̄ω
> 2R, (58)

which is satisfied when n (the number of coupled circuits) is large enough.

Lemma 17.

Let U =

⎡
⎢⎢⎢⎢⎢⎣

I I · · · I
I −(n − 1)I I · · · I

I I −(n − 1)I . . .
...

...
...

. . .
. . . I

I I · · · I −(n − 1)I

⎤
⎥⎥⎥⎥⎥⎦

, then

U−1 = 1

n

⎡
⎢⎢⎢⎢⎢⎣

I I I · · · I
I −I 0 · · · 0

I 0 −I . . .
...

...
...

. . .
. . . 0

I 0 · · · 0 −I

⎤
⎥⎥⎥⎥⎥⎦

,
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U−1PU =

⎡
⎢⎢⎢⎢⎣

nQ
0

0
. . .

0

⎤
⎥⎥⎥⎥⎦

, and

U−1AU =

⎡
⎢⎢⎢⎢⎣

B + (n − 1)D
B − D

B − D
. . .

B − D

⎤
⎥⎥⎥⎥⎦

.

Proof. Once the form ofU is obtained, the rest can be checked by simple algebra.

�
Lemma 18. Let γ = R/L. If ω =

√
1/(LC) + n/(LC̄) − γ 2/4, then

G
[
e−At P(t)eAt

]
= nU

⎡
⎢⎢⎣

�

0
. . .

0

⎤
⎥⎥⎦U−1, where

� =
[

γ

8ω2
1

4ω2

− γ 2−4ω2

16ω2 − γ

8ω2

]
. (59)

Proof.

U−1G[exp(−At)P(t) exp(At)]U
= G

[
exp

(
−(U−1AU )t

)
U−1PU exp

(
(U−1AU )t

)]
.

Using results in Lemma 17, the above matrix has all 0 block-elements except for
the first diagonal element, which is

� = G[exp(−(B + (n − 1)D)t)nQ(t) exp((B + (n − 1)D)t)].

Note B+(n−1)D =
[

0 1
−1/(LC) − n/(LC̄) −γ

]
, whose eigenvalues are− γ

2 ±ıω.

Standard calculations lead to (59). 
�
Corollary 19. Given x(0) ∈ R

2n\E for some 2n − 1 dimensional linear subspace
E ⊂ R

2n, ‖x(t)‖ is unbounded if and only if ε n
ω

> 2γ .

Proof. Substitution of Lemma 18 in Theorem 1 leads to (as seen in the proof of
Theorem 1, ignoring the O(ε2) term in the equation does not affect the leading
term in the solution):

x(t) ≈ Udiag
[
e(B+(n−1)D)t , e(B−D)t , . . . , e(B−D)t

]

×U−1Udiag
[
eεnt�, I, · · · , I

]
U−1x(0).
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Since eigenvalues of � are ± 1
4ω , real parts of eigenvalues of the above approx-

imate solution operator are exp((− γ
2 ± ε n

4ω )t) and exp(− γ
2 t). The solution will be

dominated by exponential growth if and only if − γ
2 + ε n

4ω > 0, unless U−1x(0)
projects to zero in the direction of the� eigenvector associated with its+ 1

4ω eigen-
value. 
�

Remark. As initial conditions that do not lead to unbounded growth are ofmeasure
zero, in practice it is unlikely that theywill hamper energy harvest. To entirely avoid
this possibility, one can add to the system an ‘ignition’, which is a short period
forcing term (see Section 3.3).

4.3. On the Constitutive Variable Capacitor Equation

Using the equation d
dt (C(t)V1(t)) = ∑n

i=1 Ii instead of (57) to model the
shared supercapacitor leads to similar results, that is an exponential growth of the
solution is achieved when ω =

√
1/(LCi ) + n/(LC̄) − R2/(4L2) and n is large

enough. To sketch this calculation, note the system can be shown to be governed
by

⎧⎪⎨
⎪⎩

V̇1 = (∑
Ii − Ċ(t)V1

)
/C(t)

V̇2i = Ii/Ci

İi = −(V1 + V2i + RIi )/L

,

which canbewritten in canonical form (up toO(η)) by letting x = [V1, V21, I1, · · · ,

V2n, In],

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
C̄

0 1
C̄

· · ·
0 0 1

Ci
0 0 · · ·

− 1
L − 1

L − R
L 0 0 · · ·

0 0 0 0 1
Ci− 1

L 0 0 − 1
L − R

L
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, and

P(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2ω sin(2ωt) 0 cos(2ωt)
C̄

0 cos(2ωt)
C̄

· · ·
0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
0 0 0 0 0 · · ·

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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The following U and U−1 lead to block-diagonal U−1AU (with block sizes of
1, 2, 2, · · · ):

U =

⎡
⎢⎢⎢⎢⎢⎣

α β 0 0 · · ·
γ I −I −I · · ·
γ I . .

.

γ I I
...

... . .
.

⎤
⎥⎥⎥⎥⎥⎦

, and

U−1

⎡
⎢⎢⎢⎢⎢⎣

x y y y · · ·
� z z z · · ·
0 −I/n −I/n −I/n . .

.

0 −I/n −I/n I − I/n −I/n
...

... . .
. −I/n −I/n

⎤
⎥⎥⎥⎥⎥⎦

,

where α = − E21

d2
λ, β =

[
b2
E12

n 0
]
, γ =

[
λ

0

]
,

x = −d2E12

ζλ
, y =

[
b2d2
ζλ

0
]
, � =

[ d2E12
ζ

0

]
, z =

[
E12E21

ζn 0

0 1
n

]
,

with
[
b1 b2

] = [
A12 A13

]
,

[
d1
d2

]
=

[
A21
A31

]
,

E :=
[
E11 E12
E21 E22

]
=

[
A22 A23
A32 A33

]
,

ζ = nb2d2 + E12E21, and λ being an arbitrary nonzero scalar.

Once U and U−1 are explicitly identified, it can be computed that

U−1AU =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 1

Ci

0 − C̄+nCi
C̄ L

− R
L

E
E

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

whose eigenvalue of ω resonates with the parametric perturbation, and that

U−1P(t)U

= 1

C̄ + nCi

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2ωC̄ sin 2ωt 1
λ2ωCin sin(2ωt) − 1

λn cos(2ωt) 0 0 · · ·
2ωλC̄ sin(2ωt) −2ωCin sin(2ωt) n cos(2ωt) 0 0 · · ·

0 0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Then parametric super-resonance can again be demonstrated by temporal homog-
enization.
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B(t)

Fig. 3. Alternative coupled RLC circuits for energy harvest. n = 3 for demonstration; the
shared ferromagnetic core of the inductors is not drawn

4.4. A Preliminary Analysis of Practical Feasibility

The first mode of ambient electromagnetic fluctuations has its peak around
∼8Hz, with an electric field amplitude at the order of 10−3V/m (c.f., static fair-
weather electric field is about 150V/m) [50]. This means ω is fixed andO(1), and
it is reasonable to assume η to be at the order of 10−5 or 10−6. We look for circuit
parameters that satisfy

ω =
√

1

LC
+ n

1

LC̄
− R2

4L2 and η
n

C̄ω
> 2R. (60)

Contemporary technologies can provide compact (super)capacitors [15] and induc-
tors with values ranging from 10−12F to 104F and 10−6H to 1H. Writing L =
ηl [H ],C = ηa[F], C̄ = ηb[F], n = ηN , it is also reasonable to assume R = O(1)
and constraints −σ ≤ l, a, b ≤ σ for some positive parameter σ . Since η � 1,
(60) can be satisfied if leading order terms (in 1/η) match, that is,

min(−l − a, N − l − b) = 2r − 2l and 1 + N − b < r.

This linear programming problem is feasible when σ ≥ 1. We choose to minimize
1+ N −b− r in order to maximize the circuit gain, and then one solution is l = σ ,
a = σ , b = σ/2, N = −σ/2. When σ = 1, this corresponds to parameters:

L = O(η), C = O(η), C̄ = O(
√

η), and n = O(1/
√

η).

When η ∼ 10−6, this design requires the coupling of ∼ 103 circuits to achieve
energy gain.

Although this preliminary analysis gives some indications on the workability
of energy harvesting via super-resonance, it is by far incomplete, and a compre-
hensive feasibility analysis would require addressing possibly difficult engineering
challenges such as (1) identifying workable physical configurations for packing a
large number of layers into a supercapacitor and a large number of circuits around
that supercapacitor (2) keeping the financial cost of the system limited. These inves-
tigations are beyond the scope of this article.
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4.5. Alternative Design

We also note that similar scaling effects can also be achieved by coupling
inductors. See Fig. 3 for an illustrative design. Inductance can be coupled to ambient
magnetic fluctuations if, for instance, the inductors have a ferromagnetic core.
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