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ABSTRACT

Studying newly discovered circumbinary planetary systems improves our understanding of planetary system
formation. Learning the architectural properties of these systems is essential for constraining the different
formation mechanisms. We first revisit the stability limit of circumbinary planets. Next, we focus on eclipsing
stellar binaries and obtain an analytical expression for the transit probability in a realistic setting, where a finite
observation period and planetary orbital precession are included. Our understanding of the architectural properties
of the currently observed transiting systems is then refined, based on Bayesian analysis and a series of tested
hypotheses. We find that (1) it is not a selection bias that the innermost planets reside near the stability limit for
eight of the nine observed systems, and this pile-up is consistent with a log uniform distribution of the planetary
semimajor axis; (2) it is not a selection bias that the planetary and stellar orbits are nearly coplanar (3°), and this
—along with previous studies—may imply an occurrence rate of circumbinary planets similar to that of single star
systems; (3) the dominance of observed circumbinary systems with only one transiting planet may be caused by
selection effects; (4) formation mechanisms involving Lidov–Kozai oscillations, which may produce misalignment
and large separation between planets and stellar binaries, are consistent with the lack of transiting circumbinary
planets around short-period stellar binaries, in agreement with previous studies. As a consequence of (4), eclipse
timing variations may better suit the detection of planets in such configurations.
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1. INTRODUCTION

Investigation of newly discovered circumbinary planetary
systems can provide better understanding of planetary forma-
tion. To date, 11 transiting circumbinary planets have been
discovered, residing in nine planetary systems, including:
Kepler-16b (Doyle et al. 2011); Kepler-34b and 35b (Welsh
et al. 2012); Kepler-38b (Orosz et al. 2012a); Kepler-47b, 47c,
(Orosz et al. 2012b) and 47d (Hinse et al. 2015, J. A. Orosz
et al. 2016, in preparation); Kepler-64b (Kostov et al. 2013;
Schwamb et al. 2013); Kepler-413b (Kostov et al. 2014);
Kepler-453b (Welsh et al. 2015); and Kepler-1647b (Kostov
et al. 2015). Many of them share interesting architectural
features. For instance, the locations of the planets are mostly
near the stability limit, the mutual inclinations between the
planetary orbits and the stellar binary orbits are low, and the
planets preferentially orbit around stars with long stellar orbital
periods.

The architectural properties of these systems reveal impor-
tant clues to the origin of circumbinary planetary systems. For
instance, the observed pile-up of planets near the stability limit
may indicate the dominance of disk migration, as the planets
move toward the instability limit, via disk migration, from their
birth location—which is likely farther away (e.g., Paardekooper
et al. 2012; Marzari et al. 2013; Pierens & Nelson 2013;
Rafikov 2013; Kley & Haghighipour 2014; Bromley &
Kenyon 2015; Silsbee & Rafikov 2015). In addition, the
near-coplanar configuration of the circumbinary planetary
systems around closely separated binary stars is consistent
with theoretical studies of the gravitational torque between
the binary and the circumbinary disk, which produces the
alignment (Foucart & Lai 2013, 2014). Moreover, the
coplanarity is also consistent with the observed alignment of
protoplanetary disks around young binary stars (Rosenfeld
et al. 2012; Czekala et al. 2015, 2016), and with the debris

disks around short-period binaries (Kennedy et al. 2012b). This
may imply a primordial origin of the alignment of their
planetary orbits. Note that 99 Herculis hosts a misaligned
circumbinary debris disk, and the origin of its misalignment
challenges the collisional and dynamical evolution of the
system (Kennedy et al. 2012a).
Some of the architectural features are caused by dynamical

interactions that play critical roles in the origin of the planetary
systems. Hierarchical three-body system dynamics has been
studied extensively in the literature. In the case when the inner
binary contains of a test particle, the eccentricity and
inclination of the inner binary can oscillate, due to the
perturbation of the outer object under the Lidov–Kozai
mechanism (Kozai 1962; Lidov 1962). Including the octupole
order of expansion (third power in the semimajor axis ratio), it
has been shown that the inner orbit can change from a prograde
orbit to a retrograde one, and the eccentricity can be excited
very close to unity (e.g., Katz et al. 2011; Naoz et al. 2011; Li
et al. 2014). In the case when the outer object is a test particle,
which is more relevant to the circumbinary planets, the Lidov–
Kozai oscillations disappear (Migaszewski & Goźd-
ziewski 2011; Martin & Triaud 2016). On the other hand,
multiple equilibria exist when the mutual inclination is high
(Palacián & Yanguas 2006; Verrier & Evans 2009; Farago &
Laskar 2010; Doolin & Blundell 2011). In addition, the orbit of
the test particle is not stable when it is very close to the binary.
Stability limits have been obtained for large-parameter spaces
(e.g., Dvorak et al. 1989; Holman & Wiegert 1999; Musielak
et al. 2005; Doolin & Blundell 2011), and outcomes of the
unstable systems have been investigated (Sutherland &
Fabrycky 2015; Smullen et al. 2016).
In addition to the dynamical effects, selection biases also

influence the observed architectural properties. Thus, correcting
selection biases is crucial when extracting the architectural
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properties from observed circumbinary systems. For instance,
the detection limitation favors planets that are closer to the
stellar binaries, and it is more likely to detect planets that are
coplanar with the eclipsing stellar binaries using the transit
method. Considering selection effects, Armstrong et al. (2014)
studied the abundances and properties of circumbinary systems
extensively, using the approach of population synthesis. They
found that the occurrence rate of circumbinary planetary
systems has a lower limit of 47%, if the mutual inclination
between the planetary orbit and the stellar binary is
isotropically distributed. This implies that the circumbinary
systems are preferentially coplanar, or can be formed much
more easily than the single star systems. However, precession
was neglected in the previous derivation of the occurrence rate,
and it has been shown that precession plays an important role in
the transit probability (Schneider 1994; Martin & Triaud 2015).
In particular, Martin & Triaud (2015) show that, if one takes an
infinite amount of time, the transit probability for a circum-
binary planetary system is larger than that of a single star
system, and the transit probability increases with mutual
inclination. It is not realistic to consider an infinite amount of
observation time, yet the transit probability over a finite
observation time has not been derived analytically. Here, we
revisit the transit probability to derive the transit probability in
a finite observation time and include orbital precession for
planets orbiting eclipsing binaries. We then correct selection
biases using transit probabilities, in order to obtain the
architectural properties of the observed circumbinary planetary
systems. This differs from Martin & Triaud (2014), who
considered selection biases for planets orbiting both eclipsing
and non-eclipsing binaries, using a large number of synthetic
systems based on N-body simulations. Specifically, they found
that the pile-up of the planets near the stability limit is not due
to selection biases, and the coplanarity of the systems may
indicate either a high occurrence rate of circumbinary systems,
or that the coplanarity is not a selection effect. In this article,
we focus on the observed systems, and use Bayesian analysis to
study the selection effects. For instance, the coplanarity is not
degenerate with the occurrence rate of the circumbinary
planetary systems this way.

This article is organized as follows. In Section 2, we revisit
the stability of the circumbinary planets, including high mutual
inclinations between the orbits of the planet and stellar binary.
In Section 3, we provide an analytical expression for the transit
probability, in a finite observational period, as a function of
stellar and planetary orbital parameters. We conclude with
Section 4, wherein we study the circumbinary architecture
corrected from selection biases, using the transit probability.

2. STABILITY LIMIT AS A FUNCTION OF MUTUAL
INCLINATION

The stability of circumbinary systems has been studied (e.g.,
Dvorak et al. 1989; Holman & Wiegert 1999; Pilat-Lohinger
et al. 2003; Musielak et al. 2005; Doolin & Blundell 2011). In
particular, Doolin & Blundell (2011) discussed many interest-
ing features of the parameter space where such systems are
stable, extending mutual inclination between the orbits of the
stellar binary and the planet from 0° to 180°, including
eccentric stellar binaries and different stellar mass ratios,
assuming the planet is massless. It has been found that the
retrograde orbits are more stable than the prograde orbits,
which is true for three-body problems in general. In addition,

there exist striations of instability, likely due to resonances
between the stellar binary and the planet, and there are
pinnacles and peninsulas of unstable regions for the non-
librating and librating regions, respectively, except when the
stellar masses are equal.
The critical semimajor axis, within which the planet is

unstable for the coplanar case, was obtained by Holman &
Wiegert (1999). They performed a large number of numerical
simulations that cover a wide range of stellar binary
eccentricity and stellar mass ratio. For reference, ac is
expressed as the following:
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where e is the stellar binary eccentricity, m = +m m m2 1 2( ) is
the stellar mass to total stellar mass ratio, and ab is the stellar
binary semimajor axis. The expression is obtained by fitting the
results of the numerical simulations, and the uncertainties are
inherent from the fit. Note that this stability limit works only
for the coplanar cases. Because discussions will include the
misaligned cases, in the next sections, here, we first illustrate
the stability limit and the marginally stable parameter space as a
function of the mutual inclination.
To study the stability limit when the planetary orbit is

misaligned, we performed a large number of numerical
integrations. For simplicity, we set the stellar masses to be
one solar mass, the stellar orbit to be circular, and the planet
mass to be a Jupiter mass. We include simulations with
different planetary semimajor axes and the mutual inclinations.
For each planetary semimajor axis and mutual inclination, we
run eight simulations with different planetary orbital phase
angles equally spaced by p 4, and we stop the runs after 105

stellar binary periods. We use a fourth-order symplectic
integrator (see, e.g., Forest 1989; Suzuki 1990; Yoshida
1990; McLachlan & Quispel 2002; Tao & Owhadi 2016) to
obtain the trajectory of the stars and the planets, and we check
that the energy change fraction is sufficiently small (10−8).
Figure 1 shows the results of the simulations. The upper

panel shows the fraction of survived (stable) systems as a
function of initial planetary semimajor axis and mutual
inclination. We record that a system is survived (or is stable)
when there is no collision and ap remains within 3 AU. The
lower panel shows the probability that the change in planetary
semimajor axis is less than 10% of its initial value (d <a a0.1 0)
to illustrate the marginally stable region. We find that, at higher
mutual inclinations, the planetary systems are more stable
overall. This is consistent with the results of Wiegert &
Holman (1997), who studied the stability of planets in Alpha
centauri, and with Doolin & Blundell (2011). Note that
instability islands due to resonances can occur at high mutual
inclination, when the semimajor axis of the planet still remains
outside the coplanar stability limit, and moderate semimajor
axis variations exhibit interesting phase space dependence.
Further analysis on these topics is important, but outside the
scope of this article. Because misaligned orbits are also stable
inside the stability limit, we use the stability limit, as defined in
Equation (1), derived by Holman & Wiegert (1999) for the
coplanar case, for the following sections.
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3. TRANSIT PROBABILITY

Understanding transit probability is important for correcting
selection effects, in order to obtain the architectural properties
of circumbinary planetary systems. Because the circumbinary
systems observed so far only involve eclipsing stellar binaries,
we focus on eclipsing stellar binaries in this article. In this
section, we first derive the analytical expression of the transit
probability for a finite observation period, taking orbital
precession into account. We then check the analytical
expression with numerical simulations.

3.1. Analytical Expression

The configuration of the system is shown in Figure 2, where
we align the x-axis with the line of sight, and set the z-axis to be
in the plane of the angular momentum of the stellar binary and
the line of sight. The axis of z′ is aligned with the angular
momentum of the stellar binary, and the stellar orbit lies in the
plane of ¢ -x y. In other words, by rotating the x-axis and the
z-axis along the y-axis by the angle Δib=90°−ib, one can
separately obtain the x’ axis and the z’ axis, where ib is the line-
of-sight inclination of the stellar orbit. Here, m1 and m2 stand
for the masses of the stars, and mp for the mass of the planet.
The symbol Ω denotes the longitude of ascending node of the

planet with respect to the ¢ -x y plane, f denotes the true
anomaly of the planet, and di denotes the mutual inclination
between the planetary orbit and the stellar binary orbit. Note
that we only focus on eclipsing stellar binaries, and thus,Dib is
very small. In the limit of a circular planetary orbit with
semimajor axis (ap), the x, y, and z components of the
coordinate of the planet can be expressed as the following:

d
d

= D
+ W - W D

x a f i

f f i

sin sin sin

cos cos sin sin cos cos
2

p p ib

ib

( ( ) ( ) ( )
( ( ) ( ) ( ) ( ) ( )) ( ))

( )

d= W + Wy a f f isin cos cos sin cos 3p p ( ( ) ( ) ( ) ( ) ( )) ( )

d
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z a f i
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cos cos sin sin cos sin .
4
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( ( ) ( ) ( ) ( ) ( )) ( ))

( )
With precession, it is difficult todirectly characterize the

parameter space that allows transits. Thus, we separate the
transit criterion into two parts. Specifically, we first use the
geometrical approach to obtain a criterion for the planets to
transit the stellar binary orbit. We then use a probabilistic
approach to estimate how often the planet transits the star. This
differs from Martin & Triaud (2015), who considered only the
first part, deriving an analytic criterion for orbital crossings,
and showed numerically that this guaranteed transits—but only
with infinite observing time.
To cross the stellar orbit, the line-of-sight projection of the

planet is required to lie within that of the stellar orbit.
Specifically, the y-component of the planet position needs to be
smaller than the semimajor axis of the star ( <y ap b,1∣ ∣ ); the x-
component of the planet position needs to be positive; and, in
the limit where the stellar binary is eclipsing (i.e.,Dib is small),
the z-component of the planet position needs to be smaller than
the radius of the star ( *<z Rp ,1∣ ∣ ). In the first order of Δib and
δi, the condition to cross the orbit of m1 is expressed below:

~ W + >x a fcos 0, 5p p ( ( )) ( )

~ W + <y a f asin , 6p p b,1∣ ∣ ∣ ( )∣ ( )

*d~ - W + D + <z a f f i Rcos sin . 7p p ib ,1∣ ∣ ∣ ( ) ( ) ∣ ( )

where = +a a m m mb b,1 2 1 2( ), ab is the semimajor axis of the
stellar binary orbit, ap is the semimajor axis of the planetary

Figure 1. Probability that a system can survive (upper panel) and d <a a0.1 0

(lower panel), as a function of planetary orbital period to stellar orbital period
ratio and mutual inclination. The stellar orbital period is five days, the mass of
the stars equals one solar masses, and the mass of the planet is 0.001 solar
mass. Systems are more stable when the mutual inclination is higher.

Figure 2. The configuration of the circumbinary system, where m1 and m2

stand for the stellar binary, mp stands for the planet, and δi represents the
mutual inclination between the orbits of the planet and the stellar binary.
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orbit, and *R ,1 is the radius of star 1. We assume the orbits are
circular, for simplicity. The expression is interchangeable for
m2. In the first order of a ab p, (5)–(7) can be expressed as:

- < W + <a a f a asin , 8b p b p,1 ,1( ) ( )

* *
d d

- + D
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+ DR a
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f

R a
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sin . 9
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Note that, if * d- + D >R a ip ib,1 ∣ ∣ , the planet cannot transit
the star m1.

Extending to higher δi by substituting δi with disin( ) in
Equations (8)–(9), we obtain a range of Ω that allows the planet
to cross the stellar orbit of m1:
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The difference of f2 and f1 contributes to the range of Ω that
allows the planet to cross the stellar orbit. Note that Ω has two
distinctive regions that allow transit, if
p - >f a a2 asin b p2 ,1( ), and these two regions are connected
if p+ >f a a2 asin b p1 ,1( ).

Next, we take into account orbital precession to estimate the
probability that the planet will cross the stellar orbit over time.
Briefly, orbital precession can increase the transit probability
because it broadens the range of Ω covered, increasing the
likelihood of it entering the window that allows transits.
Because most of the stellar binaries are not highly eccentric, we
take the limit to be when e 0b . The precession timescale
(Tprec) of the planetary orbit then scales with the planetary

orbital period (Pp) as:
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as obtained by Schneider (1994), who considered the
precession timescale when =m m1 2. Farago & Laskar (2010)
derived an equation for the more general case with eccentric
binaries. Note that, when the stellar binary is eccentric, the
precession is more complicated, because the longitude of node
can librate around p 2, when the inclination is high. When
the stellar binary is circular, Ω decreases with time if the
inclination is below p 2, and Ω increases with time if the
inclination is above p 2. We adopt the expression of
Equation (14), for simplicity, in the following analysis; i.e.,
Ω increases/decreases linearly with time. Specifically, the
change in Ω due to precession is denoted as dW = WTprec obs

˙ .
The total range of the node longitude during the observation

time period (Tobs) is dW = DW + WT1 1 obs
˙ .
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The probability to cross the stellar orbit (Pcr,1) for m1 is then:

d p
p

=
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P
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2
. 16cr,1
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We next calculate the probability for the planet to transit the
stars, given that the planet crosses the stellar orbit. It is roughly the
ratio of the relative displacement of the planet and the star, as the
planet crosses to the projected width of the stellar orbit. The
relative displacement depends on the time it takes for the planet to
cross the orbit, which can be expressed as ~ttrans

*p dR v i2 sinp,1( ) ( ), where vp is the orbital velocity of the
planet, and the factor p 2 corresponds to the correction—taking
into account the different impact parameters to cross the star.
The relative velocities of the planet and star depend on whether
they are on the same side of the other star. When the
planet and star are both toward the observer with respect to the
center of mass ( *> >x x 0p ), they are moving in the same
direction, and the relative displacement is roughly: =dl1

* *d p- +t v i v Rcos 2ptrans ,1 ,1( (∣ ∣) ), where *v ,1 is the orbital
velocity of the star, and factor p2 gives the averaged line-of-
sight projected stellar velocity. On the other hand, when the star is
on the other side of the center of mass ( *> >x x0p ), the planet
and star move in the opposite directions. Thus, the relative
displacement is * *d p= + +dl t v i v Rcos 2 2p2 trans ,1 ,1( (∣ ∣) ).
The projected size of the stellar orbit can be expressed as: a2 b,1.
Therefore, the probability that the planet can transit in front of the
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star m1 is roughly:
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Note that the movements of the planet and star enhance the
transit probability. Specifically, the motion of the planet is
important when the mutual inclination is low, because it takes a
long time for the planet to cross the stellar orbits. In addition,
the relative displacement and transit probability are dominated
by the motion of the stars when mutual inclination is high.

During the observation time period Tobs, the planet can cross
the stellar orbit multiple times, and the transit probability
increases as the number of orbit crossing increases. The
maximum number of crossing is T Ppobs , which occurs when
the precession is slow and the node longitude stays in the
window that allows crossing (e.g., when the mutual inclination
is high ~ 90 ). In this limit, the planet crosses the stellar orbit
every time. When the precession is fast, it dominates the
number of stellar orbit crossing times. The number of orbit
crossing is DW WPp1 ( ˙ ), if p - <f a a2 asin b p2 ,1( ), when the
region where Ω allows transit over p2 is connected, and
DW WP2 p1 ( ˙ ) if p - >f a a2 asin b p2 ,1( ), when the regions
where Ω allows transit over p2 are separated. When the
precession is even faster, the node can precess to the range that
allows transit more than once. In sum, the number of stellar
orbit crossings can be expressed as the following:
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Assuming each orbit crossing is independent, the probability to
transit the star m1 at least once is:

*- -P P1 1 . 19n
cr,1 ,1 1( ( ) ) ( )

Equation (19) can be applied to systems involving a faint star,
where only the transit of the primary star can be detected.

Considering transits of both stars, one can obtain the
probability for the planet to transit the two stars at least once:

⎡
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where >m m1 2, because if a planet crosses the orbit of m2, it
can also cross the orbit of m1. For simplicity, we assume that, if

the planet crosses both stellar orbits, the transit events are
independent. Note that the independence approximation does
not generally hold, because the stars are 180° out of phase with
each other, and each orbit crossing has a roughly fixed phase
difference between each other, due to the periodic nature of the
stellar orbits. However, we illustrate in the following section
(Section 3.2) that the transit probability obtained using the
independence approximation agrees well with the numerical
results.
In addition, one can also calculate the average number of

transits given that a system transits. The average number of
transits can help determine the likelihood to detect the transit
events, since it’s more likely to detect the planet when the
transit number increases. Specifically, the averaged number of
transits can be expressed as the following:

* *= +N n P n P P P , 21transit 2 ,2 1 ,1 cr,1 cr,2 ( )

Here, similar to Equation (20), we assume >m m1 2. As shown
in the following Section 3.2, the analytical expression agrees
with the numerical results—except at low mutual inclination,
where the independence approximation causes the averaged
number of transits to be larger than the numerical results.
Specifically, the expected number of transits differ within a
factor of two (see more discussions in section Section 3.2).

3.2. Numerical Comparison

To test how well the analytical expression predicts the transit
probability, we compare the analytical results with the
numerical transit probabilities obtained from numerical simula-
tions. We include three sets of planetary systems for
illustration: planetary systems with equal-mass stellar binaries
with line-of-sight inclination at 90° (Section 3.2.1), planetary
systems with eclipsing equal-mass stellar binaries (ib near—but
not exactly—90°; cf., Section 3.2.2), and the observed
planetary systems with un-equal mass stellar binaries in
eccentric orbits around eclipsing binaries (Section 3.2.3).

3.2.1. Equal-mass Stellar Binaries Along Line-of-Sight

In this section, we consider the transit probability for
planetary systems composed of two solar-type stars in a
circular orbit, surrounded by planets with different semimajor
axes and mutual inclinations. The transit probability depends
sensitively on the mutual inclination between the stellar orbit
and the planetary orbit. Thus, we first check the analytical
results against numerical results that include different mutual
inclinations. In this section, we set the stellar binary to be
aligned with the line-of-sight first; we relax this assumption in
the next section (Section 3.2.2). Specifically, for each mutual
inclination, we run 1000 numerical simulations with planetary
true anomaly ( f ) and longitude of ascending node (Ω)
randomly drawn from a uniform distribution. We record the
number of systems in which the planet transits in front of the
stars to obtain the transit probability for each mutual
inclination.
The upper panel of Figure 3 shows the probability that either

of the binary stars will transit at least once in one year, when
the orbital period of the stellar binaries is two days; the lower
panel shows the case when the orbital period is five days. The
solid lines represent the results of the analytical expression we
derived in Section 3.1 (see Equation (20)), and the crosses are
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the numerical results. The different colors represent the
different planet-to-stellar semimajor axis ratios. The blue
crosses represent the probability when the planetary semimajor
axis is 2.4 times that of the stellar binary, where the critical
semimajor axis for stability is~ a2.4 b in these cases, according
to the stability limit by Equation (1) (Holman & Wiegert 1999).
The purple crosses represent the case when =a a 5p b , and the
yellow crosses represent the case when =a a 10p b . For all the
cases included here, the analytical results agree very well with
the numerical results. In addition, different from the case with
an infinite amount of observation time, where Martin & Triaud
(2015) found that the transit probability increases as the mutual
inclination increases, the transit probability decreases as the
mutual inclination increases in the finite observation time case,
when = i 90b .

The dashed lines in Figure 3 represent the case when we
ignore orbital precession. At low mutual inclinations, the
precession timescale is shorter, and the parameter space that

allows transit increases. Therefore, at lower mutual inclina-
tions, the transit probability is much higher when one includes
orbital precession. This agrees with Martin & Triaud (2015). At
~ 90 , the precession time is long, and the results with and
without orbit precession become similar. Moreover, the
precession timescale increases steeply with the planetary
orbital period. Thus, when the semimajor axis of the planet is
larger, the difference between the cases with and without
precession also becomes smaller.
The number of transits is important for planet detection,

because the more the planet transits the stars, the more likely it
can be detected. For instance, all detected circumbinary
systems have had at least three primary and/or secondary
transits upon publication. To investigate this, we record the
number of transits for each system in the simulation, to obtain
the average number of transits for each mutual inclination—
given that the planet transits at least once. The results are
shown in Figure 4. Similar to Figure 3, the upper panel shows
the case when the planet orbits a circular two-day stellar binary

Figure 3. Upper panel: transit probability in one year for circumbinary planets
surrounding a P=2 day stellar binary, as a function of di. Lower panel: transit
probability for planets surrounding a P=5 day stellar binary, as a function of
di. The solid lines indicate the analytical results, and the crosses are the
numerical results. The dashed lines represent the case without precession. The
analytical results agree well with the numerical simulation, and the transit
probability is greatly under-predicted without precession.

Figure 4. Upper panel: average number of transits, given that the system
transits at least once, surrounding a P=2-day stellar binary, as a function of
di; lower panel: average number of transits, given that the system transits at
least once, surrounding a P=5-day stellar binary, as a function of di. The
analytical expression over-estimates the number of transit within a factor of
two, at low mutual inclinations.
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with solar masses and solar radii, and the lower panel shows the
case when the planet orbits a circular five-day stellar binary.
We also include planets with three different semimajor axes
( =a a2.4p b, =a a5p b, and =a a10p b) represented by differ-
ent colors. As expected, the average number of transits is
smaller when the planetary orbit is farther from the stellar
binary—where the range of node longitude that allows transits
is smaller, and the orbital period is longer. Interestingly, the
average number of transits is larger when the mutual inclination
is around ~ 90 . This is because the precession time is long
when the mutual inclination is higher, and the longitude of
node will stay longer in the range that allows transits, which
leads to a higher average number of transits for planetary
systems that transit at least once.

Comparing the analytical results (solid lines; Equation 21)
with the numerical results (crosses), Figure 4 shows that, at low
mutual inclinations, the analytical expression systematically
leads to a larger average number of transits than the numerical
results. This is because the transit events of the two stars are not
independent, as assumed in the analytical derivation. Because
the two stars are 180° out of phase with each other, the
likelihood for both of the stars to transit is reduced. This
reduction is important when the mutual inclination is lower,
where *P or,1 2 is so large that the likelihood for the two stars to
both transit is high—assuming that the transits are independent.
Because the reduction may change a double transit to a single
transit during one planetary orbit period, it can, at most,
decrease the average number by a factor of two. Thus, as
shown in Figure 4, the average number of transits from the
analytical expression is consistent, within a factor of two, with
the numerical results.

To illustrate the distribution of the number of transits,
Figure 5 shows the histogram of the number of transits for the
circumbinary planetary systems with a five-day stellar orbit,

and a planet-to-stellar semimajor axis ratio of five. Each panel
corresponds to a different mutual inclination (di), and we
include 1000 systems with random orbital phases to obtain the
results in the histogram. The widths of the bins are unity, and
the number of systems that transit at least once (Nt) is shown in
the title of each panel. The yellow solid line represents the
average number according to the analytical expression (see
Equation (21)).
The results in Figure 5 can be understood from geometrical

interpretations. Specific to this case, the planet period is
roughly 56 days; in one year, the planet orbits 6.5 times. Thus,
the maximum number of transits is ´ + =2 6 2 16( ) times,
where the planet transits both stars before and after the full
orbits, agreeing with the numerical results shown in Figure 5.
When the mutual inclination is low ~ 0 , the planet transits the
stars every orbit. Because the stars may overlap in projection
during the transit, the minimum number of transits is six.
Moreover, the average number of transits peaks around
´ =2 6 12 and ´ =2 7 14 times, when the mutual inclina-

tion is 0 or 180°, as shown in Figure 5. At high mutual
inclinations, the histograms show that the planet still has a high
probability to transit at least twice; thus, it is unlikely to miss
the transits. The average number of transits is symmetric with
respect to 90°, and the deviation from this symmetry is due to
the random fluctuations.

3.2.2. Eclipsing Equal-mass Stellar Binaries

Because the stellar binaries do not need to be aligned at
= i 90b in order to eclipse, we also consider the case when ib

near—but not exactly—90°. This is very different from the
case when = i 90b , especially for low di. Specifically, the
planet cannot transit the stars when the mutual inclination

*d < = D - D +i i i a i R aasin sinp c b b b p, ,1 ,1 ,1∣ ∣ [( ) ], where

Figure 5. Distribution of the number of transits in one year. The planetary semimajor axis is set to be five times that of the stellar binary ( =a a 5p b ), and the stellar
binary period is five days * =P 5 days. Each panel corresponds to a different mutual inclination, and the number of systems that transit at least once is shown in the
title of each panel.
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D = - i i90b b , as mentioned in Section 3.1. Considering the
transit of both stars, =P 0transit when d <i i imin ,p c p c, ,1 , ,2[ ].

To compare the analytical expression of the transit
probability with numerical results, we set the binary star to
be Sun-like, in a circular orbit, with orbital periods of two and
five days; we simulate the case when the planet semimajor axis
is set to be =a a2.4p b and =a a5p b, similar to Section 3.2.1.
The critical line-of-sight inclination for the stellar binary to
eclipse is = = i R a2 13 .7c b when the stellar binary is in a
two-day orbit, and = = i R a2 7 .4c b when the stellar binary
is in a five-day orbit. To include different stellar inclinations,
we set ib=ic, =i i 2b c and =i i 3b c separately. The results
are shown in Figure 6.

Figure 6 shows the transit probability over one year. The
numerical results are indicated by crosses, and the analytical
results are represented by the solid lines. Note that, when

=a a 2.4p b , the planet can still transit when di is smaller than
the critical value. This is because the minimum separation
rp,min is smaller than the semimajor axis of the planet, ap,
because the planetary orbit is not circular and the semimajor
axis can vary from its initial value due to the perturbation of the
stellar binary. Thus, the analytical results do not agree well
with the numerical results when =a a 2.4p b . The discrepancy
is smaller when Dib∣ ∣ is smaller. In addition, Figure 6 shows
that, when di is large, the transit probability approaches the
results when ib is set to be 90°.

It was found by Martin & Triaud (2015) that, given an
infinite amount of time, the transit probability of circumbinary
planets is higher than that of planets orbiting a single star.
However, this is not always true for a finite observation time,
especially when the total observation time is very short. For
instance, the precession of the planetary orbit is faster for the
circumbinary planets, and allows a larger parameter space for
the planet to cross the stellar orbit—yet the planet may not
transit the star when it crosses the binary orbit. Specifically, the
probability to transit a single star is *=P R ap for a circular
planetary orbit (Borucki & Summers 1984). For planets around
a five-day orbital period stellar binary at =a a 2.4p b , the one-
month transit probability of the circumbinary planets is higher
than the case where we substitute the stellar binary with a
single solar-type star, where the probability to transit is
= =P R a 0.027p . However, at =a a 5p b , the transit

probability of the circumbinary planets in one month is lower

than that orbiting a single solar-type star when the mutual
inclination between the planet and the binary star is high
( 50 ). When the total observation time is increased to 60
days, the probability to transit is lower for the single-star case,
even at =a a 5p b for all di. This suggests that, for the TESS
mission, some of the circumbinary planets may have lower
transit probabilities than those of their counterpart planets
around single stars.

3.2.3. Observed Circumbinary Planets

To test the analytical expression when the stellar binaries are
composed of stars with different stellar masses and in eccentric
stellar orbits, we numerically obtain the transit probability for
the observed circumbinary planets, and compare the analytical
results with the numerical simulation. In this section, we allow
the stellar inclination ¹ i 90b . The properties of the circum-
binary planets are listed in Table 1. Most of the planetary orbits
are nearly circular, except Kepler-47c. However, the eccen-
tricity of Kepler-47c is quite uncertain. Thus, for simplicity, we
set the planetary orbits to be circular.
Note that Hinse et al. (2015) studied the possibility of a third

circumbinary planet in Kepler-47, based on a single transiting
event, and put an upper limit in the semimajor axis of the third
planet by analyzing the transit duration. We exclude the third
planet in our calculations, because the orbital parameters of this
object are still largely uncertain.
For each planetary system, we use the observed properties

listed in Table 1, and vary the mutual inclination between the

Figure 6. Probability that a planet transits at least once in one year, as a
function of di, when =a a2.4p b (left panels) and when =a a5p b (right panel).
The crosses represent the numerical results, and the solid lines represent the
analytical results. The analytical expression does not fit well when =a a2.4p b,
because the planetary orbit is no longer circular due to the strong perturbation
of the stellar binary.

Figure 7. Probability that a planet transits at least once during the observation
interval, as a function of di (upper panel) and a ap c (lower panel) for the
observed transiting systems. The crosses represent the numerical results, and
the solid lines represent the analytical results. The analytical results agree quite
well with the numerical results.
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planetary and stellar orbits—or the planetary semimajor axis—
to obtain the transit probability, as a function of the mutual
inclination or the planetary semimajor axis. We then compare
the analytical and numerical results for different mutual
inclinations and planetary orbital semimajor axes.

The detection periods for the different systems vary.
According to the discovery papers (Doyle et al. 2011; Orosz
et al. 2012a, 2012b; Welsh et al. 2012, 2015; Kostov et al.
2013, 2014; Schwamb et al. 2013; Kostov et al. 2015), the
circumbinary systems are detected using different number of
Kepler observation quarters; thus, the transits occur in different
total time intervals. Therefore, we set the integration time to be
600, 671, 671, 967, 1050.51, 967, 1340, 1470, and 1470 days,
respectively, for Kepler-16, Kepler-34, Kepler-35, Kepler-38,
Kepler-47, Kepler-64, Kepler-413, Kepler-453, and Kepler-
1647, in the numerical simulations, as shown in Table 2. In
addition, the secondary stars are very faint in Kepler-38,
Kepler-47, Kepler-64, Kepler-413, and Kepler-453, where only
the transit of the primary star is detectable. Thus, in the
numerical simulations, we only take into account the transits of
the primary stars for these systems.

The upper panel of Figure 10 shows the probability to transit
both of the stars or the primary star during the different
observation interval, as summarized in the paragraph above.
We vary the mutual inclination ranges from 0° to 180°. The
crosses represent the results from numerical simulations, and
the solid lines represent the analytical results. It is shown that
the analytical results are consistent with the numerical results
for the cases considering the transit of both stars as well as the

transit of only the primary stars. The planet still has a high
probability to transit when the mutual inclination reaches ~ 5 .
Note that, at high inclinations, the ascending node librates; this
may introduce a discrepancy between the numerical results and
the analytical results, as discussed by Martin & Triaud (2015).
In addition, planets with higher mutual inclination (∼1°–3°)
may be more likely to transit, for systems with large Dib∣ ∣, as
pointed out by Martin & Triaud (2015).
The lower panel of Figure 10 shows the probability to transit

at least once in the observational interval, as a function of the
planetary semimajor axis to the stability ratio. We set the
minimum planetary semimajor axis to be the critical semimajor
axis, beyond which the planet is stable (from Equation 1) and
we set the maximum semimajor axis to be that corresponding
to a four year orbit. Overall, the analytical results (solid lines)
are also consistent with the numerical results (crosses). The
numerical probability are used in Section 4to derive many
properties of the architecture of the circumbinaries.

Table 1
Properties of Observed Transiting Circumbinary Planets

m M1( ) m M2 ( ) * R R,1( ) * R R,2 ( ) a aub ( ) eb m Mp J( ) R Rp J( ) a aup ( ) d i ( ) ep ib ( )
Kepler 16ba 0.69 0.20 0.65 0.23 0.22 0.16 0.33 0.75 0.70 0.31 0.0069 90.34
Kepler 34bb 1.05 1.02 1.16 1.09 0.23 0.52 0.22 0.76 1.09 1.86 0.18 89.86
Kepler 35bc 0.89 0.81 1.03 0.79 0.18 0.14 0.13 0.73 0.60 1.07 0.042 90.42
Kepler 38bd 0.95 0.25 1.76 0.27 0.15 0.10 <0.38 0.39 0.46 0.18 <0.032 89.27
Kepler 47be 1.04 0.36 0.96 0.35 0.084 0.023 0.022–0.031 0.27 0.30 0.27 <0.035 89.34
Kepler 47cf 1.04 0.36 0.96 0.35 0.084 0.023 0.050–0.072 0.42 0.99 1.16 <0.41 89.34
Kepler 64bg 1.53 0.41 1.73 0.38 0.17 0.21 <0.531 0.56 0.63 2.81 0.054 87.36
Kepler 413bh 0.82 0.54 0.78 0.48 0.10 0.037 0.21 0.40 0.36 4.07 0.12 87.59
Kepler 453bi 0.93 0.19 0.83 0.21 0.18 0.051 0.00031 0.56 0.79 2.30 0.038 90.28
Kepler-1647bj 1.22 0.97 1.79 0.97 0.13 0.16 1.52 1.08 2.72 2.99 0.058 87.92

Notes.
a Data obtained from Table1 of Doyle et al. (2011). Here, ap differs from Martin & Triaud (2015), who set =a 0.71 aup , and di is obtained from Table1 of Martin &
Triaud (2015).
b Data obtained from Table1 of Welsh et al. (2012). Here, *R ,2 differs from Martin & Triaud (2015), who had a typo and set * = R R0.19,2 in their Table 1; di is
also obtained from Table1 of Martin & Triaud (2015).
c Data obtained from Table1 of Welsh et al. (2012), with di obtained from Table1 of Martin & Triaud (2015).
d Data obtained from Table6 of Orosz et al. (2012a), where m2 and *R ,1 differ from Martin & Triaud (2015), who set them to be M0.27 and R1.78 separately. In
the numerical simulation, mp is set to be 0.38 MJ. The results are not sensitive to the planetary mass, because m mp 1,2.
e Data obtained from Table 1 and the main text of Orosz et al. (2012b). We adopt =m M0.031p J for numerical simulation. The results are not sensitive to the
planetary mass, because m mp 1,2. Our m2, *R ,1, and *R ,2 differ from Martin & Triaud (2015), who set m2 to be M0.46 , *R ,1 to be 0.84 Re, and *R ,2 to be 0.36 Re.
f Same as K-47b, we obtain data from Orosz et al. (2012b). We set =m M0.072p J for numerical simulation. The results are not sensitive to the planetary mass,
because m mp 1,2.
g Schwamb et al. (2013) and Kostov et al. (2013). The results of both studies are consistent with each other. For the simulations, we use the results of Schwamb et al.
(2013), and set =m M0.531p J in the numerical simulation. Our *m ,1, *m ,2, *R ,1, *R ,2, ab, and ap all differ from Martin & Triaud (2015), who set * =m 1.50,1 ,

* =m 0.40,2 , * =R 1.75,1 , * =R 0.42,2 , ab=0.18, and ap=0.65.
h Data obtained from Table 4 of Kostov et al. (2014). Our *m ,2 and di differ from Martin & Triaud (2015), who set * = m M0.52,2 and d = i 4 . 02.
i Data obtained from Table 3 of Welsh et al. (2015). Note that mp is highly uncertain, because = m M0.00031 0.050p J. Our ap differs from Martin & Triaud (2015),
who set it to be 0.93 AU.
j Data obtained from Table4 of Kostov et al. (2015).

Table 2
Integration Time (Days) of the Observed Transiting Circumbinary Planets

Kepler 16 Kepler-34 Kepler-35 Kepler-38 Kepler-47

600 671 671 967 1050.51

Kepler-64 Kepler-413 Kepler-453 Kepler-1647

967 1340 1470 1470
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4. CIRCUMBINARY PLANETARY ARCHITECTURE

The architectures of the circumbinary planetary systems
provide important clues on the formation of planetary systems.
In this section, we focus on the observed transiting circumbin-
ary systems and study their orbital properties. To accurately
determine the role of selection bias, we use the transit
probability directly from numerical integrations. Note that, in
addition to transits, another indicator of circumbinary planets is
a variation in the eclipse timings (ETVs). This is noticeable in
roughly half of the Kepler sample, and may introduce a
detection bias that we have not considered. This approach
differs from Armstrong et al. (2014) and Martin & Triaud
(2014), who studied the abundance of circumbinary planetary
systems using population synthesis.

4.1. Distribution of ap

It has been found that most of the innermost transiting
circumbinary planets reside near the stability limit, close to the
stellar binary (Armstrong et al. 2014). This may indicate the
dominance of migration during planet formation. However, this
may also be due to selection effects, because close-in planets
admit larger orbital parameter spaces which allow transits, and
thus are more likely to be detected. Using population synthesis,
Martin & Triaud (2014) found that selection biases alone
cannot account for the pile-up near the stability limit. Recently,
Kepler-1647 was discovered to orbit far from the stability limit
(Kostov et al. 2015). In this section, we consider multiple
semimajor axis distributions, and include the newly discovered
Kepler-1647 to study the pile-up of planets near the stability
limit, using a Bayesian approach to take the selection bias into
account.

To take selection effects into account, we require planets to
transit at least twice to be detected. We then study the
significance of the pile-up, using a hypothesis test. Specifically,
our null hypothesis is that the distribution of the detected
planetary semimajor axis follows the conditional probability
distribution of the semimajor axis, given that the planets transit
at least twice (P a ttp 2( ˜ ∣ )), where tt2 stands for the event that a
planet transits at least twice. Next, we calculate the probability
that the planetary semimajor axis is smaller than the observed
value. If this probability is very small, it rejects the null
hypothesis and indicates that the reason the planet locates near
the stability limit is not due only to selection effects. Using the
Bayesian approach, P a ttp 2( ˜ ∣ ) ( =a a ap p c˜ ) can be expressed as
the following:

ò
=

¢ ¢ ¢
P a tt

P tt a P a

P tt a P a da
, 22p

p p

a

a2
2

2
p

p

min

max
( ˜ ∣ )

( ∣ ˜ ) ( ˜ )

( ∣ ) ( )
( )

( ˜ )

( ˜ )

where =a 1p,min˜ for stability purposes, and ap,max˜ corresponds
to orbital periods equal to the total time of detection obtained
from the discovery papers, as summarized in the beginning of
this section.

Here, P tt ap2( ∣ ˜ ) stands for the probability to transit at least
twice across different planetary semimajor axes, ap˜ . This
probability can be obtained using the analytical expression or
numerical simulations, as described in the previous section. We
use the numerical values directly for the following analysis.
Here, P ap( ˜ ) is the prior of ap˜ , and we assume a uniform
distribution for the following reasons. First, the signal-to-noise
level is important in the detection of the circumbinary planets.

In particular, the signal-to-noise level (S/N) of the transit
depends on the distance between the planet and the stellar
binary:

µs n n t . 23tr dur ( )

Here, ntr stands for the number of transits, and tdur is the transit
duration time. The transits of the same circumbinary system
can be very different, depending on the relative velocity
between the star and the planet during the transits. Thus, each
transit needs to be resolved separately. Therefore, µs n tdur .
The explicit expression for the transit has been derived by
Kostov et al. (2014), where the dependence on ap is weak, and
the duration time increases when the planet-star distance
increases—assuming the impact parameter is independent of
ap, because the dependence of the impact parameter on ap is not
trivial, especially when D ¹ 0ib . Thus, it is easier to detect the
planet when it is farther away, in terms of S/N level. To obtain
the lower limit constraint (maximum value of

<P a a ttp p,obs 2( ˜ ˜ ∣ )) on the pile-up near the stability limit, we
use a uniform prior where = -P a a a1p p pmax min( ˜ ) (( ˜ ) ( ˜ ) ).
Second, note that Armstrong et al. (2014) simulated the
recovery rate of transit detection for circumbinary systems, and
showed that the recovery rate decreases mildly with orbital
period, based on simulations with =P P10.2p b and Pp=300
days. However, a detailed scaling was not included. The
decrease of the detection probability as a function of planetary
distance may be inherited in the detection algorithm, where a
larger number of the transits makes it less likely to miss the
transits. Because the recovery rate only decreases mildly, and
no detailed scaling as a function of ap is available yet, we do
not take this into account here.
The cumulative distribution of ap˜ , given that the planet

transits twice, for the observed innermost planet is shown in
Figure 8. The crosses represent the observed results. Except for
the newly discovered Kepler-453b and Kepler-1647b, which
have a large probability that ap˜ is smaller than the observed
value, most of the planets are moderately close to the stability
limit—with probability 40%. However, these probabilities
are not small enough to reject the null hypothesis.
Because most of the innermost planets (except Kepler-

1647b) have < <P a a tt 50%p p,obs 2( ˜ ˜ ∣ ) , the collective feature

Figure 8. Cumulative distribution function of the scaled semimajor axis
( =a a ap p c˜ ), given that the planet transit at least twice. The crosses represent
the observed value of the innermost planets for each system. Except for Kepler-
1647b and Kepler-453b, the probability that the scaled semimajor is smaller
than the observed value is50%.
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of these systems may suggest that there exists a pile-up near the
stability limit. To investigate their collective behavior, we
designed a numerical hypothesis test. Specifically, we take all
the observed transiting circumbinary systems together, and use
the averaged ap˜ (á ñap˜ ) as a statistic to test the null hypothesis
that ap˜ follows P a ttp 2( ˜ ∣ ) according to Equation (22) for each
system. Specifically, if, under the null hypothesis, the observed
á ñap˜ or the values smaller than that have a very small
probability (<5%), we reject the null hypothesis, and we claim
that there is likely a pile-up of planets near the stability, after
taking into account selection effects.

We numerically convolve the distribution of ap˜ for all the
systems, in order to obtain the distribution of á ñap˜ , and the
result is represented by the blue lines in Figure 9. Excluding
Kepler-1647, the probability that the averaged ap˜ is smaller
than the observed value is very small (2.69%), suggesting that
there is likely a pile-up after considering the selection effects.
This is consistent with the population synthesis study by Martin
& Triaud (2014). However, including Kepler-1647, the
probability is much larger (reaching ~62%) indicating that
the null hypothesis cannot be rejected. There are two
possibilities: if Kepler-1647 shares the same distribution as
the other nine systems, there is likely no pile-up of planets near
the stability limit; if Kepler-1647 is an outlier of this sample,
which follows a different semimajor axis distribution, then
there is likely a pile-up for some population of the
circumbinary planetary systems. More observations of the
transiting circumbinary systems can help distinguish this. Note
that the probability only differs within a factor of two, if we
take transits of both stars into account and integrate over four
years for all the observed systems.

The distribution of planetary periods for single star systems
has been studied in the literature (Winn & Fabrycky 2015). For
instance, for smaller-sized planets ( ÅR1 4– ) with a period range
of 20–200 days, Silburt et al. (2015) have found that the
planetary period follows a log-uniform distribution, where

~ µ -dN da ap p
1, consistent with Youdin 2011; Howard

et al. 2012; Fressin et al. 2013; and Petigura et al. 2013. For
larger-sized planets ( ÅR4 8– ), the probability density can be
expressed as µdN d P Plog p p

0.7 (Dong & Zhu 2013), where
the semimajor axis distribution is nearly uniform

~ µdN da ap p
0. From radio velocity studies, Cumming et al.

(2008) obtained that µdN d P Plog p p
0.26, where

~ µ -dN da ap p
0.61 for planet mass> M0.4 J , and orbital period

<2000 days. Next, we check whether the circumbinary
planetary systems may follow distributions to the planets
around single stars, and whether this, in addition to the
selection effect, can explain the observed pile-up.
Using a log-uniform distribution as a prior, the results on the

probability density function of á ñap˜ are shown by the red lines
in Figure 9. Excluding Kepler-1647, the probability that á ñap˜ is
smaller than the observed value is 14%; including Kepler-1647,
the probability that á ñap˜ is smaller than the observed value
91.6%. Both cases cannot rule out the hypothesis that the
planetary period follows a log-uniform distribution, suggesting
that there is no additional pile-up if the circumbinary planets
share the log-uniform period distribution, because the smaller-
sized planets orbit single stars. The green lines in Figure 9
show the case when the prior follows ~ µ -dN da ap p

0.61˜ ˜ . The
probability that á ñap˜ is smaller than the observed value is 8.1%,
excluding Kepler-1647, and is 83.6% including Kepler-1647.
Neither of the cases rule out the hypothesis that the
circumbinary planetary system follows a distribution
( µdN d P Plog p p

0.26) similar to the planets around single
stars, obtained from the RV measurements by Cumming et al.
(2008). This also suggests that the pile-up is consistent with
this period distribution and these selection effects. On the other
hand, the circumbinary planets do not favor the period
distribution of larger planets around single stars
( µdN d P Plog p p

0.7), obtained by Dong & Zhu (2013), where
selection effects alone cannot explain the pile-up near the
stability limit.

4.2. Coplanarity

The observed transiting circumbinary planets all have small
mutual inclinations between their planetary orbits and the
stellar binary (as shown in Table 1). This may be primordial,
because the observed circumbinary protoplanetary disks are
also aligned with the stellar orbit within ~ 3 (e.g., Czekala
et al. 2016). However, this may also be due to selection effects,
because systems with near-coplanar configurations are more
likely to be observed via the transit method. To test whether the
coplanarity is only a selection effect, and to put a constraint on
the mutual inclination distribution, we identify the probability
distribution of the mutual inclination that is consistent with the
observations, while taking into account the selection bias.
Similar to our study on the distribution of planetary

semimajor axes in the previous section, we require the planet
to transit at least twice for a robust detection, and our null
hypothesis is that the distribution of the observed mutual
inclination follows the conditional probability distribution,
given that the planet transits at least twice ( dP i tt2( ∣ )), where di
is the mutual inclination, and tt2 represents the event that a
planet transits at least twice. If the probability of that the mutual
inclination being smaller than the observed value is<5% (i.e.,
very small), it rejects the null hypothesis and it indicates that
the mutual inclination follows a distribution with a smaller
spread than the prior. Specifically,

ò
d

d d

d d
=

= ¢ = ¢ ¢
¢=

¢=
P i tt

P tt i P i

P tt i i P i i di
, 24

i

i2
2

0

180
2

( ∣ ) ( ∣ ) ( )

( ∣ ) ( )
( )

Figure 9. Probability distribution function of the mean of a ap c, for the
innermost planets in the observed transiting systems. The left panel represents
the case with Kepler-1647b, and the right panel represent the case without
Kepler-1647b. The solid black lines indicate the observed values. The different
colored lines represent the case with different prior distribution. Excluding
Kepler-1647b, the probability that a ap c is smaller than the observed value is
very small, indicating that the pile-up near the stability limit is not due to
selection effect—if the prior is uniform in a ap c.
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where dP tt i2( ∣ ) can be obtained from the analytical approach.
In the following analysis, we directly use results from the
numerical simulations described in Section 3.2.3.

Assuming an isotropic distribution as the prior
( d =P i isin 2( ) ), the cumulative distribution of dP i tt2( ∣ ) is
shown in Figure 10, where the crosses represent the observed
mutual inclination. It shows that the probability that the mutual
inclination is smaller than the observed value is very small
(1%). Thus, it is highly unlikely that the observed coplanarity
of the systems is only due to selection effects. This suggests
that the observed circumbinary planets are likely formed near
the orbital plane of the stellar binary.

We next use different prior distributions to further
investigate the distribution of the mutual inclination. We
assume that the prior of the mutual inclination follows a Fisher
distribution ( d kf i( ∣ )), also known as a p=3 von Mises–Fisher
distribution, which is a probability distribution of the two-
dimensional sphere in three-dimensional space. This is similar
to the model of the spin–orbit misalignment distribution
discussed in the literature (e.g., Fabrycky & Winn 2009; Li
& Winn 2016). Specifically,

d
k

k
d=k

k df i e i
2 sinh

sin , 25icos( ) ( )

where the concentration parameter κ controls the spread in
mutual inclination. For large κ, dkf i( ) approaches Rayleigh
distribution with width s k -1 2. When k  0, the distribu-
tion is isotropic.

For large κ, the prior distribution of the inclination
concentrates in the near co-planar regime, and the probability
of the mutual inclination to be smaller than the observed values
may be50% for many of the observed systems. In such cases,
the collective behavior of the observed systems may still
indicate a narrower spread. Therefore, similar to our study on
the semimajor axis, we design numerical hypothesis tests and
use the average mutual inclination as a statistic to select the
distribution that fits well with the observation. Specifically, the
null hypothesis is that di follows the distribution of di,
according to the conditional probability in Equation (24) for
each system. The null hypothesis can be rejected if the
observed average di, or values smaller than that, have a very
small probability (<5%) under the null hypothesis.

We include four prior distributions, with four different κ:
k = 100, k = 300, k = 500, and k = 700. We calculated the
convolved distribution of the observed systems to obtain the
distribution of dá ñi . The results are shown in Figure 11. The
solid black line indicates the observed averaged mutual
inclination. For the four prior distributions, the averaged
mutual inclinations are 7 .2, 4 .1, 3 .2, and 2 .7, and the standard
deviations are 3 .8, 2 .2, 1 .7, and 1 .4. The probability that the
average mutual inclination is smaller than the observed value is
´ -5 10 %4 , 0.19%, 2.2%, and 8.8% for k = 100, k = 300,

k = 500, and k = 700, respectively. Thus, the hypothesis can
be rejected when k = 100, k = 300, and k = 500. In addition,
it indicates that the mutual inclination distribution is more
consistent with the observation for k > 500, corresponding to
an average mutual inclination of  3 .
The near co-planar ( 3 ) feature of the circumbinary

planetary system is consistent with the coplanarity of the
multi-transiting planetary systems with a single star (multis),
where the study of transit duration ratios (Fang & Margot 2012;
Fabrycky et al. 2014) and population synthesis studies
(Moriarty & Ballard 2015; Ballard & Johnson 2016) suggest
that most of the multis have mutual orbital inclinations less
than~ 3 . Moreover, the observed circumbinary protoplanetary
disks are also quite aligned with the stellar orbits ( 3 )
(Rosenfeld et al. 2012; Czekala et al. 2015, 2016), and this may
indicate that the coplanarity of the circumbinary planets are
primordial. In addition, based on the abundance studies by
Armstrong et al. (2014) and Martin & Triaud (2014), the co-
planarity of the circumbinary systems may indicate that the
occurrence rate of the circumbinary systems is similar to that of
single-star systems.

4.3. Multis versus Singles

Although nine out of the ten observed transiting circumbin-
ary systems are single-transiting systems, it does not necessa-
rily mean that circumbinary systems more likely contain a
single planet, because farther companions are more difficult to
detect via the transit method. In this section, we take into
account the selection effects and investigate the multiplicity
and planet–planet spacing of the planetary systems.
The transit probability of the outer companion is sensitive to

its location, as the transit probability decreases with star-planet
separation. On the other hand, outer companions of circum-
binary planets cannot be located very close to the inner planets,
because closely separated planets are unstable due to planet–

Figure 10. Probability of the mutual inclination, given that the planet transits at
least twice, assuming the prior distribution of di is isotropic. The crosses
represent the observed value. The probability that the mutual inclination is
smaller than the observed value is very small, indicating that the mutual
inclination is likely small.

Figure 11. Probability distribution of the averaged mutual inclination, with
different prior distribution of di. The solid black line indicates the observed
value.
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planet interactions. It has been found that the observed spacing
of the Kepler systems is clustered around ∼12 mutual Hill radii
(RH), and it coincides with the required spacing for stability
obtained using N-body simulations (e.g., Pu & Wu 2015).
Dynamics of multi-planet circumbinary systems have been
investigated by Kratter & Shannon (2014) and Smullen et al.
(2016). In particular, it was found that the intra-planet spacing
is of order R5 7 H– when the inner planet is close to ac, and the
spacing of the planet for the binary-case asymptotes to the
single star results when the inner planet is farther
( ~a a1.5 2p c– ). For simplicity, we mark the location of the
outer companion at R12 H for illustration. The mutual Hill radius
of the single stellar system is expressed as

*= + ´ +R a a m m M2 3p pH,single 1 2 ,1 ,2
1 3( ) (( ) ( )) , where a1

& a2 and mp,1 & mp,2 are the semimajor axes and the masses of
the planets, and M* is the mass of the host star. For the
circumstellar system, we set the mutual Hill radius to be:

⎡
⎣⎢

⎤
⎦⎥=

+ +

+
R

a a m m

m m2 3
. 26

p p
H

1 2 ,1 ,2

1 2

1 3

( )
( )

Because the mass of the companion planet is not known, we set
the companion planet to be a test particle with mass zero to
obtain the maximum transit probability when the planet
separation is the smallest. We set the companion planet mass
to be two Jupiter masses, to probe the minimum probability
when the planet separation is larger.

Similar to the previous sections, we require the planet to
transit at least twice for a robust detection criterion. We then
calculate numerically the probability to transit at least twice at
different semimajor axes for the observed systems, assuming
the the companion planets share the same mutual inclination
with the innermost planet. A small probability at a R12p H

implies that it is unlikely to detect the companion, and thus it is
possible to have farther undetected companions in the system.
The results are shown in Figure 12. The solid red line

indicates the semimajor axis of the observed planet, and the
solid (dashed) blue line represents the semimajor axis at 12 RH

away from the detected planet, assuming the companion planet
has mass zero (two Jupiter masses). Note that, for Kepler-1647,
the planet’s orbital period is longer than 1470 days (∼four
years) at 12 mutual Hill radii away, even when the companion
is a test particle, so the probability to transit at least twice is
zero. Thus, we exclude Kepler-1647 in the figure. Figure 12
shows that the probability to detect the outer companion is
quite low, except for Kepler-47, if the planet mass is low. It is
consistent with the observation where Kepler-47 indeed has
multiple planets. Thus, we find no strong evidence that the
circumbinary systems are more likely to contain a single planet.

4.4. Stellar Binary Period

It has been shown that the observed transiting circumbinary
planets orbit around stellar binaries with long orbital periods
(7 days) (e.g., Armstrong et al. 2014; Martin & Triaud 2014).
However, a large number of eclipsing binaries have short
orbital periods (3 day) (e.g., Slawson et al. 2011). The
absence of circumbinary systems may indicate that it is difficult
to form planets around short-period binaries. In addition, this
absence could be caused by the Lidov–Kozai mechanism,
which contributes to the formation of short-period binaries.
Specifically, short-period stellar binaries are formed through
the Lidov–Kozai mechanism, and their inclination and
eccentricity oscillate due to the perturbation of a third
companion (Mazeh & Shaham 1979; Fabrycky & Tre-
maine 2007; Naoz 2016; Naoz & Fabrycky 2014). Note that
the planet does not cause Lidov–Kozai oscillations in the stellar
binary because it is not massive enough, as studied by

Figure 12. Probability that a planet transits at least twice, as a function of ap for the observed systems. The red line indicates the location of the observed innermost
planet. The solid blue line indicates the location of a companion test particle at 12 mutual Hill radii away from the innermost planet, and the dashed blue line indicates
the location when the mass of the companion is two Jupiter masses.
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Migaszewski & Goździewski (2011) and Martin & Triaud
(2016), where the third companion, which produces the short-
period binaries, needs to be massive. During this process,
planets can be ejected or collide with the star, and the surviving
planets end up having inclined orbits, with respect to the stellar
orbit, to avoid transits (Martin et al. 2015; Muñoz & Lai 2015;
Hamers et al. 2016). However, with precession, the transit
probability at high mutual inclination can still be large. In this
section, we study the probability distribution of the stellar
binary orbital period including the misaligned cases.

First, we use the analytical result from Section 3 to obtain the
transit probability, where, for simplicity, we set the stellar
properties to those of the Sun, and we set the stellar binary to
be aligned with the line of sight. We next set the prior period
distribution of the eclipsing binary to be that of the Kepler
sample. We integrate the probability over the mutual inclina-
tion, and obtain the probability distribution of Pb jointly with
the event that the planet transits at least once. Specifically,

Ç ò d d d= ¢ ¢ ¢P P tt P P P tt i P P i d i, , 27b b b1 1( )( ) ( ) ( ∣ ) ( ) ( )

where tt1 represents the event that the planet transits at least
once in four years.

To compare the coplanar and the misaligned cases, we
include a near-coplanar distribution d i 3 , as discussed in
Section 4.2, and a highly misaligned distribution
d Î  i 40 , 140[ ], motivated by the Lidov–Kozai formation
mechanism. For the case when the mutual inclination is less
than 3°, we use the Fisher distribution with k = 500; for the
case when the mutual inclination is high, we set the distribution
to be d dµP i isin( ) ( ), with lower and upper bounds of 40° and
140°, respectively.

Figure 13 shows the result. The solid lines represent the
coplanar case, and the dashed lines represent the misaligned
case. In addition, the blue lines indicate the case that =a a 1p c ,
and the purple lines indicates the case when =a a 10p b ,
motivated by the Lidov–Kozai mechanism, where the inner
binaries shrink during the formation of the short period systems
—and thus, the semimajor axis ratio of the planet to the stellar

binary increases. We set the minimum Pb to be two days
because the S/N level is lower when the stellar binary orbital
period is shorter, and we set the maximum Pb to be four years.
A detailed study on the short period limit due to the S/N level
is important, but is beyond the scope of this article. Note that,
because we set the stellar binary to be aligned with the line-of-
sight, the actual transit probability for the coplanar case should
be moderately lower than the results shown in Figure 13
when D ¹ 0ib .
Taking into account the abundance of short-period binaries,

the transit probability for the high mutual inclination, short-
period stellar binary is similar to that of the aligned long stellar
period case, when the planets locate near the stability limit.
However, the planetary-to-stellar semimajor axis ratio increases
during the formation mechanism, through Lidov–Kozai
oscillations, as the stellar binary orbit shrinks. The increase
of a ap b further reduces the transit probability. Therefore, the
circumbinary planets around short-period stellar binaries are
still unlikely to be detected through the transit method. In other
words, the formation mechanisms involving the Lidov–Kozai
mechanism are consistent with the observations. This also
implies that the planets probably do not move closer to the
stellar binaries after the formation of the short period stellar
binaries.
Although using transit methods it is unlikely to detect the

misaligned circumbinary planets at distances far from the short-
period stellar binaries, these planets can be detected through the
eclipsing timing variation method. As the center mass of the
stellar binary moves around the barycenter of the system, it
causes variations in the light travel time from the stellar binary
to the observer (e.g., Schneider & Doyle 1995; Schwarz
et al. 2011). For hot Jupiters orbiting solar-type stellar binaries
at 1 AU, this effect causes a time variation of the eclipses at the
scale of 1 s; this is detectable using Kepler for a 9 mag target
(Sybilski et al. 2010). The effect is stronger when the stellar
mass is lower, and when the planets are farther away yet with
periods shorter than the observation time.

5. CONCLUSIONS

In this paper, we investigate the architectural properties of
planetary systems corrected by selection effects. First, we
revisit the planetary stability limit when the planetary orbit is
misaligned with the stellar binary. We find that the system is
more stable when the mutual inclination is higher, which is
consistent with Doolin & Blundell (2011), and we find that
variations in the semimajor axes of the planets show interesting
patterns. Next, we derive the analytical expression for the
transit probability in a realistic setting, where a finite
observation period and planetary orbital precession are both
included. The analytical results agree well with the numerical
simulations. In particular, the probability to transit one of the
binary stars is shown in Equation (19), and the probability to
transit both stars is shown in Equation (20). Different from the
case with infinite observation time period (Martin &
Triaud 2015), the transit probability does not always increase
as a function of mutual inclination (as shown in Figure 7). In
addition, comparing the transit probabilities of the circumbin-
ary systems and systems with a single star, the transit
probability for circumbinary systems can be lower if the
observation period is very short (e.g., ∼30 days, when Pb=5
days, =a a 5p b , and d i 50 ). Thus, the transit probability of
some circumbinary planets may be lower than their single-star

Figure 13. Probability to transit at least once for different stellar binary periods
(Pb). The solid lines represent the near-coplanar case, and the dashed lines
represent the highly misaligned case. The blue color represents the case when
the planet is at the stability limit, and the red color represents the case when

=a a10p b, motivated by the Lidov–Kozai mechanism. The misaligned short-
period stellar binary transit probability is similar to that of the aligned case
when the planet is close to the star, but the probability decreases when the
planet is farther.
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counterparts for the TESS mission, especially when the mutual
inclination is high. On the other hand, the transit probability for
the circumbinary planets is likely higher for the K2, PLATO,
and Keplermissions.

Using the transit probability, we obtain architectural proper-
ties of the circumbinary systems. First, we study the
distribution of planetary semimajor axes. Nine out of the ten
observed circumbinary systems host innermost planets moder-
ately close to the stability limit. However, the ninth system
(Kepler-1647) hosts a planet that is much farther from the
stability limit. Assuming that the tenth system is from a
different distribution, there is only a small probability that the
pile-up of planets near the stability limit is due to selection bias
for the nine systems. This implies the dominance of migration
during planet formation for a population of the circumbinary
planetary systems. On the other hand, assuming that Kepler-
1647 is in the same distribution, then, there is no strong
evidence for a pile-up of planets near the stability limit.
Observations of more circumbinary planetary systems can help
distinguish these two scenarios. Moreover, we find that the
pile-up is consistent with a log-uniform distribution of the
planetary semimajor axis.

We next study the distribution of the mutual inclination
between the planetary orbits and the orbits of the stellar
binaries. All of the observed circumbinary planets to date are
near-coplanar with the stellar orbits. The mutual inclination
between the planet orbit and the stellar binary is much smaller
than the result of an isotropic distribution, after taking into
account the selection effects. We find that the mutual
inclination can be fit well with a Fisher distribution of
k 500, corresponding to a average mutual inclination of

 3 . This is similar to the mutual inclination for the multi-
transiting systems around single stars (Fang & Margot 2012;
Fabrycky et al. 2014; Moriarty & Ballard 2015; Ballard &
Johnson 2016). Because the circumbinary protoplanetary disks
also align with the stellar orbits within ~ 3 (Rosenfeld
et al. 2012; Czekala et al. 2015, 2016), this may indicate a
primordial alignment of the circumbinary planetary orbits.

Current observation seems to suggest that only one out of the
ten observed circumbinary planetary systems hosts multiple
planets. This can either be a result of the selection effects or
imply that circumbinary planetary systems tend to host a single
planet. To investigate this, we find that the probability to detect
outer companion is very small for most of the systems,
assuming a separation of ~ R12 H for stability purposes. Thus,
we do not find strong evidence that the circumbinary planetary
systems preferentially host a single planet. This indicates that
the observed systems may have outer companions, but it is
difficult to detect them.

Finally, we investigate the transit probability of systems with
short-period stellar binaries and with inclined planetary orbits,
motivated by the lack of observed circumbinary planets around
short-period stellar binaries. We find that, considering the
period distribution of eclipsing binaries, the transit probability
of the misaligned system is similar to that of the aligned long
stellar period systems, if the planet is located near the stability
limit. However, the transit probability decreases as the
planetary-to-stellar semimajor axis ratio decreases. This
shows that the observation is consistent with the formation
mechanism involving Lidov–Kozai oscillation, where the
mutual inclination is excited and the semimajor axis ratio is
reduced if the planet survives during the formation process

(Martin et al. 2015; Muñoz & Lai 2015; Hamers et al. 2016). It
also implies that the planets do not move closer to the stellar
binary after the misalignment. Instead of transit methods,
eclipsing time variation may provide a way to detect such
circumbinary planets with misaligned, large semimajor axis
ratios.
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