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We show that symplectic and linearly implicit integrators proposed by Zhang & Skeel (1997, Cheap
implicit symplectic integrators. Appl. Numer. Math., 25, 297–302) are variational linearizations of
Newmark methods. When used in conjunction with penalty methods (i.e., methods that replace con-
straints by stiff potentials), these integrators permit coarse time-stepping of holonomically constrained
mechanical systems and bypass the resolution of nonlinear systems. Although penalty methods are widely
employed, an explicit link to Lagrange multiplier approaches appears to be lacking; such a link is now
provided (in the context of two-scale flow convergence (Tao, M., Owhadi, H. & Marsden, J. E. (2010)
Nonintrusive and structure-preserving multiscale integration of stiff ODEs, SDEs and Hamiltonian sys-
tems with hidden slow dynamics via flow averaging. Multiscale Model. Simul., 8, 1269–1324). The
variational formulation also allows efficient simulations of mechanical systems on Lie groups.

Keywords: variational integrators; symplectic and linearly implicit; coarse time-stepping; constrained
dynamics; mechanical system on Lie group.

1. Introduction and main results

Integrators: Symplectic integrators are popular for simulating mechanical systems due to their structure-
preserving properties (e.g., Hairer et al., 2006). Implicit methods, on the other hand, allow accurate
coarse time-stepping of a class of stiff or multiscale problems (e.g., Li et al., 2008; Filbet & Jin, 2010).
It is also a classical treatment to linearize implicit methods so that expensive nonlinear solves can be
avoided (e.g., Beam & Warming, 1976). Although linearizations of most implicit symplectic methods
are not symplectic, Zhang and Skeel found a family of symplectic and linearly implicit integrators
(Zhang & Skeel, 1997), which allows efficient and structure-preserving simulations. We show that their
method is not only symplectic, but in fact variational.

Specifically, consider mechanical systems governed by Newton’s equation:

ẋ = v, M v̇ = −∇V(x), (1.1)

where V ∈ C2(Rn) and M is an n × n symmetric, positive-definite constant matrix.
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If we consider the following discrete Lagrangian (see Section 2.1 for explanations):

L̃d(xk , xk+1, ak , ak+1) = h

(
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2

(
xk+1 − xk

h

)T

M

(
xk+1 − xk

h

)
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2

(
βh2 1

2
aT

k Mak + V(xk) + βh2aT
k ∇V(xk) + 1
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β2h4aT

k Hess V(xk)ak

)

− 1

2

(
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aT

k+1Mak+1 + V(xk+1) + βh2aT
k+1∇V(xk+1)

+1

2
β2h4aT

k+1 Hess V(xk+1)ak+1

))
, (1.2)

then the Euler–Lagrange equation of the variational principle

δ

N∑
k=1

L̃d(xk , xk+1, ak , ak+1) = 0

yields the following symplectic method (originally stated in Zhang & Skeel, 1997, Section 3).

Integrator 1.1 Zhang and Skeel’s symplectic method (Z&S):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xk+1 = xk + hvk + 1
2 h2fk ,

vk+1 = vk + 1
2 h(fk + fk+1),

ak = −M −1∇V(xk) − M −1 Hess V(xk)βh2ak ,

fk = ak − 1
2β2h4M −1ak · V (3)(xk) · ak ,

(1.3)

where V (3)(·) is a third-order tensor corresponding to the third-derivative of V , the symbol · stands for
tensor contraction and therefore ak · V (3)(xk) · ak is again a vector.

For computational efficiency, ak should be obtained by solving a symmetric linear system instead of
inverting a matrix. In this sense, Z&S is linearly implicit.

Theorem 1.2 Z&S is:

1. unconditionally linearly stable if β � 1
4 ;

2. variational (and thus symplectic and conserving momentum maps);

3. second-order convergent (if stable) and can be made arbitrarily high-order convergent;

4. symmetric (‘time-reversible’).

Downloaded from https://academic.oup.com/imajna/article-abstract/36/1/80/2363595/Variational-and-linearly-implicit-integrators-with
by Georgia Institute of Technology user
on 19 September 2017
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Showing Z&S is variational ensures,1 due to a discrete Noether theorem (e.g., Marsden &
West, 2001; Hairer et al., 2006), that it also preserves momentum maps that correspond to system
symmetries. This additional preservation property is desired in mechanical system simulations. The
variational formulation also leads to a possible extension to Lie groups (Section 4.5).

Constrained dynamics: One of our motivations for studying Z&S originates from a need for coarse
time-steppings in penalty methods for constrained dynamics.

To model constrained dynamics, let

S(q(t)) :=
∫ b

a

1

2
q̇(t)TM q̇(t) − V(q(t)) dt (1.4)

be the action associated with system (1.1). Under a holonomic constraint g(q) = 0, the system evolution
coincides with the critical trajectory on the constraint manifold, i.e., the solution of

δS/δq = 0 and for all t, q(t) ∈ g−1(0). (1.5)

This trajectory can also be obtained by solving the differential algebraic system{
M q̈ = −∇V(q) + λT∇g(q),

g(q) = 0.
(1.6)

Penalty methods approximate rigid constraints by stiff potentials; this is a classical idea and we
refer the reader to Rubin & Ungar (1957), Takens (1980), Terzopoulos et al. (1987) and Platt & Barr
(1988) for a noncomprehensive list of references. More precisely, modify the potential energy V(q)

to V(q) + 1
2ω2g(q)Tg(q); then, the solution of (1.5) is approximated by the solution of the following

unconstrained mechanical system:

M q̈ω = −∇V(qω) − ω2g(qω)T∇g(qω), (1.7)

where ω is large enough. Paraphrasing Platt & Barr (1988), the problem is, ‘as a result of stiffness, the
numerical differential equation solver takes very small time steps, using a large amount of computing
time without getting much done’. Z&S alleviates this problem because it can use coarse time steps and
does not solve nonlinear systems (see Section 1.2).

On a related matter, although penalty methods are widely employed and proved convergent to
constrained dynamics (see Section 1.1), a quantitative analysis of its link to the Lagrange multiplier
approach (1.6) appeared to be lacking. We show that the solution of (1.7) converges to that of (1.6)
as ω → ∞ in the sense of two-scale flow convergence (see Tao et al., 2010, Definition 1.1). More pre-
cisely, we have (explained in Section 3; throughout this paper, ‘bounded’ means having a norm bounded
by an ω-independent constant) the following theorem.

Theorem 1.3 Denote by qω(t) the solution to (1.7) with qω(0) = q0 and q̇ω(0) = q̇0 (where g(q0) = 0
and (d/dt)g(q0) = ∇g(q0) · q̇0 = 0). Suppose that M is nonsingular, V(·) is bounded from below, V(q)

diverges towards infinity as |q| → ∞, V(·) and g(·) are C2 with bounded derivatives, and for all

1 In general, symplectic methods are only locally variational, but variational methods are symplectic; see, for instance, Marsden
& West (2001).
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q ∈ g−1(0), ∇g(q) has a constant rank equal to the codimension of the constraint manifold; then,

λ(t) := − lim
T→0

lim
ω→∞

1

T

∫ t+T

t
ω2g(qω(s)) ds (1.8)

exists. Also, the solution q(t) of

{
M q̈(t) = −∇V(q(t)) + λ(t)T∇g(q(t)),

g(q(t)) = 0, q(0) = q0, q̇(0) = q̇0
(1.9)

exists and satisfies

qω F−→ q (1.10)

in the sense of two-scale flow convergence (Tao et al., 2010), i.e., for all bounded t � 0 and all bounded
and uniformly Lipschitz-continuous test function ϕ,

lim
T→0

lim
ω→∞

1

T

∫ t+T

t
ϕ(qω(s)) − ϕ(q(s)) ds = 0. (1.11)

Outline of the paper: Section 2 derives Z&S from a variational principle, relates it to Newmark
integrators and discusses its properties. Section 3 illustrates how penalty methods converge to the
Lagrange multiplier approach. Section 4 applies the method to constrained systems (pendula and water
molecular dynamics), a nonconstrained model of DNA division and a mechanical system on SO(3),
illustrating the benefits of a variational formulation.

1.1 On penalty methods

The penalty strategy of replacing holonomic constraints by stiff potentials is widely used. For example,
it is a common treatment in computer graphics (e.g., Terzopoulos et al., 1987; Witkin et al., 1987; Platt
& Barr, 1988).

It is known that the penalized solution converges to constrained dynamics in C1 topology, as long
as its initial condition is in the tangent bundle of the constraint manifold. We refer the reader to, e.g.,
the pioneering work of Rubin & Ungar (1957) and Takens (1980), to Bornemann & Schütte (1997),
Bornemann (1998) and Shatah & Zeng (2002) for recent progress, and to Hairer et al. (2006, Chapter
XIV.3) for a review.

The reverse point of view has also been employed, particularly in molecular dynamics, where stiff
oscillatory molecular bonds are replaced by rigid constraints for the purpose of allowing larger time-
steps (e.g., Fixman, 1974; Schlick, 2010). If the initial velocity is not in the tangent plane, then a cor-
rection potential might also be required to account for the nonzero normal energy (e.g., Fixman, 1974;
Reich, 1995; Schütte & Bornemann, 1997). The Fixman potential (Fixman, 1974) is a classical example
of such a correction, in particular when investigating thermodynamic properties of molecular systems
(see, e.g., Bajars et al., 2011); on the other hand, Bornemann & Schütte (1995) suggest that Fixman
might not be the right correction for deterministic systems.
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84 M. TAO AND H. OWHADI

1.2 One constrained dynamics

Other popular constrained dynamics methods include: generalized coordinates on the constraint
manifold (e.g., Jain et al., 1993) and Lagrange multipliers (e.g., SHAKE (Ryckaert et al., 1977),
RATTLE (Andersen, 1983), SETTLE (Hess et al., 1997), LINCS (Miyamoto & Kollman, 1992) and
M-SHAKE (Kräutler et al., 2001)). The equivalence between these two approaches is well-established
(e.g., Wendlandt & Marsden, 1997). These numerical methods allow an o(1) integration step, but they
also require solving nonlinear systems at each step. Unfortunately, linearization of these methods are no
longer symplectic, and therefore resorting to linearization for a speed-up is at the risk of losing long-time
accuracy.

The advantage of using a penalty approach depends on the system: if the system has a large number
of coupled constraints, then an integration of the penalized system, even with small steps, would still
be faster than generalized coordinate and Lagrange multiplier methods, which require solving high-
dimensional nonlinear systems.

Z&S provides a compromise by allowing large integration steps (o(1), independent of ω) with
limited cost of a linear solve per iteration. It remains accurate when applied to penalized system (1.7),
even though the o(1) step does not resolve stiffness of the equation. This is because stiffness in this
system results in fast oscillations nontangent to a stable slow manifold (Section 3). Although implicit
methods damp high frequencies in oscillations (e.g., Hairer & Wanner, 1996), the approximation of fast
oscillations by slower ones (as in Li et al., 2008) is sufficient for the approximation of slow dynamics
on the constraint manifold.

We refer the reader to M-SHAKE (Kräutler et al., 2001) for an example of recent developments to
the Lagrange multiplier method. While M-SHAKE is limited to systems with distance constraints, Z&S
combined with the penalty method can implement arbitrary holonomic constraints.

2. Z&S: structure-preserving and stable integrators

2.1 Derivation from Newmark integrators

The Newmark family of algorithms are extensively used in structural dynamics (Newmark, 1959).

Integrator 2.1 Newmark:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qk+1 = qk + hq̇k + h2

2
[(1 − 2β)ak + 2βak+1],

q̇k+1 = q̇k + h[(1 − γ )ak + γ ak+1],

ak = −M −1∇V(qk).

(2.1)

Newmark is generally implicit when β |= 0. When γ = 1
2 , it is second-order accurate and variational

(Kane et al., 2000), and we restrict ourselves to this case in this paper. Integrator 2.1 does not preserve
the canonical symplectic form, and it was shown in Skeel et al. (1997) and Marsden & West (2001) that
if one pushes forward the update map by a coordinate transform η : TQ → TQ defined as

(x, v) := η(q, q̇) = (q + βh2M −1∇V(q), q̇
)
, (2.2)

then we obtain an integrator that preserves the canonical symplectic form on T∗Q.
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Integrator 2.2 Pushforward Newmark:⎧⎪⎨
⎪⎩

xk+1 = xk + hvk + 1
2 h2ak ,

vk+1 = vk + 1
2 h(ak + ak+1),

ak = −M −1∇V(xk + βh2ak).

(2.3)

These two methods are unconditionally linearly stable if β � 1
4 (Skeel et al., 1997; Chiba & Kako,

2002). Newmark with β � 1
4 is known to be nonlinearly stable under specific conditions (Hughes, 1977),

and Pushforward Newmark is known to be stable near stable fixed points in nonresonant nonlinear set-
tings (Skeel & Srinivas, 2000). Nevertheless, there are nonlinear cases in which Newmark is no longer
stable (Kuhl & Ramm, 1996; Erlicher et al., 2002). In fact, few convergent methods are unconditionally
stable for arbitrary nonlinear systems to the authors’ knowledge (see also Wood & Oduor, 1988).

Now, consider a second-order discretization of the action
∫ (k+1)h

kh L(x, ẋ) dt, where L = 1
2 ẋTM ẋ −

V(x) is the Lagrangian for (1.1). This approximation, known as a discrete Lagrangian (see Marsden
& West, 2001 for a review of variational integrators and Abraham & Marsden, 2008 for one of many
excellent reviews of analytical mechanics), has the form

Ld(xk , xk+1, ak , ak+1) = h

(
1

2

(
xk+1 − xk

h

)T

M

(
xk+1 − xk

h

)

− 1

2

(
βh2 1

2
aT

k Mak + V(xk + βh2ak)

)

−1

2

(
βh2 1

2
aT

k+1Mak+1 + V(xk+1 + βh2ak+1)

))
. (2.4)

It can be shown that (2.3) is the Euler–Lagrange equation associated with (2.4), i.e., the equation that
the critical point of the discretized action

∑
k Ld(xk , xk+1, ak , ak+1) satisfies. Note that this variational

formulation is explicit and distinct from the one implicitly defined in Marsden & West (2001). The
novelty is the augmentation of acceleration parameters ak s.

However, updates given by the Euler–Lagrange equation (2.3) are still implicit. Therefore, we
Taylor-expand (2.4) to second order in a and derive (1.2). To obtain the corresponding discrete Euler–
Lagrange equation, we compute ∂L̃d/∂ak = 0, which leads to

Mak + ∇V(xk) + βh2 Hess V(xk)ak = 0. (2.5)

We then compute the discrete Legendre transform (see Marsden & West, 2001 for notation and termi-
nology), which introduces the momentum and leads to⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

pk = −D1Ld(xk , xk+1, ak , ak+1)

= M
xk+1 − xk

h
+ h

2

(
−Mak + 1

2
β2h4ak · V (3)(xk) · ak

)
,

pk+1 = D2Ld(xk , xk+1, ak , ak+1)

= M
xk+1 − xk

h
− h

2

(
−Mak+1 + 1

2
β2h4ak+1 · V (3)(xk+1) · ak+1

)
.

(2.6)

Since the velocity and momentum are related via vk = M −1pk , we obtain the Z&S update (1.3).
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Because the new discrete Lagrangian L̃d is quadratic in a, nonlinear solves in Pushforward
Newmark are replaced by linear solves in Z&S. Consequently, Z&S exhibits a speed advantage. Numer-
ical illustrations of this advantage are in Section 4.

2.2 On Z&S

Linearizing equations: Z&S is obtained as the linearization of a Pushforward Newmark update map
combined with a small correction. More precisely, the Taylor expansion of Line 3 of (2.3) leads to (2.5),
and Lines 1 and 2 in (2.3) can be rewritten in terms of momentum as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

pk = −D1Ld(xk , xk+1, ak , ak+1)

= M
xk+1 − xk

h
+ h

2
(−Mak) ,

pk+1 = D2Ld(xk , xk+1, ak , ak+1)

= M
xk+1 − xk

h
− h

2
(−Mak+1).

The differences are two O(h5) terms (corresponding to 1
4β2h5a · V (3)(x) · a). To be consistent with the

literature, we summarize this variant using velocity instead of momentum as follows.

Integrator 2.3 Zhang and Skeel’s method simplified (Z&Ss):

⎧⎪⎪⎨
⎪⎪⎩

xk+1 = xk + hvk + 1
2 h2ak ,

vk+1 = vk + 1
2 h(ak + ak+1),

ak = −(M + Hess V(xk)βh2)−1∇V(xk).

(2.7)

Theorem 2.4 Z&Ss is:

1. unconditionally linearly stable if β � 1
4 ;

2. symplectic if the n × n matrix M + Hess V(x)βh2 commutes with the n × n matrix V (3)(x) ·
(M + Hess V(x)βh2)−1 · ∇V(x) (· is tensor contraction);

3. second-order convergent (if stable) and can be made arbitrarily high-order convergent;

4. symmetric (‘time-reversible’).

Z&Ss is not always symplectic due to the removal of O(h5) terms. However, it requires no high-
order tensor operations, and is thus a good choice for high-dimensional problems.

Partial Newton solve: Line 3 of Z&Ss can be viewed as executing only the first step of a Newton
solver for the nonlinear equation ak = −M −1∇V(xk + βh2ak).

Preconditioning, filtering and regularization: The factor of (M + Hess V(x)βh2)−1 in front of
∇V(x) can be thought of as an optimization preconditioner or a way to filter (Hesthaven et al., 2007;
Faou & Grebert, 2011)/regularize (García-Archilla et al., 1999; Sanz-Serna, 2008) high-frequency
oscillations.
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2.3 Properties

(Proofs of results introduced in this paragraph are standard and available online at http://www.math.
gatech.edu/∼mtao/TaOw14_supplemental.pdf [last accessed 18 January 2015])

Theorem 2.5 (Stability) Z&S (Integrator 1.1) is unconditionally linearly stable if and only if β � 1
4 .

The proofs of the unconditional linear stability (for β � 1
4 ) of Integrators 1.1 and 2.3 are similar. If

the potential is of form V(x) = V0(x) + ε−1V1(x), then the following modification of Z&Ss is uncondi-
tionally linearly stable2 as long as β > 1

4 + O(ε).

Integrator 2.6 Simplified Z&Ss for stiff systems (ε−1 	 1):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xk+1 = xk + hvk + 1
2 h2ak ,

vk+1 = vk + 1
2 h(ak + ak+1),

ak = −M −1(∇V0(xk) + ε−1∇V1(xk)) − M −1ε−1 Hess V1(xk)βh2ak .

(2.8)

Theorem 2.7 (Consistency) Consider an integrator for (1.1) given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xk+1 = xk + hvk + 1
2 h2ak ,

vk+1 = vk + 1
2 h(ak + ak+1 + h4g(xk) + h4g(xk+1)),

ak = −M −1∇V(xk) − M −1f (xk)h2ak ,

(2.9)

where f , g ∈ C(Q) are arbitrary functions. If V ∈ C3(Q), this integrator has third-order truncation error.

Corollary 2.8 Z&S (Integrator 1.1), Z&Ss (Integrator 2.3) and simplified Z&Ss for stiff systems
(Integrator 2.6) are second-order convergent, provided that they are stable.

Symmetry (i.e., time-reversibility) is one desired property of numerical integrators, because it leads
to good long-time performance (see, for instance, Hairer et al., 2006 or Leimkuhler & Reich, 2004).

Theorem 2.9 (Symmetry/time-reversibility) Let f ∈ C1(Q) be an arbitrary function. The integrator
defined by ⎧⎪⎪⎨

⎪⎪⎩
xk+1 = xk + hvk + 1

2 h2fk ,

vk+1 = vk + 1
2 h(fk + fk+1),

fk = f (xk)

(2.10)

is symmetric (time-reversible).

Corollary 2.10 Z&S (Integrator 1.1) is symmetric (time-reversible).

Remark 2.11 Arbitrary high-order Z&S can be obtained using standard splitting schemes as in Neri
(1988), Yoshida (1990) and Hairer et al. (2006). A fourth-order example is provided in Supplementary
Material.

2 In the sense that the solution remains bounded for all h when V0 has Lipschitz-continuous first-derivative with bounded
Lipschitz constant and V1 is quadratic and positive definite.
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88 M. TAO AND H. OWHADI

Theorem 2.12 Z&S (Integrator 1.1) is symplectic.

Lemma 2.13 (Symplecticity) Consider an integrator given by (2.10). If f ∈ C1(Q) is a function with
symmetric Jacobian, then this integrator is symplectic.

Remark 2.14 The commutation condition in Theorem 2.4 ensures a symmetric Jacobian, and hence the
symplecticity of Z&Ss. Two very special cases where this condition is satisfied are: when the system
contains only 1 degree of freedom, or when Hess(V) can be diagonalized by a matrix independent of x.

Remark 2.15 Fully nonlinear implicit symplectic methods (e.g., midpoint or Newmark) are not exactly
symplectic due to numerical errors in nonlinear solves, which are often much larger than those in linear
solves.

3. Lagrange multiplier methods as limits of penalty methods

Lagrange multiplier and penalty methods, respectively, simulate (1.6) and (1.7). It is known (Sec-
tions 1.1 and 1.2) that both are equivalent to constrained dynamics (1.5) (the latter in the ω → ∞ limit).
We now quantify the equivalence between the two.

First, observe that this equivalence is not necessarily achieved via

λ(t) = − lim
ω→∞ ω2g(qω(t)). (3.1)

Consider, for instance, a 2 degrees of freedom example, in which V(q) = (q2 − q1)
2/2, g(q) = q1,

q(0) = [0; 1] and p(0) = [0; 0]. Lagrange multiplier method (1.6) yields q1(t) = 0, q2(t) = cos t
and λ(t) = − cos t. Penalty method (1.7) leads to qω

1 (t) = (1/
√

4 + ω4)(cos(ω1t) − cos(ω2t)), where

ω1,2 =
√

(2 + ω2 ∓ √
4 + ω4)/2. We see (3.1) cannot hold because limω→∞ ω2qω

1 (t) does not exist due
to fast oscillations.

The appropriate notion of equivalence is provided by Theorem 1.3. The idea is as follows: energy
conservation implies that g(qω) is at most O(1/ω) (see Lemma A.1). In fact, g(qω) can be further shown
to be O(1/ω2) (see Remark A.3 or Kevorkian & Cole, 1996), and constraints are satisfied with small
errors that oscillate rapidly. To describe the Lagrange multiplier system (1.6) as a limit of penalized
systems (1.7), the convergence of these fast oscillations should be understood in a weak sense, whereas
slow dynamics on the constrained manifold converges strongly. Thus, we employ two-scale flow con-
vergence (Equation (1.11)) for this description. Convergence is first proved for a flat constraint manifold
(Lemma A.2), and then local charts are patched together (see appendix); this leads to Theorem 1.3.

Remark 3.1 If the limit in (3.1) exists, then (1.8) simplifies to (3.1) and two-scale F-convergence
becomes strong convergence.

4. Application examples

Z&S (Integrator 1.1) is applied in Sections 4.1, 4.2 and 4.4; Section 4.3 employs simplified Z&Ss for a
stiff system (Integrator 2.6) due to its efficiency for high-dimensional systems; Section 4.5 is based on
variational formulation (1.2).

Speed comparisons are provided in terms of running times (using Matlab 7.7 on an Intel Core 2
Duo 2.4G laptop, with nonlinear solver of ‘fsolve’); however, these numbers are machine and platform
dependent (e.g., Matlab is very well optimized for linear algebra), and should serve only as a qualitative
illustration of efficiencies.
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4.1 Double pendulum

Implementation: One way to represent planar double pendulum is to use 4 degrees of freedom and 2
nonlinear constraints. Using the notation of (1.7), we have

M =

⎡
⎢⎢⎣

m1 0 0 0
0 m1 0 0
0 0 m2 0
0 0 0 m2

⎤
⎥⎥⎦ ,

V(x1, y1, x2, y2) = −gy1 − gy2,

g(x1, y1, x2, y2) =
[

x2
1 + y2

1 − L2
1

(x2 − x1)
2 + (y2 − y1)

2 − L2
2

]
.

For simplicity, we adopt a dimensionless convention and assume m1 = m2 = g = 1.
The Z&S simulation of the penalized system (1.7) is straightforward. SHAKE (Ryckaert et al., 1977)

is used as the Lagrangian multiplier method in our experiments; it is nonlinearly implicit.
Symplectic integration in generalized coordinates θ , φ (x1 = L1 sin θ , y1 = −L1 cos θ , x2 = L1

sin θ + L2 sin φ, y2 = −L1 cos θ − L2 cos φ) is also implicit. This is because, after writing down the
Lagrangian, one will note a position-dependent mass matrix of

M̃ (θ , φ) =
[

2L2
1 L1L2(cos θ cos φ + sin θ sin φ)

L1L2(cos θ cos φ + sin θ sin φ) L2
2

]
. (4.1)

Consequently, even the most well-known ‘explicit’ variational integrators such as variational Euler (i.e.,
leapfrog) and velocity-Verlet, will be implicit.

Note that although g is quadratic, the penalized ODE is cubically nonlinear.
Results: Figure 1 illustrates errors of different methods. Newmark (Integrator 2.1) with only the

first step of nonlinear solve (Row 5) has a large error due to the loss of symplecticity, even though the
method is still consistent. On the contrary, Z&S (Row 6) yields small errors almost identical to those of
fully nonlinearly solved Newmark (Row 4).

Z&S produces larger error than SHAKE, because there is modelling error due to finite ω in addition
to integration error (Row 3). We chose an intermediate ω, which is sufficiently large to approximate the
constraints, yet small enough to show that the penalized system is only an approximation. A larger
ω leads to a more accurate approximation, but if it is too large, e.g., ω = 2000 (i.e., a stiffness of
ω2 = 4 × 106), instability occurs in all Z&S, original Newmark and implicit midpoint due to strong
nonlinearity.

If ω is finite, the approximation error is predicted to be O(ω−2) (Remark A.3). See Fig. 2(a) for
a numerical illustration. Figure 2(b) compares the Lagrange multiplier computed by SHAKE with the
one obtained from the penalized system via Theorem 1.3. There is no strong convergence, but only a
two-scale F-convergence.

It is known that the double pendulum contains a chaotic region (e.g., Richter & Scholz, 1984).
A variational integrator is desired for simulating such systems (Channell & Scovel, 1990; McLachlan
& Atela, 1992). None of our symplectic simulations (Rows 1–4, 6) led to numerical leakage between
regular and chaotic regions.

Generalized coordinate implicit VE (benchmark), SHAKE, variational Euler, Newmark with full
nonlinear solve, Newmark with one-step nonlinear solve and Z&S, respectively, spent 91.3, 3.8, 1.0,
5.3, 0.2 (2.6 if Hess V is not analytically provided, but approximated by the nonlinear solver), and 0.4 s
on the above simulation.
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Fig. 1. Errors of SHAKE, variational Euler on the penalized system, Newmark (with nonlinear systems fully solved), linearly
implicit Newmark (with only first iteration of nonlinear solve at each step), and Z&S. Benchmark is provided by small step
variational Euler in generalized coordinates. Initial conditions are x1(0) = 0, y1(0) = −1, x2(0) = 1, y2(0) = −2, zero momenta;
L1 = 1 and L2 = √

2. ω = 20 in Rows 3–6. β = 0.4. Row 3 uses h = 0.1/ω for stability, and Rows 2, 4–6 use a 20× bigger h = 0.1.
Position errors are only shown on x2 and y2 for readability.

4.2 A simple high-dimensional example: a chain of many pendula

Consider a chain of n pendula, which approximates a continuous rope. The system is similarly modelled
by (1.7) with

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0

0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

V(x1, y1, . . . , xn, yn) = −
n∑

i=1

yi,

g(x1, y1, . . . , xn, yn) =

⎡
⎢⎢⎢⎢⎢⎢⎣

x2
1 + y2

1 − L2
1

(x2 − x1)
2 + (y2 − y1)

2 − L2
2

...

(xn − xn−1)
2 + (yn − yn−1)

2 − L2
n

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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(a) (b)

Fig. 2. Satisfaction of constraints and Lagrangian multiplier. Z&S with h = 0.01 is used (for smooth curve; Verlet would require
h = 0.001 for stability); other parameters are the same as in Fig. 1. (a) ω2‖g(q(T))‖ numerically computed as a function of ω.
T = 50 fixed; and (b) Lagrange multipliers computed by (1.8) from ω = 20 penalized system and by SHAKE. The integral in
(1.8) is approximated by empirical average over a time window of width 0.2.

Figure 3 shows good agreement between SHAKE and Z&S (trajectories instead of errors are
shown due to lack of accurate benchmark—an analytical solution is unavailable, and Lagrange
multiplier formulations and generalized coordinate approaches involve solving large nonlinear systems).
SHAKE with h = 0.025, h = 0.05 and Z&S with h = 0.05, respectively, spent 16.5, 8.1 and 1.1 s in these
simulations.

4.3 Molecular dynamics of water cluster

Consider the dynamics of water molecules, each interacting with others via nonbonded interactions of
electrostatic and van der Waals forces (both highly nonlinear).

Water model: Use the popular TIP3P model (e.g., Jorgensen et al., 1983). Let qai and pai be the
position and momentum of the ath molecule’s ith atom (both 3-vectors). The Hamiltonian is

H=
N∑

a=1

3∑
i=1

1

2
pT

aim
−1
i pai +

N−1∑
a=1

N∑
b=a+1

⎛
⎝ 3∑

i=1

3∑
j=1

KcQiQj

rai,bj
+ A

r12
a2,b2

− C

r6
a2,b2

⎞
⎠ , (4.2)

where rai,bj := ‖qai − qbj‖ is the inter-atom distance, m1 = m3 are hydrogen mass and m2 is oxygen mass,
Kc is electrostatic constant, Qi is the partial charge of atom i relative to the electron charge, and the A
and C are Lennard–Jones constants that approximate van der Waals forces.

In this TIP3P model (or many other prevailing models such as SPC, BF, TIPS2 and TIP4P, which are
discussed in, e.g., Jorgensen et al., 1983; van der Spoel et al., 1998), each water molecule is considered
as a rigid body, with two O–H bond lengths and H–O–H bond angle fixed as constants rOH and αHOH.
Detailed values of these model parameters could be found in, e.g., Jorgensen et al. (1983).
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Fig. 3. Simulations by SHAKE with h = 0.05 and h = 0.025, and by Z&S with h = 0.05 on ω = 20 penalized system. n = 10;
xi(0) = i, yi(0) = −2i for i = 1, . . . , n and initial momenta are zero; Li = √

5; β = 0.4. For clarity, not all degrees of freedom are
shown.

Therefore, the following vectorial constraint enforces the geometry of molecules:

g(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(q11 − q12)(q11 − q12)
T − r2

OH

(q13 − q12)(q13 − q12)
T − r2

OH

(q11 − q13)(q11 − q13)
T − r2

HH

...

(qN1 − qN2)(qN1 − qN2)
T − r2

OH

(qN3 − qN2)(qN3 − qN2)
T − r2

OH

(qN1 − qN3)(qN1 − qN3)
T − r2

HH

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.3)

where rHH := 2rOH sin(αHOH/2) is a constant. This leads to penalized Hamiltonian

H̃=H + 1

2
ω2

N∑
a=1

((
r2

a1,a2 − r2
OH

)2 + (r2
a3,a2 − r2

OH

)2 + (r2
a1,a3 − r2

HH

)2)
. (4.4)
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Constant temperature simulation: Constant temperature simulations are of practical importance
because (i) thermal fluctuations are an indispensable component of molecular dynamics; and (ii) the
N-body system is chaotic and its long-time deterministic simulation has limited predictive power. We
use Langevin dynamics (e.g., Schlick, 2010) as our constant temperature model.

In this model, molecules experience perturbation by noise and dissipation due to friction, and the
dynamics can be expressed by the following SDEs:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dq = ∂H̃
∂p

dt,

dp = −∂H̃
∂q

dt − γ
∂H̃
∂p

dt +
√

2γβ−1 dW ,

(4.5)

where W is a 9N-dimensional Wiener process, β−1 > 0 is the constant temperature and γ > 0 is dissi-
pation strength. The system admits an invariant measure of Boltzmann–Gibbs (BG; also known as the
canonical ensemble), given by

π(q, p) = Z−1 exp(−βH̃), (4.6)

where Z = ∫
R18N exp(−βH̃) dq dp is the partition function.

To simulate (4.5), we use the Geometric Langevin Algorithm (GLA; see Bou-Rabee & Owhadi,
2010). GLA allows for an extension of Hamiltonian integrators to Langevin integrators. It is a split-
ting scheme, based on composing the one-step update of a deterministic integrator with the exact flow
of an Ornstein–Uhlenbeck process (given by dp = −γ M −1p dt +

√
2γβ−1 dW , i.e., driftless noise and

friction). It has been shown (Bou-Rabee & Owhadi, 2010) that if the deterministic integrator is sym-
plectic, then GLA not only provides a good approximation of trajectories, but also of BG (the invariant
distribution). In this example, the deterministic building block is simplified Z&Ss (Integrator 2.6) or
SHAKE.

Constant temperature molecular dynamics is a rich research field, and our investigation will only
be numerical. The thermodynamic properties of a system with strong restraint may not be equivalent to
those of a constrained system (e.g., Bajars et al., 2011); the Fixman potential is a classical way to cor-
rect the difference (see Perchak et al., 1985 for a debate on the validity of this correction). Proving
that a numerical method samples a good approximation of the invariant distribution is nontrivial.
Bou-Rabee & Owhadi (2010) combine ergodicity with the backward error analysis of symplectic
integrators to show that the invariant distribution is preserved with a high order of accuracy. It is
conjectured (Bou-Rabee & Owhadi, 2010, Remark 2.1) that SHAKE + GLA approximately samples
a constrained BG distribution

π̂(q, p) = Ẑ−1 exp(−βH), (4.7)

where Ẑ = ∫T∗g−1(0)
exp(−βH) dq dp. Relating (4.6) and (4.7) is left as a future investigation. See

Vanden-Eijnden & Ciccotti (2006), Bajars et al. (2011), Hartmann (2008) and Lelièvre et al. (2012)
for more about finite temperature constrained dynamics.

Numerical results: One quantity of interest in a water cluster is the distribution of interatomic
oxygen–oxygen distances in the thermal equilibrium limit, also known as the OO radial distribution
(Jorgensen et al., 1983). To illustrate the accuracy of Z&S in sampling BG, Fig. 4 shows histograms
obtained by long-time simulations of SHAKE and simplified Z&Ss (Integrator (2.6)) that approximate
this distribution. We chose a system of size N = 7 (i.e., 63 degrees of freedom) so that peaks in the
distribution could be clearly distinguished. SHAKE required 13472 s, including 12284 s on nonlinear
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94 M. TAO AND H. OWHADI

Fig. 4. Empirical OO radial distribution in a 7-water cluster obtained by long-time (T = 10000) simulations of SHAKE and
simplified Z&Ss.

solves (with tolerances of 10−6 on variable and 10−10 on function value), whereas simplified Z&Ss used
1549 s, including 67 s on linear solves. Parameters are ω = 20, h = 0.05 in both simulations, γ = 0.01
and β = 50.

We also provide two deterministic simulations (with noise and friction turned off; other
parameters remain unchanged unless indicated otherwise): (i) Fig. 5 compares Lagrange multipliers
computed by SHAKE and from the penalized system to illustrate Theorem 1.3. (ii) Figure 6 com-
pares simplified Z&Ss, SHAKE and partially solved Newmark (nonsymplectic) in terms of energy and
momentum conservations. Simplified Z&Ss lost symplecticity due to simplification, but it still exhibits
improved preservation properties comparing with partially solved Newmark.

To test scalability, we increase N to 100 (900 degrees of freedom) and illustrate results in Fig. 7.
SHAKE spent 42234 s, including 14272 s on solving nonlinear systems and ∼ 28000 s on computing
V and ∇V , whereas simplified Z&Ss spent 30059 s, including 319 s on solving linear systems, and
∼ 29000 s on V , ∇V and Hess V .

Efficiency of force evaluation: Although simplified Z&Ss accelerates updates by linearization, for
large systems the computational bottleneck is likely to be on force evaluations, but not updates. For-
tunately, significant progress has been made to accelerate force evaluations, such as the fast multipole
method (Greengard & Rokhlin, 1987), or simply the idea of ignoring weak long-range forces. We did
not employ any of them, but they can be used in adjunct to simplified Z&Ss.

Times spent on force evaluations by SHAKE and simplified Z&Ss are comparable; Hessian compu-
tations in simplified Z&Ss did not incur much overhead. This is because the potential is a function of
relative distances rij = ‖xi − xj‖. For such f ,

∂2f (r)

∂xi∂xj
= ∂r

∂xi

∂2f

∂r2

∂r

∂xj
+ ∂f

∂r

∂2r

∂xi∂xj
, (4.8)

but ∂r/∂x and ∂f /∂r are already computed when calculating the gradient, ∂2r/∂xi∂xj is cheap to obtain
and ∂2f /∂r2 is the only new component of computation, but it is a scalar. In addition, nonlinear
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Fig. 5. Lagrange multipliers from the penalized system (simplified Z&Ss) and by SHAKE. Only the first oxygen atom is shown,
and illustration is terminated before chaos. Empirical average uses a time window of width 0.2; ω is temporarily enlarged to 500
for clearer visualization of details.

solver (e.g., Newton) in Lagrange multiplier or generalized coordinate methods requires the Hessian
too because the equation to be solved involves ∇V .

The linear system associated with the Hessian can also be solved in O(N) time. This is because the
Hessian is dominated by a block diagonal due to localized stiff penalty terms in (4.4). Simplified Z&Ss
further reduces the Hessian to completely block diagonal, and linear solves are executed molecule by
molecule. Similar efficiency can be obtained for polymers as long as the number of bonds is at the same
order as the number of atoms.

4.4 Coarse time-stepping of a DNA model

We now show how Z&S accelerates the simulation of an unconstrained multiscale system. Consider
the simple DNA model proposed in Mezić (2006) and further studied, e.g., in Toit et al. (2009) and
Koon et al. (2013). The displacement angle of the kth base in one strand, θk , follows:

θ̈k = θk+1 − 2θk + θk−1 − εU ′(θk), (4.9)

where U(θ) = (exp(−a[1 − cos(θ) − x0]) − 1)2 is a Morse potential modelling complementary base
pairings between two DNA strands, and linear force models the tendency of alignment between neigh-
bouring bases. Unitless parameters are a = 7, x0 = 0.3, ε = 1

1400 and the number of base-pairs N = 200
(Toit et al., 2009). Two stable configurations are given by minima of U and correspond to closed
double strands. Nonlinearity in this system is critical, for it leads to transitions between meta-stable
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Fig. 6. Energy, linear and angular momentum preservation by simplified Z&Ss, SHAKE and partially solved Newmark. h = 0.05
for all. For clarity, plots are drawn with a 20:1 downsample rate.

Fig. 7. Empirical OO radial distribution in a 100-water cluster obtained by simulations of SHAKE and simplified Z&Ss till
T = 1000.
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Fig. 8. DNA (N = 200 base-pairs) conformational transitions by Z&S and velocity-Verlet.

states that correspond to the opening of double strands. We simulate such transitions with initial posi-
tions θk = 0.8 + 0.1ξk (ξk i.i.d. standard norm), which is near a stable configuration, and initial momenta
θ̇k = cos(4πk/N)/

√
N , which facilitates the opening-up of double strands (Toit et al., 2009).

It is known Toit et al. (2009) that θ̄ =∑ θk/N is a slow variable and can be used as a reaction
parameter, whereas individual θk s are fast variables. Figure 8 presents simulations by velocity-Verlet
(benchmark) and Z&S (β = 0.3) in these variables. The phase portrait shows that the DNA transits
between meta-stable configurations θ = arccos(0.7) ≈ 0.795 and θ = 2π − arccos(0.7) ≈ 5.49. Note
that these are long-time simulations and the system is chaotic (Mezić, 2006).

The Z&S energy is lower than the benchmark because fast oscillations are damped by large time-
steps. Both h = 0.2 in velocity-Verlet and h = 2 in Z&S are near stability limits. The methods, respec-
tively, used 23.26 and 3.24 s of CPU time.

4.5 Lie group integration

Formulating Z&S as a variational principle allows us to generalize the method to mechanical systems
on Lie groups.
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Consider a prototypical example of magnetized 3D rigid body with identity inertia matrix immersed
in a constant magnetic field. The configuration space is Q = SO(3). Denote by R(t) ∈ Q the (generalized)
rigid body position; in coordinates it is a 3 × 3 matrix satisfying RTR = I. Suppose when R = I both the
magnetic field and the dipole are in the z-direction; then, the potential energy can be written as V(R) =
〈μRe3, Be3〉 = BμeT

3 R−1e3, where B and μ are field strength and dipole moment, and e3 = [0 0 1]T.
Let Ω(t) ∈ R

3 be convective angular velocity of the body; then the kinetic energy is 1
2ΩTΩ . Intro-

duce an isomorphism between R
3 and so(3) (the Lie algebra of SO(3)) by

Ω �→ Ω̂ =
⎡
⎣ 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

⎤
⎦ .

Then, Ṙ = RΩ̂ . It is known (Marsden & Ratiu, 2010) that dynamics of this mechanical system can be
obtained from either of the following equivalent variational principles:

•
δ

∫ T

0
L(R, Ṙ) dt = 0, (4.10)

with arbitrary variations of R(t) ∈ Q.

•
δ

∫ T

0
l(R, ξ) dt = 0, (4.11)

with variations in the form δξ = η̇ + adξ η under R ∈ Q and ξ = R−1Ṙ.

For our system, L(R, Ṙ) = 1
4 tr(ṘTṘ) − BμeT

3 R−1e3 and l(R, Ω̂) = 1
2ΩTΩ − BμeT

3 R−1e3 (note ΩTΩ =
1
2 tr(Ω̂TΩ̂)).

We propose to simulate the system by modifying (4.10). The result is compared with a benchmark
derived from (4.11) via the Hamilton–Pontryagin principle, backward Variational Euler discretization
and Cayley approximation of the exponential map (see Iserles, 2001; Hairer et al., 2006 for Cayley
approximation, Bou-Rabee & Marsden, 2009 for the benchmark method and Iserles et al., 2000; Lee et
al., 2007 for examples of other Lie group integrators). The benchmark uses update rules:

⎧⎨
⎩

Rk+1 = Rk(I − hΩ̂k+1/2)−1(I + hΩ̂k+1/2),

Ω̂k+1 = Ω̂k + h2

4

(
Ω̂T

k+1Ω̂k+1Ω̂
T
k+1 − Ω̂T

k Ω̂kΩ̂
T
k

)
+ hRk

∂l

∂R

(
Rk , Ω̂k+1

)
.

(4.12)

Note R is in a three-dimensional manifold, and the differential in the last term should not be computed
as a partial derivative with respect to nine Cartesian coordinates of R; otherwise the last term will not
be in so(3). Instead, we follow Holm et al. (1998) and obtain

hRk
∂l

∂R
(Rk , Ω̂k+1) = hBμRk

−eT
3 R−1

k e3

∂Rk
= hBμ

((
R−1

k e3
)× e3

)∧
. (4.13)

Equation (4.12) is variational and thus numerically energy- and momentum preserving. Owing to Cayley
approximation, it also preserves the SO(3) structure in the sense that RT

k Rk = I up to arithmetic error.
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However, variational methods of this type are intrinsically nonlinearly implicit due to curved geometry
when Q is noncommutative (e.g., Bou-Rabee & Marsden, 2009; Kobilarov et al., 2009).

Our goal is to avoid expensive nonlinear solves and bypass force evaluations that require geometric
calculations (such as (4.13)). To do so, we first add penalization to (4.10):

δ

∫ T

0

1

4
tr(ṘTṘ) − BμR(3, 3) + 1

2
ω2tr
(
(RTR − I)T(RTR − I)

)
dt = 0,

where R ∈ SO(3) is relaxed to R ∈ R
3×3. We then discretize the action as follows:

Ld(Rk , Rk+1, ak) = tr

(
1

4

(
Rk+1 − Rk

h

)T(Rk+1 − Rk

h

)
− βh2 1

2
aT

k ak

)

− BμeT
3

(
Rk + βh2ak

)
e3 − tr

(
1

2
ω2

(((
Rk + βh2ak

)T (
Rk + βh2ak

)− I
)2
))

.

(4.14)

Finally, we truncate terms that are higher than second order in ak . After using trace identities tr(AB) =
tr(BA) and tr(AT) = tr(A), the truncated action simplifies to

L̃d(Rk , Rk+1, ak) = tr

(
1

4

(
Rk+1 − Rk

h

)T(Rk+1 − Rk

h

)
− βh2 1

2
aT

k ak

)

− BμeT
3

(
Rk + βh2ak

)
e3 − tr

(
1

2
ω2

((
RT

k Rk − I
)2 + 4βh2

(
RT

k RkRT
k − RT

k

)
ak

+ 2β2h4
(
aT

k akRT
k Rk + RT

k akRT
k ak + aT

k RkRT
k ak − aT

k ak
)))

.

Unconstrained variation of this action with respect to ak gives

ak = −Bμe3eT
3 − 2ω2(RkRT

k Rk − Rk + βh2(akRT
k Rk + RkaT

k Rk + RkRT
k ak − ak)). (4.15)

Standard variational integrator construction leads to

pk = −D1L̃d(Rk , Rk+1, ak), pk+1 = D2L̃d(Rk , Rk+1, ak).

Let fk = ak + 2ω2β2h4(aT
k akRT

k + aT
k RkaT

k + RT
k akaT

k ) and use (4.15) for simplification; then the above
becomes {

pk+1 = pk + hfk ,

Rk+1 = Rk + 2hpk+1.

These are our variational linearized SO(3) integrators. Note that (4.14) is based on a first-order
quadrature; the second-order trapezoidal rule would lead to⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
pk+1/2 = pk + h

2
fk ,

Rk+1 = Rk + 2hpk+1,

pk+1 = pk + h

2
fk+1.
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Fig. 9. Snapshots of magnetized rigid body dynamics. Red and black arrows represent magnetic field and dipole, respectively.
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Fig. 10. Preservation of energy, Lie group structure and deviation from benchmark trajectory R′. (a) Variational Z&S (h = 0.1);
and (b) variational Euler on Lie group (h = 0.1).

These are similar to Z&S updates (Integrator 1.1) although Z&S works in R
n. Some may question the

usefulness of a variational formulation, because one can represent R by a nine-dimensional vector, view
the penalized system as Newton’s equation and then use Z&S. In Z&S updates (1.3), however, V (3)

is essentially a 6-tensor, and its brute-force calculation in coordinates, as well as its contractions with
a from both left and right, will be unpleasant. A variational approach minimizes the involvement of
coordinates and reduces the effort.

Figure 9 demonstrates benchmark (h = 0.0001) and variational Z&S simulations (h = 0.1, ω = 10,
β = 0.4); their difference, regarded as our method’s error, is quantified in Fig. 10(a); the error of the
benchmark method with h = 0.1 is also provided in Fig. 10(b) as a comparison. The full simulation
is available at http://youtu.be/29deMRDRsuU (last accessed 18 January 2015). Initial conditions are
R(0) = I and Ω(0) = [1; 0.2; 0.1].
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Our method and variational Euler with both h = 0.1, respectively, spent 0.03 and 1.45 s on compu-
tations. However, a variational Lie group integrator is much better at preserving the Lie group structure.
Applicabilities of the two approaches are disjoint: for example, variational Z&S generally suits com-
puter graphics better, where real time rendering requires high efficiency, while demand on accuracy is
moderate (as long as the result looks good); to orient satellites (e.g., Junge & Ober-Bloebaum, 2005),
on the other hand, one should choose variational Lie group integrators over variational Z&S, and it is
worth CPU hours to precompute trajectories with high fidelity.
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Appendix

Lemma A.1 Consider (1.7). If V is bounded from below, then there is a constant C, such that
‖g(qω(s))‖ � C/ω for all s. Moreover, if V(q) diverges to infinity as |q| → ∞, then there is a constant
C̃ such that ‖qω(s)‖ � C̃.

Proof. Note that the energy [q̇ω]TM q̇ω/2 + V(qω) + ω2g(qω)Tg(qω) in the penalized system (1.7) is
conserved and determined by the initial condition. Therefore, V(·) being bounded from below and
gTg � 0 imply that ω2g(qω)Tg(qω) =O(1). Hence, g(qω(s)) =O(1/ω).

By a similar energy argument, since [q̇ω]TM q̇ω/2 � 0 and g(qω)Tg(qω) � 0, V(qω) is bounded from
above too, which implies that qω remains bounded. �

Lemma A.2 Consider the solution to a conserved mechanical system{
ẍω = f1(xω, yω),

ÿω = f2(xω, yω) − ω2g(yω)T∇g(yω),
(A.1)

where xω and yω are vectors, and xω(0) = x0, ẋω(0) = ẋ0, yω(0) = y0, ẏω(0) = ẏ0. Suppose that f1, f2 and
∇g are C1 with bounded derivatives, xω and yω are bounded, g(y0) = 0 and (d/dt)g(y0) = 0, and g(·)
has a non-degenerate Jacobian in a neighbourhood of y0; then

λ(t) := − lim
T→0

lim
ω→∞

1

T

∫ t+T

t
ω2g(yω(s)) ds (A.2)

exists and is finite. Denote by x(t), y(t) the solution to⎧⎪⎨
⎪⎩

ẍ = f1(x, y),

ÿ = f2(x, y) + λT∇g(y),

g(y) = 0,

(A.3)

with the same initial conditions x0, ẋ0, y0, ẏ0; then, as ω → ∞,⎧⎪⎨
⎪⎩

xω → x,

yω F−→ y,

g(yω) → 0.

(A.4)

Proof. We employ the multiscale averaging framework described in Tao et al. (2010) to demonstrate
the convergence. Here, xω is a slow variable and its evolution corresponds to the constrained dynamics;
yω is a fast variable corresponding to a fluctuating deviation from the constraint manifold at a charac-
teristic timescale of O(1/ω), and it lies in the normal bundle of the constraint manifold.
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First, consider the linear constraint case in which g(y) = CyT for some nonsingular C (the affine
case can be similarly treated by shifting y). We see that y dynamics is governed by

ÿω = f2(x
ω, yω) − ω2yωCTC. (A.5)

This is a forced harmonic oscillator, and its solution can be written as

yω(t) =
∫ t

0
f2(x

ω(s), yω(s)) sin(ωC̃s)C̃−1/ω ds, (A.6)

where C̃ = √
CTC is the well-defined matrix square root, and matrix sin is defined either by Taylor

expansion or diagonalization. Note that there is no propagation of the initial condition because
yω(0) = 0.

It can be shown from (A.6) (for instance, by Tao et al., 2011, Lemma 3.8; the idea is that an addition
1/ω comes from the sin due to integration by parts) that yω(t) is O(ω−2) at least up to t = o(1), and
yω is asymptotically periodic (because (A.5) is asymptotically linear), and hence locally ergodic on the
energy shell (with Dirac ergodic measure).

Since yω is locally ergodic on the energy shell, (A.2) well defines λ, and Tao et al. (2010, Theorem
1.2) guarantees that the effective equation for (A.5) is

ÿ = f2(x
ω, y) + λTC, (A.7)

in the sense that yω F−→ y and xω → x. Note that the convergence on x is in the strong sense,
i.e., limω→∞ xω(t) → x(t) for all bounded t > 0. This is because x is purely slow, for which case,
F-convergence implies strong convergence.

Now, consider a fully nonlinear g(·) with a nondegenerate Jacobian. Lemma A.1 gives that g(yω) =
O(1/ω). Since yω is by assumption bounded, inverting g leads to yω − y0 =O(1/ω). Consequently, the
dynamics of yω approaches that of a forced oscillator (with equilibrium at y0) at an O(1/ω) timescale,
because g(·) is approximated by its first-order Taylor expansion:

ÿω = f2(x
ω, yω) − ω2g(yω)T∇g(yω)

= f2(x
ω, yω) − ω2

(∇g(y0)(y
ω − y0)

T + O(ω−2)
)T (∇g(y0) + Hess g(y0)(y

ω − y0)
T + O(ω−2)

)
= f2(x

ω, yω) − ω2(yω − y0)∇g(y0)
T∇g(y0) + O(1),

where nonlinearity f2 + O(1) again manifests as a slow force, which is dominated by the linear term
that leads to asymptotically periodic oscillations. Hence, similar to the linear case, yω is locally ergodic
on the energy shell, the Lagrange multiplier λ is well-defined and the solution xω, yω F-converges to the
effective solution x, y. �

Sketch of the proof of Theorem 1.3. (Figure A1 illustrates the notation used in the proof to help under-
stand the geometry.) Since g(qω) is at most O(1/ω) (Lemma A.1), qω is close to the constraint manifold
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Fig. A1. Multiscale geometry of penalized constrained dynamics – x and y are slow and fast.

g−1(0) in the sense that if we define, for all t,

q0(t) := min
q∈g−1(0)

‖q − qω(t)‖ (A.8)

then qω(t) − q0(t) =O(1/ω). Indeed, given that ∇g has the maximum rank, ∇g(q0(t)) spans the normal
section (i.e., the subspace perpendicular to the tangent subspace) of the constraint manifold, in which
qω(t) − q0(t) also lies. Moreover, g restricted to each normal section is an isomorphism, and both the
restricted map and its inverse have bounded norms due to the boundedness of qω (i.e., compactness of
the solution space)—this is why g(qω) =O(1/ω) implies qω(t) − q0(t) =O(1/ω).

The idea is that since qω is close enough, the constraint manifold can be locally viewed as a flat
subspace, and F-convergence for this case has been proved in Lemma A.2. More precisely, there exists
a linear isomorphism Aq0(t), such that

Aq0(t)(q
ω(t) − q0(t)) =

[
0
y

]
, (A.9)

where y is a vector with codimension of g−1(0) and 0 is a null vector.
For qω(s) with s − t =O(1/ω), we will have a full-dimensional representation:

Aq0(t)(q
ω(s) − q0(t)) =

[
x
y

]
, (A.10)

and x and y will, respectively, be the slow and fast variables, representing the constrained dynamics and
fluctuations away from the constraint manifold (analogous to Lemma A.2). This is because

d2

ds2

[
x
y

]
= Aq0(t)(−∇V(qω(s)) − ω2g(qω(s))∇g(qω(s)))

=
[

f1(x, y)

f2(x, y)

]
+
[

O(1)

−ω2g̃(y)∇g̃(y) + O(1)

]
, (A.11)
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where f1 and f2 are defined as Aq0(t)(−∇V(qω(s))). The O(1) in the first row of the right-hand side of
(A.11) is because Aq0(t) rotates the normal section to the y-direction, i.e.,

Aq0(t)∇g(qω(s)) = Aq0(t)(∇g(q0) + O(1/ω)) =
[

0
∗
]

+ O(1/ω), (A.12)

where ∗ is some nonzero expression, and certainly O(1/ω) =O(1).
The O(1) in the second row of the right-hand side of (A.11) can also be intuitively obtained by using

an analogous geometric argument, together with Taylor expansion.
Since (A.11) corresponds to the locally flat system (A.1), Lemma (A.2) proved the existence of an

equivalent Lagrange multiplier as well as the F-convergence towards it. Moreover, (A.11) and the global
dynamics near the curved constraint manifold (1.7) is linked via a coordinate transformation qω �→
Aq0(q

ω − q0), which, naturally, is slowly varying as q0 changes. Since averaging via F-convergence (Tao
et al., 2010, Theorem 1.2) still works if the slow and fast variables are images of the original variable
under a slowly varying diffeomorphism, the global dynamics (1.7) is F-convergent to a solution of (1.9).
Note that g(q(t)) = 0 in (1.9) is automatically satisfied, because limω→∞ g(qω(t)) = 0.

Finally, the solution to (1.9) is also the solution to (1.6). This is by the existence and uniqueness of
the solution to differential algebraic equations with initial conditions.

(Only main lines of the proof are provided; details are similar to analysis in Tao et al., 2010, 2011.)
�

Remark A.3 The above proofs show that g(qω(s)) is not only O(ω−1), but also O(ω−2).
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