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Abstract— Consider a finite collection of oscillators, which a
user has limited means to perturb due to physical restrictions.
We show that as long as the stiffness parameters of these
oscillators can be harmonically perturbed, one can design a
single shared perturbation, such that macroscopic trajectory
tracking is achieved independently in each oscillator; that is,
the oscillation amplitudes of all oscillators will approximate,
respectively, an arbitrary collection of target functions. This
control mechanism is based on the dynamical phenomenon of
parametric resonance, which not only permits both increase
and decrease of the oscillation amplitude by design, but also
the simultaneous control of multiple oscillators with distinct
intrinsic frequencies. A simulated animation of a remotely-
powered-and-controlled array of circuits illustrates the efficacy
of this control. Oscillators that can be controlled by this
mechanism are not limited to harmonic ones, but those subject
to additional weak damping, noise, and nonlinearity.

I. INTRODUCTION

Our abilities to interact with practical systems are con-
strained by physical and technological limitations; in particu-
lar, this article considers a setup whose goal is to control the
oscillation amplitudes (and hence the energies) of a group
of oscillators, but each oscillator can only be perturbed in
a restricted, parametric way. A theoretical approach will
be proposed to individually control the behaviors of all
oscillators by a single shared signal, based on a dynamical
phenomenon known as parametric resonance [1][2]. The
main result is, when the intrinsic frequencies of the oscil-
lators are separated, the energy/amplitude of each oscillator
can be made to well-approximate an arbitrary positive slowly
varying target function. Throughout this article, this type of
objective will be called macroscopic trajectory tracking.

One motivation of this study is a recent progress in the
development of wireless energy transferring technologies,
termed capacitive parametric ultrasound transductor (CPUT;
see [3], [4], [5]). CPUT is based on an RLC circuit, where
one of the capacitor’s double plates is a membrane that can
be mechanically modulated by an external ultrasound signal,
and the ultrasound is designed to vary the capacitance (and
hence the stiffness parameter of the RLC oscillator) in a
specific way such that the circuit is resonantly excited. In this
manner, the mechanical energy of the ultrasound is wirelessly
transferred into the electric energy of the circuit, supporting
the operation of its load, which could be, for instance,

*Molei Tao thanks Shuo Han for insightful comments and the support of
NSF grants DMS-1521667, ECCS-1829821, and DMS-1847802

1Pengcheng Xie is with Xian Jiaotong Univ., and this work was primarily
done while he was an exchange student at Georgia Institute of Technology

2Molei Tao is with School of Mathematics, Georgia Institute of Technol-
ogy, USA mtao@gatech.edu

implanted biomedical devices (see e.g. [6] and [7] for pioneer
work prior to CPUT, and [3], [4] for the applicability of
CPUT). Therefore, CPUT provides an example in which
the oscillator can and only can be nonintrusively perturbed
in its stiffness parameter. There are other practical setups
that have similar constraint and objective. For instance,
the coupling between an external laser-induced oscillatory
electromagnetic field and the nonlinear core of an inductor
(e.g., [8]) can provide another source of parametric excitation
of electric circuits. See Fig. 1 for a cartoon of these two
setups. One advantage of these setups is that the perturbation
is essentially remote and wireless. Meanwhile, it should be
mentioned that the setup does not have to be electrical or
electromechanical, and there are mechanical analogies: for
instance, the energy contained in mechanical vibrations has
also been successfully harvested in experiments based on
spring-mass systems (e.g., [9]), and mechanical vibrations
that vary the effective lengths of springs will correspond to
a purely mechanical way of producing parametric excitations
of oscillators, just like how a child pumps a swing. Addi-
tional magnetic analogies will also be reviewed near the end
of this section.

Fig. 1: RLC circuit with variable capacitance due to variations
in double plate distance, and/or variable inductance due to fasten-
ing/loosening of the coil. No power source is needed.

These setups are relevant because the mechanism proposed
in this article can lead to the remote control of the corre-
sponding oscillators. In all aforementioned work, resonance
was used to inject energy into such a system. We suggest
using the same form of restricted parametric perturbations
to accomplish (i) a more refined objective, which is macro-
scopic trajectory tracking, and (ii) the simultaneous control
of many such systems by a shared signal, for instance via
an incident acoustic wave or electromagnetic field. This will
allow, for instance, the wireless manipulation of an array
of RLC circuits with one common external signal, without
interrupting the operation of the circuits. Potential applica-
tions are not limited to biomedical ones, but also possibly a
centralized operation of a swarm of microscopic robots, for
example. However, we clarify that the scope of this short
article is restricted to a mathematical demonstration, in a
simplified setup, of the resonant control mechanism only.

Specifically, consider a system of oscillators subject to



weak dissipation, weak nonlinearity (chosen to be cubic just
for illustration purposes), and small white noise:{

dqi = vidt i = 1, · · · ,n
dvi =−

(
ω2

i (1+P(t))qi(t)+µiq3
i + γivi

)
dt +σidWi

(1)
where qi, vi, ωi, µi, γi and σi are respectively ith oscilla-
tor’s position, velocity, intrinsic frequency, strength of small
nonlinearity, damping coefficient, and small noise amplitude.
The oscillators’ stiffness (i.e. ω2

i ) are perturbed in time by
P(t), which is chosen as

P(t) =
n

∑
i=1

εi cos(2ωit +θi). (2)

Assume ωi’s are all distinct, because in many applications
one designs the oscillators in order to accomplish a certain
task, and in this case s/he can choose ωi values to be isolated.

Given an arbitrary family of positive-valued functions of
time { fi(t)}n

i=1 that are slowly varying1, we will choose
θi and small εi as piecewise constant functions of time,
such that the amplitude of each oscillator, defined by√

qi(t)2 + q̇i(t)2/ω2
i , approximates the corresponding target

function fi(t) when the damping, nonlinearity and noise are
weak. More precisely, let ε be such that εi(t)≤ ε for all i and
t, and ω = mini ωi. Then when noise is absent, the pointwise
(i.e. strong) accuracy of this approximation is√

qi(t)2 + q̇i(t)2/ω2
i − fi(t) = O(ε) (3)

for all bounded t except in a transient initialization phase
(corresponding to t� ε/ω); the same result holds with high
probability when there is noise.

Details of how to choose εi and θi will be given by
Algorithm 1. The physical meaning of these choices is, one
chooses the parametric perturbation as a linear combination
of small-amplitude harmonics, and carefully alters the fre-
quencies and amplitudes of these harmonics only once in
a while. Such choices are implementable at least when the
control signal is a generated ultrasound or laser. Numerical
simulations, including an animation, will be provided to
illustrate the efficacy of this algorithm.

Derivations that lead to Algorithm 1 will be described. The
design rationale is based on the idea of resonant control,
which utilizes the selectivity of resonance in frequencies.
Since one can design the circuits such that all their intrinsic
frequencies are distinct, components with different frequen-
cies in the perturbation P(t) can be used to control different
circuits in parallel. Important to note is, superimposing
multiple frequencies for achieving multiple objectives is
not new but a classical idea; nevertheless, the particular
choice of using parametric resonance to accomplish each
objective is innovative. Unlike linear resonance, parametric
resonance can be used to induce not only an increase in the
energy/amplitude but also a decrease. Only by enabling both

1Defined as fi changing at a timescale slower than the oscillation
timescale associated with ωi; see [10] for more details. When ωi � 1 the
function only has to be sufficiently smooth to be slowly varying.

growth and decay can trajectory tracking be accomplished.
Trajectory tracking is achieved only at a macroscopic

timescale. Due to its restricted form, the control P(t) is
unable to alter the short time behavior of the system, which
will always be nearly harmonic oscillations; nevertheless, the
accumulated interaction between the parametric perturbation
and the intrinsic oscillations will eventually lead to an
effective contribution across timescales, which we utilize to
enable the tracking of arbitrary function at a timescale slower
than the oscillation timescale. Being able to trajectory-track
only at the macroscopic timescale is, in many cases, not
a critical limitation, because as long as all ωi � 1 this
macroscopic timescale is actually O(1), and often one can
design the circuits to have high intrinsic frequencies. Also
needed mentioning is, macroscopic trajectory tracking is not
a new idea but the objective of the classical problem of
amplitude modulation. What is new is again the mechanism
that accomplishes it (parametric resonance). Also, because
many amplitudes are simultaneously modulated, a trajectory
in a high-dimensional space is being tracked, and hence the
name.

As the proposed approach utilizes small scales to control
large scale behaviors, it is an application of the recently pro-
posed multiscale control methodology (see e.g., [11], [10]).
It complements the traditional Lie-algebra-based nonlinear
controllability theory (e.g., [12]), which alone is insufficient
because (i) the goal of trajectory-tracking is stronger than
the notion of controllability, and (ii) the controlled system
has microscopic details, and while these details (and thus
the entire system) are not controllable, it is still possible to
control only the macroscopic behavior. A technical sidenote
is, it is only a matter of definition whether to call the
µi = 0,σi = 0 system linear, because it can be viewed as
both a nonautonomous linear system and a nonlinear system
if time is viewed as a dummy variable satisfying ṫ = 1.

Motivated by rich applications, there have been long
time and deep investigations in the problem of controlling
many similar oscillators by one shared signal. For instance,
the active field of ensemble control is concerned with the
controllability of infinitely many structurally-alike oscilla-
tors, which originated from practical problems such as how
to manipulate an ensemble of nuclear spins. To be more
specific, Bloch equation [13], for instance, which is essential
to applications such as nuclear magnetic resonance (NMR)
spectroscopy and magnetic resonance imaging (MRI), has its
governing differential equations being linear with designable
time-dependent coefficients similar to our setup, and [14]
discussed its ensemble control. We also refer to [15] and
[16], respectively, for more theoretical and numerical inves-
tigations in ensemble control. Our study is complementary
to ensemble control in the sense that we only control finitely
many oscillators, but because of that simplification, each os-
cillator can be controlled more closely (recall the difference
between macroscopic trajectory-tracking and controllability).
There are many other applications of controlling multiple
oscillators in which a quasiperiodic control enters the system
in an affine way. For example, see [17] for how such control



was designed to steer, both theoretically and experimentally,
electrochemical reactions into synchronization; this objective
was not the same as trajectory-tracking, but the work was
remarkable because the system is nonlinear and real-world.
We also refer to [18], [19], [20], [21], [22], [23], [24], [25],
[25], [26] and references therein for additional interesting
discussions on the control aspect of oscillator synchroniza-
tion. We repeat, however, that the main purpose of this article
is simultaneous trajectory-tracking, not synchronization.

II. CONTROL OF MULTIPLE OSCILLATORS: THE
TIME-DEPENDENT LINEAR THEORY

Consider a system of n oscillators

q̈i(t)+ω
2
i (1+P(t))qi(t)+ γiq̇i(t) = 0, i = 1,2, · · · ,n (4)

where γi’s are constant parameters that characterize the
strengths of damping, which model ubiquitous dissipation
in practical systems, and

P(t) =
n

∑
i=1

εi cos(ω ′i t +θi)

is a shared, implementable (see Introduction) quasiperiodic
perturbation to the stiffness parameters of all oscillators,
which will be the control to be designed. Parametrically
perturbed RLC circuits are natural examples of such systems.

We will show, via Theorem 1, that the choice of ω ′i = 2ωi
for all i will achieve parametric resonance in each oscillator,
and this choice will be assumed from now on. Theorem 1
will also quantify how εi and θi values affect the macroscopic
behaviors of the oscillators, which will later on allow us to
design P(t) for achieving macroscopic trajectory tracking in
each of these oscillators.

The following weak dissipation assumption will be made.
It is a reasonable assumption because after all only under-
damped oscillators are truly oscillatory.
Condition 1. Assume 0≤ γi� ωi.

A. The Asymptotic Analysis

Theorem 1. Consider (4) with P(t) = ∑
n
i=1 εi cos(2ωit +θi),

where all ωi’s are distinct and Condition 1 is satisfied. Given
εi� 1, there exists C such that for 0≤ t ≤ C

εi
:

when tan
θi

2
=

2ω̂iqi(0)+ γiqi(0)+2q̇i(0)
−2ω̂iqi(0)+ γiqi(0)+2q̇i(0)

,

the ith oscillator’s solution is

qi(t) = e
εiω̂it

4 −
γi
2t

(
qi(0)cos(ω̂it)+ q̇i(0)

sin(ω̂it)
ωi

)
+O(εi).

and when tan
θi

2
=

2ω̂iqi(0)− γiqi(0)−2q̇i(0)
2ω̂iqi(0)+ γiqi(0)+2q̇i(0)

,

the solution is

qi(t) = e−
εiω̂i

4 t− γi
2 t
(

qi(0)cos(ω̂it)+ q̇i(0)
sin(ω̂it)

ωi

)
+O(εi),

Here ω̂i =
√

ω2
i − γ2

i /4.

The implications of Theorem 1 are, (i) what affects the
ith oscillator in P(t) is only the term with two-times the
oscillator frequency, and (ii) a particular choice of phase
value in that term will lead to an exponential decay of the
amplitude of that oscillator, and another choice will lead to
an exponential growth of the amplitude. Once one can let the
amplitude grow and decay at times of choice, macroscopic
trajectory tracking becomes a possibility. In addition, because
of (i), one only needs to design the a term in P(t) that
controls oscillator #i, and then linearly combine all terms
to parallelly control all the oscillators.

The proof is in the APPENDIX.

B. The Algorithm for Designing the Control P(t)

How to choose piecewise-constant perturbation amplitude
and phase for the macroscopic trajectory-tracking of a single,
frictionless harmonic oscillator has been described by Algo-
rithm 16 in [10]. Theorem 1 showed it suffices to control
each oscillator separately by designing the corresponding εi
and θi. Therefore, we only need to generalize the existing
algorithm to the dissipative case based on the special choices
of θi given by Theorem 1.

The idea is, to track fi(t), approximate it by a piecewise
exponential function, and choose fixed εi and θi values within
each time piece, so that the amplitude of the ith oscillator
mimics the exponential behavior of fi on that piece.

This piecewise approach will be accurate as long as
fi changes much slower than oscillations at the intrinsic
frequency ωi, which is a mild requirement because ωi can
be large. More precisely:

Condition 2. Assume that each fi(t) ∈ { fi(t)}n
i=1 is slowly

varying when compared to the time scale 0 < max{1/ωi}<
∞, which means that fi(t) ∈C1([0,T ]) and

| 1
ωi

d
dt

log fi(t)| � 1 and | 1
ωi

d
dt

fi(t)| � 1

for all t ∈ [0,T ], where T is the end time of the control.

Under Condition 1 & 2, the following will provide P(t)
so that each oscillator tracks its corresponding fi:

Algorithm 1 Parametric resonant control of oscillators

1: Discretize the time axis into uniform pieces, with

width (i.e., time step, which is chosen to be between

fast oscillation timescales and the macroscopic tracking

timescale) H := C
min{ωi} for some pre-chosen O(1) con-

stant C (default: C = 2).

2: At the beginning of each time step (i.e., t = mH for

m ∈ N), compute for each oscillator (i = 1, · · · ,n),

ri :=
fi(t +H)√

qi(t)2 + q̇i(t)2/ω2
i

(5)



3: Case 1: If ri ≥ 1 (exponential growth needed), let

εi =
4logri +2γi

ωiH

θi = 2arctan
2ω̂iqi(0)+ γiqi(0)+2q̇i(0)
−2ω̂iqi(0)+ γiqi(0)+2q̇i(0)

throughout this time step (i.e., for t ∈ [mH,(m+1)H)).

4: Case 2: If ri ≤ 1 (exponential decay needed), let

εi =−
4logri +2γi

ωiH

θi = 2arctan
2ω̂iqi(0)− γiqi(0)−2q̇i(0)
2ω̂iqi(0)+ γiqi(0)+2q̇i(0)

throughout this time step.

5: Let P(t) = ∑i εi cos(2ωit +θi) throughout this time step.

6: Move to the next time piece (i.e., m→m+1) and iterate

until m = bT/Hc.

Remark. (arbitrary initial condition) The initial energy of
the system has to be nonzero for the parametric resonant
control to work, but it can be arbitrarily small. If there is
noise, even zero initial energy is no longer an issue, because
the noise will perturb the energy away from zero and such
perturbation ‘ignites’ the parametric resonance.

Remark. (slow variation leads to accuracy) Conditions 1 &
2 together ensure εi� 1. They are critical because we would
like to choose εi such that when a growth in the oscillation
amplitude is needed, enough energy can be injected into the
circuit even though there is dissipation, but εi cannot be too
large, not only because the asymptotic analysis is based on
the assumption of small εi, but also because physically there
is a limitation on the rate of energy injection. More precisely,
we require εi� 1 to satisfy εiω̂it

4 −
γit
2 = logri when ri > 1,

and Condition 1 & 2 together fulfill this requirement.
Importantly, if one would like to reduce ε to improve the

accuracy of macroscopic trajectory tracking (see (3); recall
ε ≥ εi(t)), increasing all ωi’s while fi’s are fixed will provide
such a reduction.

Remark. (closed-, open-loop, and stability) It is easy to see,
for instance from (5), that Algorithm 1 corresponds to a
closed-loop control. It assumes that precise measurements
of the state of the system at discrete time points mH are
possible. This is a limitation of our approach. Fortunately,
some degrees of relaxation are allowed: if one only knows
the initial state of the system, an open-loop control based on

ri := fi(t +H)/ fi(t)

can be used to replace (5), and qi, q̇i will just be simulated.
However, this choice will lead to accumulations of errors
when ωi’s are not large.

If inexact state estimation is available, more errors will be
induced; however, if qi,q̇i can be estimated with O(ε) error,
the error of trajectory tracking will still be bounded by O(ε)
as in (3) for the case of exact measurements. On the other

hand, the algorithm is not expected to work if only the initial
state is known but with error exceeding O(ε).

C. Animated Illustration of The Simultaneous Macroscopic
Trajectory Tracking

To demonstrate the efficacy of our methodology, we con-
sider controlling the luminosities of an array of light bulbs.
Each light bulb (assumed of constant resistance) is the load
of an RLC circuit and tunable in terms of brightness. By
simultaneously trajectory-tracking the energy in each circuit,
one can turn the array into a miniaturized monitor, which
can display contents according to a remote control without
requiring a power cord or a signal cord. This is illustrated
by a produced animation.

More precisely, we pre-chose the target functions fi(t) and
numerically simulated (4) with P(t) given by Algorithm 1.
Time variations of the array were outputted as an animation
(available at https://youtu.be/JmSLcOl_7MY ; see
also Fig. 2). In this animation, each frame consists of 5×
12= 60 blocks, and the grey scale of each block corresponds
to a bulb luminosity given by the oscillation amplitude in that
block, which varies in time. By making the amplitudes of 60
oscillators follow different target functions (see APPENDIX
for details), we command GT , which is an abbreviated name
of the authors’ institute, to enter from the right side, then
disappear one by one and appear again in the order of
handwriting. Fig. 3) illustrates the nontrivial P(t) used to
track such a trajectory.
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Fig. 2: Snapshots of an animation that illustrates the simultaneous
control of oscillators: each oscillator is a pixel. Time instances of
these 4 snapshots: 0:02, 0:06, 0:07, 0:10.

This animation provides an illustration of the following
features of the proposed control mechanism:
• With a single shared control function P(t), a large

amount of oscillators can be individually controlled.
• This control also powers all the oscillators at the same

time.
• In addition to increasing, the amplitudes of the oscil-

lators can also decrease by design. This is necessary
for enabling trajectory tracking. Moreover, different
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Fig. 3: The control P(t) used for producing the animation.

oscillators can behave independently; e.g., some can
decrease while others are increasing (all by design).

• When all of the intrinsic frequencies are large, the
system responses fast and the control is accurate too.

D. Static Illustration of Simultaneous Macroscopic Tracking
We demonstrate Algorithm 1 on a system of four damped

oscillators. The target functions are arbitrarily chosen as

f1(t) = 0.1t2 +(13− t)+ t sin t + e−t

f2(t) = 2t cos(2t)+ t +10

f3(t) =
1
2

t +
1
2

t sin t +13+10e−2t

f4(t) = 0.1t2 + t cos t +10+2e−t − t

. (6)

The initial condition is arbitrarily chosen to be qi(0) =
10, q̇i(0) = 0 for i = 1,2,3,4. Choices of parameters of the
oscillators are listed in TABLE I.

TABLE I: Parameters of damped oscillators in Section II-D

ω1 ω2 ω3 ω4 γ1 γ2 γ3 γ4
280 290 300 310 4.5 5 5.5 6

Numerically integrated trajectories of qi(t) are shown in
Fig. 4, which confirms the accomplishment of macroscopic
trajectory tracking.

As a comparison, Fig. 5 shows that if we choose εi and θi
using the frictionless algorithm in [10], which corresponds
to the frictionless case of Theorem 1’s conclusion, then the
control does not work any more, even though γi’s are small.
Thus algorithm 1 which incorporates the leading order effect
of γi is indispensable in a workable generalization.

III. THE CASE WITH ADDITIONAL NONLINEARITY AND
WHITE NOISE

Since practical systems are seldom linear deterministic, we
now demonstrate that the same multiscale resonant control
algorithm also applies to systems with weak noise and
nonlinearity, as long as the target functions have reasonable
magnitudes, and ‘reasonable’ will be quantified.

Consider the multiple oscillator system with additional
nonlinear forcing terms µ1q3

1(t),µ2q3
2(t), · · · ,µnq3

n(t) and ad-
ditional Gaussian noises with strength σ1,σ2, · · · ,σn. This

Fig. 4: How oscillations (blue) track the target amplitude functions
(red) when four damped oscillators are controlled by Algorithm 1.

cubic nonlinearity is common for mechanical oscillators, e.g.,
[9]; changing the form of the nonlinearity will affect details
of the calculation below, but not the fact that Algorithm 1
still works for reasonable target functions. The governing
equations are (1) and the perturbation is of the form (2).

Similar to before, we will focus on one generic oscillator
in the system, with intrinsic frequency ωi. Asymptotic anal-
ysis will be employed to estimate how large µ (nonlinearity)
and σ (noise) can be such that Algorithm 1 still applies. A
proof similar to that of Theorem 1 will also show that if,
in addition, all ωi values are well separated, then a linear
combination of perturbations that respectively control each
oscillator will simultaneously control all of them. For the
sake of length, the detailed calculation will be limited to the
frictionless case (γi = 0), but an inspection of the derivation
will convince that adding γ will not change the steps or the
qualitative conclusion.

A. Asymptotic Analysis for Estimating the Validity Regime

We will quantify how small µi and σi need to be in
order for the nonlinearity and noise to be only a higher

Fig. 5: How oscillations (blue) fail to track the target amplitude
functions (red) when four damped oscillators are controlled without
correctly considering the damping.



order perturbation to the controlled system. The main tool
will be an asymptotic analysis method known as averaging
for stochastic differential equations (see e.g., [27]). For
conciseness and clarifty, the subscript i will be suppressed
in this section unless needed.

For this quantification, write the governing system of
equations (1) in the following form

dx = (Ωx+g(x, t))dt +σdW,

where Ω =

[
0 1
−ω2 −γ

]
, σ =

[
0 0
0 σi

]
,

x =
[

q
p

]
, g(x, t) =

[
0

−ε cos(2ωt)q−µq3

]
.

Large ω and small ε create a separation of scales, but both
the fast and the slow scales are mixed in x. We thus introduce
a coordinate transformation

x(t) = eΩty(t)

to separate the scales. In the γ = 0 case, it spells out as{
q(t) = cos(ωt)y1(t)+

sin(ωt)
ω

y2(t)
p(t) =−ω sin(ωt)y1(t)+ cos(ωt)y2(t)

.

Ito formula (see e.g.[28]) gives

dy = e−Ωtg(eΩty, t)dt + e−Ωt
σdW, (7)

and we will use the method of averaging to obtain a good
approximation to the nonlinear equation (7), which is

dy = 〈e−Ωtg(eΩty, t)〉dt +
√
〈e−ΩtσσT (e−Ωt)

T 〉dB,

where 〈·〉 is a time average defined as

〈h(t)〉= 1
T

∫ T

0
h(t)dt

and T = 2π

ω
in our case.

Calculations will show that, for our specific problem, the
averaged approximate equation isdy1 =− y2

4ω2 [ε−
3(y2

1ω2+y2
2)

2ω2 µ]dt + σ√
2

1
ω

dB1

dy2 =− y1
4 [ε +

3(y2
1ω2+y2

2)

2ω2 µ]dt + σ√
2
dB2

where B1 and B2 are i.i.d. standard Wiener processes. There-
fore, as long as

|ε| � 3(y2
1ω2 + y2

2)

2ω2 |µ|, (8)

the nonlinearity in the original equation will have negligible
impact on the dynamics if the solution is considered only for
O(ε−1) time, and this is indeed the timescale Algorithm 1
is based on.

Note y2
1 +

y2
2

ω2 = q2 + p2

ω2 = A2 where A is the oscillation
amplitude. Therefore, (8) is equivalent to |ε| � 3A2

2 |µ|; that

is, |A| �
√

2|ε|
3|µ| . This means, if the target signal satisfies

max
t∈[0,T ]

| f (t)| �

√
2|ε|
3|µ|

(9)

then tracking | f | can be accomplished from time 0 to T when
the nonlinearity is present.

Additionally, in order for the noise not to introduce signifi-
cant impact on the dynamics (more precisely, in order for the
probability of having trajectories significantly different from
the deterministic trajectory to be exponentially small [29]),
we need the variance of the noise to be much smaller than
the norm of the deterministic drift. Note it is the variance,
not the amplitude, which can be seen from an asymptotic
expansion of the Fokker-Planck equation (e.g., [30]). This
leads to an additional condition on the noise strength:

σ2

2
� min

t∈[0,T ]
| f (t)|ε

4
(10)

To summarize, when ωi is fixed, as µi decreases, Algo-
rithm 1 will allow the ith oscillator to track larger functions;
on the other hand, as σi decreases, it can track smaller
(positive) functions. The quantitative relations are given by
(9) and (10), and when they hold Algorithm 1 works as
if there is no nonlinearity or noise, and with probability
exponentially close to one.
Remark. (robustness) Similar justification also applies to
small unmodeled nonlinearity. On the other hand, the control
mechanism can fail when the nonlinearity becomes large,
even if only intermittently.

B. Numerical Demonstration
This section demonstrates numerically that Algorithm 1

indeed works well when there are weak nonlinearity, noise,
and damping too. Choose the same target functions as (6).
The initial condition is the same as before. The oscillator
parameters are first chosen to be in TABLE II, in which
case we obtain Fig. 6, which shows that trajectory tracking is
accomplished to a reasonable extent. Note that the damping,
noise and nonlinearity are not too small.

Fig. 6: Tracking of the target amplitude functions (red) when four
damped nonlinear noisy oscillators are controlled by Algorithm 1.

We then change the intrinsic frequencies to larger values
in TABLE III, and tracking becomes even more accurate as
Fig. 7 illustrates. This is precisely what was remarked in
Sec. II-B: the error of trajectory-tracking effectively reduces
as ωi increases, because the error is O(ε) but εi decreases
when ωi increases.



TABLE II: Parameters of oscillators with damping, noise and
nonlinearity in Section III-B

ω1 ω2 ω3 ω4 γ1 γ2 γ3 γ4
280 290 300 310 4.5 5 5.5 6
µ1 µ2 µ3 µ4 σ1 σ2 σ3 σ4
2.5 3 3.5 4 4 3.5 3 2

TABLE III: Parameters of oscillators with damping, noise, non-
linearity, and higher frequencies in Section III-B

ω1 ω2 ω3 ω4 γ1 γ2 γ3 γ4
880 900 920 940 4.5 5 5.5 6
µ1 µ2 µ3 µ4 σ1 σ2 σ3 σ4
2.5 3 3.5 4 4 3.5 3 2

IV. CONCLUSION

The dynamical phenomenon of parametric resonance is
exploited and shown as a new mechanism for the simultane-
ous remote control of multiple oscillators. Under reasonable
assumptions, a common temporal control signal can enable
the amplitude of each high-frequency oscillator to, respec-
tively, follow an arbitrary low frequency trajectory. Based
on theoretical analysis, how to design this control signal is
specified by Algorithm 1. This control mechanism is robust
to perturbations from friction, weak nonlinearity and noise.

V. APPENDIX

A. A brief recap of averaging and temporal homogenization

Given ẏ = εg(y, t), y(t) ∈ Rn, the powerful method of
averaging suggests to consider an averaged system ˙̄y =
ε ḡ(ȳ), where ḡ(y) := limT→∞

1
T
∫ T

0 g(y, t)dt. Under certain
conditions (e.g., bounded Lipschitz constant w.r.t. x in g)
and assumed existence of ḡ, averaging theorem quantifies
the approximation accuracy as y(t) = ȳ(t) + O(δ (ε)) till
t = O(ε−1), where δ (ε) is an order function that may be
as small as ε in some cases but larger in other cases (see
e.g., [31] for details and [27] for generalization to SDEs).

Temporal homogenization [10] is more restrictive, but it
relaxes required conditions and provided tighter error bound.
It works for ẋ = Ax+ εP(t)x+ f (t). Such systems can be

Fig. 7: Further improved tracking of the target amplitude functions
(red) when four damped nonlinear noisy oscillators with larger
frequencies are controlled by Algorithm 1.

converted to ẏ= εg(y, t) via coordinate change. The resulting
g may or may not satisfy the Lipschitz condition for the
averaging theorem. When it does (e.g., if A is anti-symmetric
and f = 0), both approaches produce the same approximate
system. Otherwise, temporal homogenization can still work.
Its full result is in [10], and since this article mainly focuses
on cases where f = 0, its approximation will be

x(t) = eAt (eεBtx(0)+O(ε)
)

till t = O(ε−1) (11)

where B = limT→∞
1
T
∫ T

0 e−AtP(t)eAtdt.

B. Proof of Theorem 1.

Rewrite (4) as

d
dt

[
qi(t)
q̇i(t)

]
= Ω

[
qi(t)
q̇i(t)

]
+

n

∑
j=1

ε jK j(t)
[

qi(t)
q̇i(t)

]
where

Ω =

[
0 1
−ω2

i −γi

]
, K j(t) =

[
0 0

−ω2
j cos(2ω jt +θ j) 0

]
.

Temporal homogenization can approximate the solution (see
Section V-A). In its computation, we will only keep O(1)
and O(γi) terms due to the assumption that γi� ωi:

eΩt = e−
γit
2

[
cos ω̂it +

γi
2ω̂i

sin ω̂it
sin(ω̂it)

ω̂i

−ω2
i

ω̂i
sin ω̂it cos ω̂it− γi

2ω̂i
sin ω̂it

]

+O(γ2
i ), where ω̂i =

√
ω2

i −
γ2

i
4
.

B = lim
T→∞

1
T

∫ T

0
e−Ωt

n

∑
j=1

K j(t)eΩtdt =
[

B11 B12
B21 B22

]
+O(γ2

i )

with



B11 =− sinθi

2
√

4ω2
i −γ2

i
ω2

i −
γi

4ω2
i −γ2

i
· cosθi

2 ω2
i

B12 =− ω2
i

4ω2
i −γ2

i
cosθi

B21 =−ω2
i

4 cosθi +
γ2

i ω2
i

4(4ω2
i −γ2

i )
cosθi +

γiω
2
i

2
√

4ω2
i −γ2

i
sinθi

B22 = sinθi

2
√

4ω2
i −γ2

i
ω2

i +
γi

4ω2
i −γ2

i
· cosθi

2 ω2
i

More algebra leads to

exp(εiBt) =
[

A11(t) A12(t)
A21(t) A22(t)

]
+O(γ2

i )

with



A11(t) =
2ω̂i cosh

εitω
2
i

4ω̂i
−(γi cosθi+2ω̂i sinθi)sinh

εitω
2
i

4ω̂i
2ω̂i

A12(t) =−
cosθi sinh

εitω
2
i

4ω̂i
ω̂i

A21(t) =
(γ2

i cosθi−4ω̂2
i cosθi+4γiω̂i sinθi)sinh

εitω
2
i

4ω̂i
4ω̂i

A22(t) =
2ω̂i cosh

εitω
2
i

4ω̂i
+(γi cosθi+2ω̂i sinθi)sinh

εitω
2
i

4ω̂i
2ω̂i

.

The temporal homogenization approximation (11) thus gives

qi(t) =
(

cosh
(

εitω̂i

4

)(
sin(ω̂it)(γiqi(0)+2q̇i(0))+2ω̂iqi(0)cos(ω̂it)

)
− sinh

(
εitω̂i

4

)(
(γiqi(0)+2q̇i(0))cos(ω̂it +θi)

+2ω̂iqi(0)sin(ω̂it +θi)
))e−

γit
2

2ω̂i
+O(εi)+O(γ2

i )



Note that cosh and sinh are linear combinations of exponen-
tial growth and decay, and carefully choosing θi to eliminate
one of these two components will prove the theorem.

C. Target functions for producing the GT animation

Let fi j(t) for 1 ≤ i ≤ 5, 1 ≤ j ≤ 12, corresponding to the
target functions of the 5×12 blocks, be given by

fi j(t) =

hi j(t) t ∈ [0,24)
li j(−t +54) t ∈ [24,54)
li j(t−54) t ∈ [54,84)

Note that the shaded blocks in Fig. 8 are not considered as
oscillators in our animation. Here:

hi j(t) =
{

100 t ∈ (0,2(12− j)]
gi(t−24+2 j) t ∈ (2(12− j),24]

and

g1(t) =


99
2 cos(2πt)+ 101

2 t ∈ (2,2.5]∪ (7.5,8]
∪(12,12.5]∪ (17.5,18]

1 t ∈ (2.5,7.5]∪ (12.5,17.5]
100 t ∈ (0,2]∪ (8,12]∪ (18,24]

Besides, gi(t), i = 2,3,4,5 are chosen functions having
similar structure as g1(t). To make GT disappear and appear,
we let S be the set consisting of the blocks with number
1,2, · · · ,18 in Fig. 8. The number k = 1,2, · · · ,18 denotes
the appearing order (handwriting order) here.
• If the block (i, j) is in the set S

li j(t) =

100 t ∈ (0,k]
99
2 cos( π

30−k (t− k))+ 101
2 t ∈ (k,30]

1 t ∈ (30,∞)

• For the other blocks, li j(t)= 100, which keep white after
GT shows up from right.

Fig. 8: Set S and the order in the appearance of GT
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