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Abstract

The article considers smooth optimization
of functions on Lie groups. By generaliz-
ing NAG variational principle in vector space
(Wibisono et al., 2016) to Lie groups, contin-
uous Lie-NAG dynamics which are guaran-
teed to converge to local optimum are ob-
tained. They correspond to momentum ver-
sions of gradient flow on Lie groups. A par-
ticular case of SO(n) is then studied in de-
tails, with objective functions correspond-
ing to leading Generalized EigenValue prob-
lems: the Lie-NAG dynamics are first made
explicit in coordinates, and then discretized
in structure preserving fashions, resulting
in optimization algorithms with faithful en-
ergy behavior (due to conformal symplectic-
ity) and exactly remaining on the Lie group.
Stochastic gradient versions are also inves-
tigated. Numerical experiments on both
synthetic data and practical problem (LDA
for MNIST) demonstrate the effectiveness of
the proposed methods as optimization algo-
rithms (not as a classification method).

1 Introduction

The algorithmic task of optimization is important in
data sciences and other fields. For differentiable objec-
tive functions, 1st-order optimization algorithms have
been popular choices especially for high dimensional
problems, largely due to their scalability, generality,
and robustness. A celebrated class of them is based
on Nesterov Accelerated Gradient descent (NAG; see
e.g., (Nesterov, 1983, 2018)), also known as a major
way to add momentum to Gradient Descent (GD).
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NAGs enjoy great properties such as quadratic decay
of error (instead of GD’s linear decay) for convex but
not strongly convex objective functions. In addition,
the introduction of momentum in NAG softens the de-
pendence of convergence rate on the condition number
of the problem. Since high dimensional problems of-
ten correspond to larger condition numbers, it is con-
ventional wisdom that adding momentum to gradient
descent makes it scale better with high dimensional
problems (e.g., Ruder (2016), and Cheng et al. (2018)
for rigorous results on related problems).

In particular, at least two versions of NAG have been
widely used, referred to as NAG-SC and NAG-C for
instance in Shi et al. (2018). While their original ver-
sions are iterative methods in discrete time, their con-
tinuum limits (as the step size goes to zero) have also
been studied: for example, Su et al. (2014) thoroughly
investigates these limits as ODEs, and Wibisono et al.
(2016) establishes a corresponding variational princi-
ple (along with other generalizations). Further devel-
opments exist; for instance, Shi et al. (2018) discusses
how to better approximate the original NAGs by high-
resolution NAG-ODEs when step size is small but not
infinitesimal, and was followed up by Wang and Tao
(2020). Note, however, that no variational principle
has been provided yet for the high-resolution NAG-
ODEs, to the best of our knowledge.

Although the aforementioned discussions on NAG are
in the context of finite dimensional vector space, a vari-
ational principle can allow it to be intrinsically gener-
alized to manifolds. Such generalizations are meaning-
ful, because objective functions may not always be a
function on vector space, and abundant applications
require optimization with respect to parameters in
curved spaces. The first part of this article generalizes
continuous NAG dynamics to Lie groups, which are
differentiable manifolds that are also groups. Special
orthogonal group SO(n), which contains n-by-n real
orthogonal matrices with determinant 1, is a classical
Lie group, and its optimization is not only relevant to
data sciences (see e.g., Sec.3 and Appendix) but also to
physical sciences. Some more examples include sym-
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plectic groups, spin groups, and unitary groups, all of
which play important roles in contemporary physics
(e.g., Sattinger and Weaver (2013)); for instance, op-
timization on unitary groups found applications in
quantum control (e.g., Glaser et al. (1998)), quantum
information (e.g., Kitaev and Watrous (2000)), MIMO
communication systems (e.g., Abrudan et al. (2009)),
and NMR spectroscopy (e.g., Sorensen (1989)).

Variational principles on Lie groups (or more precisely,
on the tangent bundle of Lie groups, for introducing
velocity) provide a Lagrangian point of view for me-
chanical systems on Lie groups, and have been exten-
sively studied in geometric mechanics (e.g., Marsden
and Ratiu (2013); Holm et al. (2009)). Nevertheless,
the application of geometric mechanics to NAG-type
optimization in this article is new. The second part of
this article will discretize the resulting NAG-dynamics
on Lie groups, which lead to actual optimization algo-
rithms. These algorithms are also new, although they
can certainly be embedded as part of the profound
existing field of geometric numerical integration (e.g.,
the classic monograph of Hairer et al. (2006)).

It is also important to mention that optimization on
manifolds is already a field so rich that only an incom-
plete list of references can be provided, e.g., Gabay
(1982); Smith (1994); Edelman et al. (1998); Absil
et al. (2009); Patterson and Teh (2013); Zhang and Sra
(2016); Zhang et al. (2016); Liu et al. (2017); Boumal
et al. (2018); Ma et al. (2019); Zhang and Sra (2018);
Liu et al. (2018). However, a specialization in Lie
group will still be helpful, because the additional group
structure (joined efforts with NAG) improves the op-
timization; for instance, a well known reduction is to,
under symmetry, pull the velocity at any location on
the Lie group back the tangent space at the identity
(known as the Lie algebra).

We also note that NAG (either in vector space or on
Lie group) is not restricted to convex optimization.
In fact, the proposed methods will be demonstrated
on an example of (leading) (Generalized) EigenVal-
ues (GEV) problems, which is known to be nonconvex
(e.g., Chi et al. (2019) and its references therein).

GEV is a classical linear algebra problem behind tasks
including Linear Discriminant Analysis (see Sec.4.3
and Appendix) and Canonical Correlation Analysis
(e.g., Barnett and Preisendorfer (1987)). Due to its
importance, numerous GEV algorithms exist (see e.g.,
Saad (2011)), some iterative (e.g., variants of power
method) and some direct (e.g., Lanczos-based meth-
ods). And we choose GEV as an example to demon-
strate our method applied to Lie group SO(n).

Meanwhile, another line of approaches has also been
popular, especially for data sciences problems, often

referred to as Oja flow (Oja, 1982), Sanger’s rule
(Sanger, 1989), and Generalized Hebbian Algorithm
(Gorrell, 2006). While initially proposed for the lead-
ing eigenvalue problem, they extend to the leading
GEV problem (e.g., Chen et al. (2019)). For a sim-
ple notation, we follow Chen et al. (2019) and denote
them by ‘GHA’. GHA is based on a matrix-valued
ODE, whose long time solution converges to a solu-
tion of GEV; more details are reviewed in Appendix.
Since the GHA ODE has to be discretized and nu-
merically solved, GHA in practice is still an iterative
method, but it is a special one: because of its ODE na-
ture, GHA adapts well to a stochastic generalization of
GEV, in which one only has access to noisy/incomplete
realizations of the actual matrix (see Sec.3.3 for more
details), and hence remains popular in machine learn-
ing. The proposed methods will also be based on
ODEs and suitable to stochastic problems, and thus
they will be compared with GHA (Sec.4.2). Worth
mentioning is, GEV is still being actively investigated;
besides Chen et al. (2019), recent progress include, for
instance, Ge et al. (2016); Allen-Zhu and Li (2017);
Arora et al. (2017). While the main contribution of
this article is the momentum-based general Lie group
optimization methodology (not GEV algorithms), the
derived GEV algorithms are complementary to states-
of-arts, because the proposed methods are indifferent
to eigengap unlike Ge et al. (2016), and no direct ac-
cess or inversion of the constraining matrix as differ-
ent from Allen-Zhu and Li (2017); Arora et al. (2017);
however, our method can be made stochastic but not
‘doubly-stochastic’.

This article is organized as follows. Sec.2 derives the
continuous Lie-group optimization dynamics based on
the NAG variational principle. Sec.3.1 describes, at
the continuous level, the case when the Lie group is
SO(n), including the (full) eigenvalue problem and the
leading GEV problem; both NAG dynamics and GD
(no momentum) are discussed. Sec.3.2 then describes
discretized algorithms, and Sec.3.3 extends them to
stochastic problems. Sec.4 provides numerical evi-
dence of the efficacy of our methods, with demonstra-
tions on both synthetic and real data.

Quick user guide: For GEV, a family of NAG dy-
namics were obtained. The simplest ones are

Lie-GD: Ṙ = R([RTAR, E ]) (1)

Initial condition has to satisfy: R(0)TBR(0) = I.

Lie-NAG: Ṙ = Rξ, ξ̇ = −γ(t)ξ + [RTAR, E ] (2)

where E :=
[
Il 0
0 0

]
n×n. Initial conditions have to sat-

isfy: R(0)TBR(0) = I and ξ(0)T = −ξ(0).

Constant γ and γ(t) = 3/t respectively correspond to
Lie-NAG-SC and Lie-NAG-C. If it is affordable to tune
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the constant γ value, our general recommendation is
Lie-NAG-SC. Its associated optimization algorithm is
Algm.2, and Algm.1 is also provided for Lie-GD.

2 Variational Optimization on Lie
Group: the General Theory

2.1 Gradient Flow

Our focus is optimization problems on Lie groups: Let
G be a compact Lie group, f : G → R be a smooth
function, and consider the optimization problem

min
g∈G

f(g).

We may define the gradient flow for this problem as
follows: Let TG and T ∗G be the tangent and cotan-
gent bundles of G, e ∈ G be the identity, and g := TeG
be the Lie algebra of G. Suppose that g is equipped
with an inner product ⟪ξ, η⟫ := 〈Iξ, η〉 with an iso-
morphism I : g → g∗; ξ 7→ I(ξ) where g∗ is the dual
of the Lie algebra g, and 〈 · , · 〉 stands for the natu-
ral dual pairing. One can naturally extend this metric
to a left-invariant metric on G by defining, ∀g ∈ G
and ∀v, w ∈ TgG, ⟪v, w⟫ := ⟪TgLg−1(v), TgLg−1(w)⟫,
where Lg : G → G;h 7→ gh is the left translation by
g ∈ G and ThLg : ThG→ TghG is its tangent map.

Now, we define the gradient vector field grad f on G
as follows: For any g ∈ G and any ġ ∈ TgG,

⟪(grad f)(g), ġ⟫ = 〈df(g), ġ〉 ∀g ∈ G ∀ġ ∈ TgG,

where d stands for the exterior differential. This gives

(grad f)(g) = TeLg ◦ I−1 ◦ T ∗e Lg(df(g)),

where T ∗e Lg is the dual of TeLg, i.e., ∀αg ∈ T ∗g G and
∀ξ ∈ g, 〈T ∗e Lg(αg), ξ〉 = 〈αg, TeLg(ξ)〉. Hence the gra-
dient descent equation is given by

ġ = −(grad f)(g) = −TeLg ◦ I−1 ◦ T ∗e Lg(df(g)). (3)

2.2 Adding Momentum: the Variational
Optimization

Our work provides a natural extension of variational
optimization of Wibisono et al. (2016) to Lie groups
making use of the geometric formulation of the Euler–
Lagrange equation on Lie groups. Specifically, let us
define the Lagrangian L : TG× R→ R as follows:

L(g, ġ, t) := r(t)

(
1

2
⟪ġ, ġ⟫− f(g)

)
, (4)

where r : R → R>0 is a smooth positive-valued func-
tion. Instead of working with the tangent bundle

TG directly, it is more convenient to use the left-
trivialization of TG, i.e., we may identify TG with
G × g via the map G × g → TG; (g, ξ) 7→ (g, TeLg(ξ)).
Under this identification, we have the Lagrangian
L : G× g× R→ R defined as

L(g, ξ, t) := r(t)

(
1

2
〈I(ξ), ξ〉 − f(g)

)
. (5)

The Euler–Lagrange equation for this Lagrangian is
(see, e.g., Holm et al. (2009, Section 7.3) and also
Marsden and Ratiu (2013))

d

dt

(
δL

δξ

)
= ad∗ξ

δL

δξ
+ T ∗e Lg(dgL),

along with

ġ = TeLg(ξ) =: gξ, (6)

where ad∗ is the coadjoint operator; δL/δξ ∈ g∗ is
defined so that, for any δξ ∈ g,〈

δL

δξ
, δξ

〉
=

d

ds
L(g, ξ + sδξ, t)

∣∣∣∣
s=0

;

also note that dgL stands for the exterior differential
of g 7→ L(g, ξ, t). Using the above expression (5) of the
Lagrangian, we obtain

d

dt
I(ξ) = −γ(t)I(ξ) + ad∗ξ I(ξ)− T ∗e Lg(df(g)), (7)

where we defined γ(t) := r′(t)/r(t).

Choices of γ. We will mainly consider γ(t) = γ
(constant) and γ(t) = 3/t, derived from r = exp(γt)
and r = t3. In vector space, these two choices re-
spectively correspond to, as termed for instance in Shi
et al. (2018), NAG-SC and NAG-C, which are the con-
tinuum limits of two classical versions of Nesterov’s
Accelerated Gradient methods (Nesterov, 1983, 2018).

Lyapunov function. Let t 7→ (g(t), ξ(t)) be a solu-
tion of eq. (7). Assuming that g0 is an isolated local
minimum of f , we can show that the dynamics start-
ing in a neighborhood of g0 converges to g0 as follows.
Define the “energy” function E : G× g→ R as

E(g, ξ) :=
1

2
⟪ξ, ξ⟫+ f(g) =

1

2
〈I(ξ), ξ〉+ f(g). (8)

This gives a Lyapunov function. In fact, there exists a
neighborhood U of (g0, 0) such that E(g, ξ) ≥ f(g) >
f(g0) for any (g, ξ) ∈ U\{(g0, 0)}. Moreover, we have
d
dtE(g(t), ξ(t)) = −γ⟪ξ, ξ⟫ ≤ 0, where the equality
implies ξ = 0, for which (7) gives df(g) = 0, which
locally gives g = g0.
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3 The Example of SO(n) and Its
Application to Leading GEV

3.1 The Continuous Formulations

3.1.1 The Symmetric Eigenvalue Problem

Let A be a real symmetric n × n matrix, and define,
as in Brockett (1989); Mahony and Manton (2002),

f : SO(n)→ R; f(R) := tr(RTARN ),

where N := diag(1, 2, . . . , n). We equip the Lie alge-
bra so(n) with the inner product ⟪ξ, η⟫ := tr(ξT η).
Then we may identify so(n)∗ with so(n) via this in-
ner product. Then the “force” term in (7) is given by
T ∗I LR(df(R)) = [RTAR,N ]. Since ad∗ξ µ = [µ, ξ] for
any ξ ∈ so(n) and µ ∈ so(n)∗ ∼= so(n), (7) becomes

Ṙ = Rξ, ξ̇ = −γξ + I−1
(
[I(ξ), ξ]− [RTAR,N ]

)
, (9)

whereas the gradient descent equation (3) gives

Ṙ = −RI−1([RTAR,N ]). (10)

Remark 3.1 (Rigorous results v.s. intuitive addition
of momentum). The above dynamics work for any pos-
itive definite isomorphism I : g → g∗. For simplicity,
we will use I = id (where g∗ is identified with g) in im-
plementations in this article. In this case, the [I(ξ), ξ]
term and the I−1 operation vanish, and the momen-
tum version (9) is heuristically obtainable from (10)
just like how momentum was added to gradient flow
in vector spaces. Otherwise, they create additional
nontrivial nonlinearities that account for the curved
space.

Remark 3.2 (Relation to double-bracket). When
I = id, the gradient flow (10) becomes Ṙ =
−R([RTAR,N ]). By setting M(t) := R(t)TAR(t),
we recover the double-bracket equation Ṁ =
−[M, [M,N ]] of Brockett (1991) (see also Bloch et al.
(1992)). Note that there is a sign difference from
Brockett (1991) because Brockett’s is gradient ascent.

Remark 3.3 (Generality). The proposed methods,
Lie-NAG (9) and Lie-GD (10), are indifferent to
the absolute location of A’s eigenvalues, because
they are invariant to the shift A 7→ A + λI. To
see this, note [RTAR,N ] 7→ [RT (A + λI)R,N ] =
[RTAR,N ] + λ[RTR,N ] = [RTAR,N ] + λ[I,N ] =
[RTAR,N ]. Therefore, the proposed methods work
the same no matter whether A is positive/negative-
definite. In the generalized eigenvalue setting (see fu-
ture Sec.3.1.3), the same reasoning and invariance hold
for L−TAL−1 7→ L−TAL−1 + λI where LTL = B.

3.1.2 The Leading l Eigenvalue Problem

Let A be a real symmetric n×n matrix. Since finding
the smallest l eigenvalues of A is the same as finding

the largest l eigenvalues of −A, define

f : SO(n)→ R; f(R) := − tr(ETRTARE), (11)

where E :=
[
Il
0

]
is n × l where Il is the l × l identity

matrix and 0 is the (n− l)× l zero matrix.

The cost function is almost the same as the previous
case except that N is now replaced by

E := EET =
[
Il 0
0 0

]
.

So we have T ∗I LR(df(R)) = −[RTAR, E ].

3.1.3 The Leading l Generalized Eigenvalues

Consider the leading l Generalized EigenValues prob-
lem (GEV): given n-by-n symmetric A and n-by-n pos-
itive definite B, we seek an optimizer of

max
V ∈Rn×l

tr(V TAV ) s.t. V TBV = Il×l. (12)

It can be seen, by Cholesky decomposition B = LTL
and a Lie group isomorphism X 7→ LX, that

Proposition 3.1. G = {X|X ∈ Rn×n, XTBX = I}
is a Lie group. Its identity is L−1, and its mul-
tiplication is not the usual matrix multiplication but
X1 ·X2 = X1LX2.

Therefore, in theory, GEV can be solved by padding
V into X and then following our general approach (7).

The point of this section is to make this solution ex-
plicit, and more importantly, to show L is never explic-
itly needed, which leads to computational efficiency. In
fact, the same NAG dynamics

Ṙ = Rξ, ξ̇ = −γ(t)ξ + [RTAR, E ] (13)

with initial conditions satisfying

R(0)TBR(0) = I, ξ(0)T = −ξ(0)

will solve (12) upon projecting the first l columns of
R into V .

Note the only difference from the previous two sections
is the initial condition on R. In addition, although pos-
itive definite B is needed for the group isomorphism, it
is only a sufficient (not necessary) condition for NAG
(13) to work.

A rigorous justification of why (13) works for not only
EV but also GEV can be found in Appendix, where
one will also find the proof of a quick sanity check:

Theorem 3.1. Under (13) and consistent initial con-
dition, R(t)TBR(t) = I and ξ(t)T = −ξ(t) for all t.
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The objective function itself does not decrease mono-
tonically in NAG, because it acts as potential energy,
which exchanges with kinetic energy, but the total en-
ergy decreases (eq.8).

On the other hand, if one considers Lie-GD, which can
be shown to generalize to GEV also by only modify-
ing the initial condition (given by (1)), then not only
does R(t) stay on the Lie group G (see Appendix),
but also is the objective function tr[−(RT (t)AR(t)E)]
monotone (by construction).

3.2 The Discrete Algorithms

Define Cayley transformation1 as Cayley(ξ) := (I −
ξ/2)−1(I + ξ/2). It will be useful as a 2nd-order
structure-preserving approximation of matrix exp, the
latter of which is computationally too expensive. More
precisely, exp(hξ) = Cayley(hξ) +O(h3).

Lie-GD. We adopt a 1st-order (in h) explicit dis-
cretization of the dynamics Ṙ = R([RTAR, E ]):

Algorithm 1 A 1st-order Lie-GD for leading GEV

1: Initialize with some R0 satisfying RT0 BR0 = I.
2: for i = 0, · · · ,TotalSteps-1 do
3: fi ← RTi ARiE − ERTi ARi.
4: Ri+1 ← RiCayley(hfi)
5: end for
6: Output RTotalSteps as argmin f in (11).

Note Algm.1 is more accurate than forward Euler dis-
cretization despite that both are 1st-order. This is be-
cause all Ri’s it produces will remain on the Lie group
(i.e., RTi BRi = I; see Thm.4.2 in Appendix).

Lie-NAG. We present a 2nd-order (in h) explicit
discretization of the dynamics Ṙ = Rξ, ξ̇ = −γ(t)ξ +
[RTAR, E ]. Unlike the Lie-GD case, the discretization
was achieved by the powerful machinery of operator
splitting, and can be easily generalized to arbitrarily
high-order (e.g., McLachlan and Quispel (2002); Tao
(2016)), provided that Cayley transformation was re-
placed by a higher-order Lie-group-preserving approx-
imation of matrix exponential.

More precisely, denote by φh the exact h-time flow of
the NAG dynamics, and by φh1 and φh2 some p-th order
approximations of the h-time flows of Ṙ = Rξ, ξ̇ = 0
and Ṙ = 0, ξ̇ = −γ(t)ξ+[RTAR, E ]. Note even though
φ is unavailable, the latter systems are analytically
solvable, so if exp(ξh) is exactly computed, φ1 and φ2

can be made exact. Even if they are just p-th order
approximations (p ≥ 2), operator splitting yields φh =

φ
h/2
2 ◦φh1◦φ

h/2
2 +O(h3). Other ways of composing φ1,φ2

1It is the same as Pade(1,1) approximation.

can lead to higher order methods (Appendix describes
some 4th-order options), with maximum order capped
by p. For simpler coding, ξ̇ = −γ(t)ξ+ [RTAR, E ] can
be further split into ξ̇ = −γ(t)ξ and ξ̇ = [RTAR, E ],

and Algm.2 is based on φ
h/2
3 ◦ φh/22 ◦ φh1 ◦ φ

h/2
2 ◦ φh/23 :

Algorithm 2 A 2nd-order Lie-NAG for leading GEV

1: Initialize with someR0 and ξ0 satisfyingRT0 BR0 =
I and ξT0 = −ξ0.

2: for i = 0, · · · ,TotalSteps-1 do
3: ξi′ ← ξi + h/2(RTi ARiE − ERTi ARi).

4: ξi′ ←

{
exp(−γh/2)ξi′ , for NAG-SC

((ih)3/((i+ 1/2)h)3)ξi′ , for NAG-C
.

5: Ri+1 ← RiCayley(hξi′).

6: ξi′ ←

{
exp(−γh/2)ξi′ , NAG-SC

(((i+ 1/2)h)3/((i+ 1)h)3)ξi′ , NAG-C
.

7: ξi+1 ← ξi′ + h/2(RTi+1ARi+1E − ERTi+1ARi+1).
8: end for
9: Output RTotalSteps as argmin f in (11).

Also by Thm.4.2, all Ri’s remain on the Lie group if
arithmetics have infinite machine precision.

In addition, Algm.2 is conformal symplectic (see Ap-
pendix), which is indicative of favorable accuracy in
long time energy behavior. To prove so, note both
φ1 and φ3 as exact Hamiltonian flows preserve the
canonical symplectic form, and two substeps of φ2 as
linear maps discount it by a multiplicative factor of
r(ti)/r(ti+1). This exactly agrees with the continuous
theory in Appendix.

3.3 Generalization to Stochastic Problems

Setup: now let us consider a Stochastic Gradient
(SG) setup, where one may not have full access to
A but only a finite collection of its noisy realizations.
More precisely, given one realization of i.i.d. random
matrices A1, · · · , AK , the goal is to compute the lead-
ing (generalized) eigenvalues of A = 1

K

∑K
k=1Ak based

on Ak’s without explicitly using A.

Implementation: following the classical stochastic
gradient approach, we simply replace A in each algo-
rithm by Aκ, where κ is a uniform random variable on
[K], independently drawn at each timestep.

Remark 3.4. Like Ge et al. (2016) and unlike Chen
et al. (2019), the proposed methods do not allow B to
be a stochastic approximation. Only A can be stochas-
tic. On the other hand, unlike both Ge et al. (2016)
and Chen et al. (2019), we do not require a direct ac-
cess to B, and all information about B is reflected in
the initial condition R(0).

Intuition: we now make heuristic arguments to gain
insights about the performance of the method.
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First, based on the common approximation of stochas-
tic gradient as batch gradient plus Gaussian noise (see
e.g., Li et al. (2019) for some state-of-art quantifica-
tions of the accuracy of this approximation), assume
Aκ = A+σH where H is a symmetric Gaussian matrix
(assumed as H = Ξ + ΞT where Ξ is an n-by-n matrix
with i.i.d. standard normal elements), i.i.d. at each
step. Then the gradient [RTAκR, E ] is, in distribu-
tion and conditioned on R, equal to [RTAR, E ] + 2σΞ.
This is because [RTAκR, E ] is Gaussian and its mean
is [RTAR, E ] and covariance is σ2covar[[RTHR, E ]|R],
which can be computed to be 4σ2I, independent of R
as long as RTR = I and E is a degenerate identity.
Therefore, at least in the case of I = id, the Lie-NAG
SG dynamics can be understood through

Ṙ = Rξ, ξ̇ = −γ(t)ξ + [RTAR, E ] + 2σ̂E, (14)

where E is a skew-symmetric white-noise, i.e., Eij with
i < j being i.i.d. white noise, Eji = −Eij , and Eii = 0,
and σ̂ = σ in this continuous setting.

Worth mentioning is, once one uses a numerical dis-
cretization, namely

ξi+1 = ξi − hγ(ti)ξi + h[RTi AκiRi, E ] + o(h),

D
= ξi − hγ(ti)ξi + h[RTi ARi, E ] + h2σEi + o(h)

then since κ does not randomize infinitely frequently,
the effective noise amplitude σ̂ gets scaled as

σ̂ =
√
hσ + o(

√
h), (15)

because a 1st-order discretization of (14) should have
its ξ component being

ξi+1 = ξi − hγ(ti)ξi + h[RTi ARi, E ] +
√
h2σ̂Ei + o(h)

due to stochastic calculus. This leads to h2σEi =√
h2σ̂Ei + o(h), and hence (15).

Secondly, recall an analogous vector space setting, in
which one considers

q̇ = p, ṗ = −γp−∇V (q) + σ̂e

where e is standard vectorial white-noise. It is
well known that under reasonable assumptions (e.g.,
Pavliotis (2014)) this diffusion process admits, and
converges weakly to an invariant distribution of
Z−1 exp(−H(q, p)/kT )dqdp, where H = ‖p‖2/2+V (q)
is the Hamiltonian, Z is some normalization constant,
and kT = σ̂2/(2γ) is the temperature (with unit).

It is easy to see that for the purpose of optimization,
the temperature should be small. If one uses vanishing
stepsizes, since σ̂2 = hσ2, kT → 0, and stochastic
optimization can be guaranteed to work (more details
in Robbins and Monro (1951)). If h is small but not

infinitesimal, q (or R) is still concentrated near the
optimum value(s) with high probability.

Now recall Lie-NAG-SC uses constant γ; Lie-NAG-
C, on the contrary, uses γ(t) = 3/t. This means
Lie-NAG-SC equipped with SG converges to some in-
variant distribution at temperature hσ2/(2γ), but Lie-
NAG-C-SG’s ‘temperature’ kT = hσ2/(6/t) grows un-
bounded with t for constant h; i.e., constant stepsize
Lie-NAG-C-SG doesn’t converge even in a weak sense.

This is another reason that our general recommenda-
tion is Lie-NAG-SC over Lie-NAG-C. On the other
hand, there are multiple possibilities to correct the
non-convergence of Lie-NAG-C: (i) appropriately van-
ishing h can lead to recovery of an invariant distribu-
tion, but to obtain a fixed accuracy one would need
more steps; (ii) one can add a correction to the dy-
namics (Wang and Tao, 2020); (iii) modify γ(t).

Corrected dissipation coefficient: this article ex-
perimented with option (iii) with

γ = 3/t+ ct, where c is a small constant; (16)

see Sec.4.2. This choice corresponds to r(t) =
exp(ct2/2)t3 in the variational formulation. Formally,
it leads to 0 temperature, but in practice early stop-
ping is needed because any finite h cannot properly
numerical-integrate the dynamics when γ becomes suf-
ficiently large.

The reason for choosing the specific linear form of the
correction +ct is in Appendix.

4 Experiments

4.1 Leading Eigenvalue Problems

4.1.1 Bounded Spectrum

We first test the proposed methods on a synthetic
problem: finding the l largest eigenvalues of A =
(Ξ+ΞT )/2/

√
n, where Ξ is a sample of an n-by-n ma-

trix with i.i.d. standard normal elements. The scaling
of 1/

√
n ensures2 the leading eigenvalues are bounded

by a constant independent of n; for an unbounded case,
see the next example.

Fig. 1 shows results for a generic sample of 500-
dimensional A. The proposed Lie-NAG’s, i.e. varia-
tional methods with momentum, converge significantly
faster than the popular GHA. This advantage is even
more significant in higher dimensions (see Fig. 6 in Ap-
pendix). Note Fig. 1 plots accuracy as a function of

2For more precise statement and justification, see ran-
dom matrix theory for Gaussian Orthogonal Ensemble
(GOE), or more generally Wigner matrix Wigner (1958)
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Figure 1: Performances of proposed Lie-GD, Lie-NAG-
C and Lie-NAG-SC, compared with GHA, for com-
puting the leading l = 2 eigenvalues of scaled GOE.
All algorithms use step sizes tuned to minimize error
in 5 × 104 iterations (although the proposed methods
do not need much tuning), and identity initial condi-
tion. GHA was based on Runge-Kutta-4 integration
of Q̇ = (I −QQT )AQ for accuracy, and an Euler inte-
gration did not result in any notable error reduction.
NAG-SC uses friction coefficient untuned γ = 1. The
deviations of Lie-NAGs and Lie-GD from the Lie group
are machine/platform (MATLAB) precision artifacts.

the number of iterations, and readers interested in ac-
curacy as a function of wallclock are referred to Fig. 7
(note wallclock count is platform dependent and there-
fore the latter illustration is only qualitative but not
quantitative, thus placed in the Appendix). In any
case, for this problem at least, if low-moderate accu-
racy is desired, Lie-NAG-C is the most efficient among
tested methods; if high accuracy is desired instead,
Lie-NAG-SC is the optimal choice.

Note the fact that A has both positive and negative
eigenvalues should not impair the credibility of this
demonstration. This is because one can shift A to
make it positive definite or negative definite, and the
convergences will be precisely the same. See Rmk.3.3.

4.1.2 Unbounded Spectrum

Now consider computing the leading eigenvalues of
A = −ΞΞT /2 (Ξ similarly defined as in Sec.4.1.1).
This is equivalent to finding the l smallest eigenval-
ues of ΞΞT /2. Doing so is relevant, for instance, in
graph theory, where the 2nd smallest eigenvalue of
graph Laplacian is the algebraic connectivity of the
graph (Fiedler, 1973; Von Luxburg, 2007).

Fig.2 shows the advantage of variational methods (i.e.,
with momentum), even when the dimension is rela-
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Lie-Gradient h=0.025
Lie-NAG-SC h=0.25
Lie-NAG-C h=0.25
GHA 4th h=0.002 from I

Figure 2: Proposed Lie-GD, Lie-NAG-C and Lie-
NAG-SC, compared with GHA, for computing the
leading l = 2 eigenvalues of A = −ΞΞT /2. Ξ is 25-
dimensional. Other descriptions are same as in Fig.1.

tively low n = 25. A is defined such that its spectrum
grows linearly with n, and GHA thus needs to use
tiny timesteps. Although the proposed methods also
need to use reduced step sizes for bigger n, the rate of
reduction is much slower than that for GHA (results
omitted).

4.2 Stochastic Leading Eigenvalue Problems

To investigate the efficacy of the proposed methods in
the stochastic setup (Sec.3.3), we take the same A from
Sec.4.1.1, and addK = 100 random perturbations to it
to form a batch A1, · · · , AK . Each random perturba-
tion is (Ξ+ΞT )/4/

√
n for i.i.d. Ξ; note these are large

fluctuations when compared to A. Then A is refreshed
to be the mean of Ak’s, whose leading l = 2 eigenvalues
are accurately computed as the ground truth.

Fig.3 shows the advantage of variational methods, even
though their larger step sizes lead to much higher vari-
ances of the stochastic gradient approximation. The
corrected dissipation (16) enabled the convergence of
NAG-C. The same correction slows down the conver-
gence of NAG-SC in the beginning, but significantly
improves its long time performance, which otherwise
stagnates at small but not infinitesimal error.

The reason NAG-SC-original stagnates is, over long
time, it samples from an invariant distribution at
a nonzero temperature. This invariant distribution,
however, is not the exact one of the continuous limit;
the latter of which would concentrate around the min-
imizer with 0 error. Instead, the numerical method’s
invariant distribution, if existent, is O(hp) away from
the exact one (Bou-Rabee and Owhadi, 2010; Abdulle
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Figure 3: The computation of leading l = 2 eigen-
values of A = 1

K

∑K
k=1Ak based on stochastic gradi-

ents from batch A1, · · · , AK without A. NAG-SC cor-
rected, NAG-C corrected, NAG-SC and NAG-C use,
respectively, γ = 1 + 0.01t, 3/t + 0.01t, 1, and 3/t.
Other descriptions are same as in Fig.1.

et al., 2014) under suitable assumptions, which means
as the numerical method converges, it gives R’s that
are O(hp) away from the exact minimizer with high
probability. NAG-SC-corrected alleviated this issue.

4.3 Leading Generalized Eigenvalue: a
Demonstration Based on LDA

We report numerical experiments on multiclass Fisher
Linear Discriminant Analysis (LDA) of the hand-
written-digits database MNIST (LeCun et al., 1998).
Since it is known that LDA can be formulated as a
leading generalized eigenvalue problem (e.g., reviewed
in Li et al. (2006); Welling (2005); see appendix for a
summary), we use it as an example to test our leading
GEV algorithm. Important to note is, our purpose is
NOT to construct an algorithm for MNIST classifica-
tion, as it is known that LDA does not achieve state-
of-art performance in that regard (test error based on
exact leading GEV solution was 10% in our experi-
ment). Instead, we simply would like to quantify the
efficacy of our algorithm applied to a leading general-
ized eigenvalue problem based on real life data.

The 60000 training data of MNIST were employed
to compute the ‘inter-class scatter matrix’ A and the
‘intra-class scatter matrix’ B (see appendix for more
details). Each 28×28 image had its white margins
cropped, resulting in a 400-dimensional vector, and
thus A and B are both 400-by-400, respectively posi-
tive semi-definite and positive definite. Furthermore,
to avoid laborious tuning of timestep sizes, both A and
B are normalized by their respective 2-norm; this is

without loss of generality, because arg minQ
det(QTAQ)
det(QTBQ)

is invariant to scaling of A and/or B. Since there are
10 classes, l = 9 is chosen.

Note this is a positive semi-definite problem by con-
struction. Some generalized eigenvalue methods re-
quire or prefer such a property (e.g., Oja flow (Yan
et al., 1994)), but the proposed algorithms are indif-
ferent to the definiteness (see Rmk.3.3).
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Figure 4: Lie-GD, Lie-NAG-C, Lie-NAG-SC, and
GHA, for computing the leading l generalized eigen-
values associated with LDA for the MNIST dataset.
All algorithms use step sizes tuned to minimize error
in 104 iterations (although the proposed methods do
not need much tuning). Two GHA runs use two ini-
tial conditions, Q(0) = I which is not on the Lie group
QTBQ = I, and Q(0) being the first l columns of L−1

which is on the Lie group; all others use initial condi-
tion L−1. GHA was based on Runge-Kutta-4 integra-
tion of Q̇ = (I−BQQT )AQ for accuracy, and an Euler
integration did not result in any notable error reduc-
tion. NAG-SC uses friction coefficient untuned γ = 1.
The pollution of NAG simulations near the end is a
machine precision artifact, and so are the deviations
of Lie-NAGs and Lie-GD from the Lie group.

Fig.4 shows that all proposed methods converge signif-
icantly faster than GHA. Interestingly, although Lie-
NAG-SC still converges faster than Lie-GD, the accel-
eration due to momentum is not as drastic as before.

In addition, Fig.5 in Appendix shows that our methods
do not require an eigengap, and thus are widely ap-
plicable. Great methods have been continuously pro-
posed for GEV; for instance, a globally linear conver-
gent algorithm was recently proposed based on power
method (Ge et al., 2016), but its convergence is af-
fected by eigengap. The proposed methods do not have
this restriction.
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Appendix

Justification of NAG dynamics for GEV

This section justifies why one can simply use the same
NAG flow for eigenvalue problem and only modify R’s
initial condition. It is rigorous when B is positive def-
inite, since its Cholesky decomposition will be used;
otherwise, the justification is formal, and the same
NAG dynamics is still well defined.

First, rewrite (12) as

max
R∈Rn×n

tr(ETRTARE)

s.t. RTBR = In×n.

Cholesky decompose B as B = LTL, let Q = LR and
Â = L−TAL, then the GEV is equivalently

max
Q∈Rn×n

tr(QT ÂQE)

s.t. QTQ = In×n.

One can write down the NAG dynamics for variation-
ally optimizing this problem:

Q̇ = Qξ, ξ̇ = −γ(t)ξ + [QT ÂQ, E ]

Note this is

LṘ = LRξ, ξ̇ = −γξ + [RTLTL−TAL−1LR, E ],

and all L’s can be canceled, leading to (2).

In terms of initial condition, since Q(0)TQ(0) = I,
R(0)TLTLR(0) = R(0)TBR(0) = I. ξ(0) needs to be
skew-symmetric throughout.

Preservation of Lie group structure

(This section explicitly demonstrates several facts of
geometric mechanics; for more information about geo-
metric mechanics less in coordinates, see e.g., Marsden
and Ratiu (2013); Holm et al. (2009).)

For continuous dynamics, we have

Theorem 4.1. Consider Ṙ(t) = R(t)F (t) where R
and F are n-by-n matrices. If R(t0)TBR(t0) = I
and F (t) is skew-symmetric for all t ≥ t0, then
R(t)TBR(t) = I, ∀t ≥ t0.

Proof.

d

dt
(RTBR) = ṘTBR+RTBṘ

= FTRTBR+RTBRF = FT + F = 0.

Corollary 4.1. We thus have Theorem 3.1.

Proof. We only need to show F := ξ(t) remains skew-
symmetric. This is true because

ξ(t) = e−Γ(t)

(
ξ(0) +

∫ t

0

eΓ(s)[R(s)TAR(s), E ]ds

)
,

where Γ(t) :=
∫ t

0
γ(s)ds is a scalar. However, ξ(0)

is skew-symmetric by assumption, and so is the inte-
grand because

[R(s)TAR(s), E ]T = [ET , (R(s)TAR(s))T ]

= [E , R(s)TAR(s)] = −[R(s)TAR(s), E ].

Corollary 4.2. Lie-GD Ṙ = R[RTAR, E ] also main-
tains RTBR = I.

For discrete timesteppings, we have

Theorem 4.2. Define Cayley transformation as
Cayley(ξ) := (I − ξ/2)−1(I + ξ/2). Consider Ṙ(t) =
R(t)F (t) where R and F are n-by-n matrices. If
R(t0)TBR(t0) = I and F (t0) is skew-symmetric, then
the discrete updates given by R̂ = R(t0) exp(F (t0)h)
and R̂ = R(t0)Cayley(F (t0)h) both satisfy R̂TBR̂ = I.

Proof. Consider R̂ = RQ. If QTQ = I, then

R̂TBR̂ = QTRTBRQ = QTQ = I.

Q = exp(Fh) for skew-symmetric F satisfies this con-
dition because

QTQ = exp(FTh) exp(Fh) = exp(−Fh) exp(Fh) = I.

Q = Cayley(Fh) for skew-symmetric F satisfies this
condition because

QTQ = (I + Fh/2)T (I − Fh/2)−T (I − Fh/2)−1(I + Fh/2)

= (I − Fh/2)(I + Fh/2)−1(I − Fh/2)−1(I + Fh/2) = I

the last equality because I − Fh/2 and I + Fh/2
commute.

A brief recap of GHA

(This subsection is not new research but for the self-
containment of the article.)

Oja flow / Sanger’s rule / Generalized Hebbian Algo-
rithm (e.g., Oja (1982); Sanger (1989); Gorrell (2006);
Wei-Yong Yan et al. (1994)) is a celebrated type of
methods based on continuous dynamics for finding
leading eigenvalues of a symmetric matrix. Only for
the reason of a concise presentation, we refer to them
as GHA in this article.

GHA works as follows: given n-by-n symmetric A, to
find the eigenspace associated with its largest l eigen-
values, one denotes by V (t) an n-by-l matrix and uses
the long time limit of dynamics

V̇ = (I − V V T )AV
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as a span of the corresponding orthonormal eigenvec-
tors.

This approach can be extended to GEV (12) by using
GHA dynamics

V̇ = (I −BV V T )AV ; (17)

see e.g., Chen et al. (2019) and references therein.

To implement GHA in practice, the continuous dy-
namics need to be numerically discretized. A 1st-order
discretization is based on Euler scheme, namely

Vi+1 = Vi + h(I −BViV Ti )AVi,

and it is most commonly used. However, if a smaller
deviation from the continuous dynamics is desired, a
higher-order discretization can also be used, e.g., a
4th-order Runge-Kutta given by

k1 =
(
I −BViV

T
i

)
AVi

k2 =

(
I −B

(
Vi +

h

2
k1

)(
Vi +

h

2
k1

)T
)
A

(
Vi +

h

2
k1

)

k3 =

(
I −B

(
Vi +

h

2
k2

)(
Vi +

h

2
k2

)T
)
A

(
Vi +

h

2
k2

)
k4 =

(
I −B (Vi + hk3) (Vi + hk3)T

)
A (Vi + hk3)

Vi+1 = Vi +
h

6
(k1 + 2k2 + 2k3 + k4) .

Roughly 4 times the flops of Euler are needed per
step, but the deviation from (17) is O(h4) instead of
O(h) for Euler.

A brief recap of multiclass Fisher Linear
Discriminant Analysis (LDA)

(This subsection is not new research but, for the self-
containment of the article, a quick excerpt of the ex-
isting methods of Fisher Linear Discriminant Analy-
sis Fisher (1936) and Multiple Discriminant Analysis
(e.g., Johnson et al. (2002)), mainly based on Li et al.
(2006)).

Given d-by-1 vectorial data xi, i = 1, · · · , N labeled
into M -classes, define ‘inter-class scatter matrix’ A
and ‘intra-class class scatter matrix’ B by

µm =
1

|Cm|
∑
i∈Cm

xi,

x̄ =
1

N

N∑
i=1

xi,

A =

M∑
m=1

(µm − x̄)(µm − x̄)T ,

B =

M∑
m=1

∑
i∈Cm

(xi − µm)(xi − µm)T ,

where Cm is the set of indices corresponding to class-
m. FDA seeks a projection represented by a d-by-l
matrix Q that maximizes the Rayleigh quotient:

max
Q

det(QTAQ)

det(QTBQ)
,

where a standard choice of l is l = M − 1. This prob-
lem can be reformulated as the generalized eigenvalue
problem Aw = λBw (e.g., Li et al. (2006); Welling
(2005)), and thus equivalent to

max tr (QTAQ)

s.t. QTBQ = I.

Additional LDA experimental results

To demonstrate that the proposed methods still work
when there is no eigengap (i.e., two largest eigenval-
ues being identical), we take A and B from LDA for
MNIST, Cholesky decompose B as B = LTL, let
Â = L−TAL−1, diagonalize Â = V DV −1, and then
replace D’s largest diagonal element by the value of
the 2nd largest. Denoting the result by D̃, we replace
A by Ã = LTV D̃V −1L. The generalized eigenvalue
problem associated with {Ã, B} now has a zero eigen-
gap, which prevents, for example, power-method based
approaches from working. However, Fig. 5 shows that
the proposed methods perform almost identically to
the original {A,B} case (c.f., Fig. 4).
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105 distance from max objective

100 102 104
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100

105 deviation from Lie group

Lie-Gradient h=0.5
Lie-NAG-SC h=1
Lie-NAG-C h=1
GHA 4th h=0.5 from I
GHA 4th h=0.5 from group

Figure 5: Same experiment as in Fig.4 for modified
MNIST with 0 eigengap.
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n=500 Lie-GD h=0.002
n=500 Lie-NAG-SC h=0.05
n=500 Lie-NAG-C h=0.05
n=500 GHA 4th h=0.0005 from I

Figure 6: The computation of leading l = 2 eigenvalues
of 2000-dimensional scaled GOE, compared with that
for 500-dimension. Other descriptions are same as in
Fig.1.

l largest eigenvalues of A = (Ξ + ΞT )/2/
√
n:

n = 2000 result

Fig.6 describes the same experiment as in Sec.4.1.1
when the dimension is n = 2000 instead of 500. When
compared with the n = 500 case, one sees Lie-GD
and GHA converge much slower, but Lie-NAG’s con-
verge only marginally slower. This suggests that the
advantage of variational methods increases in higher
dimension, at least in this experiment.

l largest eigenvalues of A = (Ξ + ΞT )/2/
√
n:

n = 500 result in wallclock count

Fig.7 illustrates the actual computational costs of
methods used in this paper by reproducing Fig.1 with
x-axis replaced by the time it took for each method
to run. All qualitative conclusions remain unchanged.
Experiments were conducted on a 4th-gen Intel Core
laptop with integrated graphics unit running 64-bit
Windows 7 and MATLAB R2016b.

Two 4th-order versions of Lie-NAG algorithms

Version 1: more accurate but more computation

φh = φa1h2 ◦ φb1h1 ◦ φa2h2 ◦ φb2h1 ◦ φa3h2 ◦ φb3h1

◦ φa4h2 ◦ φb3h1 ◦ φa3h2 ◦ φb2h1 ◦ φa2h2 ◦ φb1h1 ◦ φa1h2 +O(h5)

0 1000 2000 3000 4000 5000

wall clock (s)

10-15
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100

105
distance from max objective

0 1000 2000 3000 4000 5000
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10-11deviation from Lie group

Lie-Gradient h=0.002

Lie-NAG-SC h=0.05

Lie-NAG-C h=0.05

GHA 4th h=0.0005 from I

Figure 7: The computation of leading l = 2 eigenvalues
of 500-dimensional scaled GOE. All descriptions are
same as in Fig.1, except that x-axis is no longer in
iteration steps but in wallclock.

where 
a1

a2

a3

a4

 =


0.079203696431196
0.353172906049774
−0.042065080357719
0.219376955753500

 ,
b1b2
b3

 =

 0.209515106613362
−0.143851773179818
0.434336666566456

 .
Version 2: less accurate but less computation

φa1h2 ◦ φb1h1 ◦ φa2h2 ◦ φb2h1 ◦ φa2h2 ◦ φb1h1 ◦ φa1h2

where[
a1

a2

]
=

[
γ4/2

(1− γ4)/2

]
,

[
b1
b2

]
=

[
γ4

1− 2γ4

]
, γ4 =

1

2− 21/3
.

Details can be found, e.g., in McLachlan and Quis-
pel (2002). Swapping φ1 and φ2 will yield additional
methods at the same order of accuracy. We present
the above because φ1 is computationally more costly
due to Cayley transform.

Some heuristic insights on the correction of
the NAG dissipation coefficient in SG context

Based on the discussion in the main text, heuristically,
large γ values correspond to lower ‘temperatures’ and
reduced variances accumulated from stochastic gra-
dients. However, they also slow down the conver-
gences of the stochastic processes, and yet we’d like to
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take advantage of the fast convergence of determinis-
tic NAG dynamics. Therefore, we consider an additive
correction that is small for small t and increasing to
infinity.

For simplicity, restrict the correction to be a monomial
of t, i.e., δγ = ctp. Then we select the value of p by
resorting to intuitions first gained from a linear deter-
ministic case, for which our choice of p has to lead to
convergence because the deterministic solution is the
mean of the stochastic solution. It is proved in Art-
stein and Infante (1976) that a sufficient condition for
asymptotic stability of q̈ + γ(t)q̇ + q = 0 is

lim sup
T→∞

(
1

T 2

∫ T

0

γ(t)dt

)
<∞ and γ(t) ≥ γ0

for some constant γ0 > 0. It is easy to check that
γ(t) = γ0 + ctp or 3/t + ctp satisfies this condition
if p ≤ 1, but not when p > 1. We thus inspect the
boundary case of p = 1 for a fast decay of variance at
large t, now in a stochastic setup:{

dq = pdt

dp = (−(γ0(t) + ct)p− q)dt+ σdW
, (18)

where γ0 is either a constant or 3/t. Since this is a
linear SDE whose solution is Gaussian, it suffices to
show the convergences of the (deterministic) mean and
covariance evolutions in order to establish the SDE’s
convergence.

It is standard to show the mean x(t) := E[q(t), p(t)]
satisfies a closed non-autonomous ODE system, and
the covariance V (t) := E

[
[q(t) − E[q(t)], p(t) −

E[p(t)]]T [q(t)−E[q(t)], p(t)−E[p(t)]]
]

satisfies another.
These systems are not analytically solvable, but we can
analyze their long time behavior by asymptotic anal-
ysis.

More precisely, under the ansatz of E[q] = bta + o(ta),
matching leading order terms in the mean ODE leads
to

E[q(t)] ∼ t−1/c, E[p(t)] ∼ t−1/c−1

for both constant γ0 and γ0(t) = 3/t in (18).

Under the ansatz of Var[q] = b1t
a1 + o(ta1), Var[p] =

b2t
a2 + o(ta2), E[(q − Eq)(p − Ep)] = b3t

a3 + o(ta3),
matching leading order terms in the covariance ODE
leads to

Var[q] =
1

c(2− c)
t−1, Var[p] =

1

2c
t−1,

E[(q − Eq)(p− Ep)] =
1

2c(c− 2)
t−2.

Note this means, for small but positive c, convergence
is guaranteed, and covariance converges slower than
mean, at the rate independent of c.

Therefore, adding ct to γ in the original NAG’s works
in the linear case, and thus it has a potential to work
for nonlinear cases (e.g., Lie group versions). And it
does in experiments (Sec.4.2).

Hamiltonian Formulation

In this section, we give a Hamiltonian formulation of
the variational optimization equation (7) and prove
the conformal symplecticity of its flow.

Symplectic Structure on G× g∗

Let λ be the left trivialization of T ∗G, i.e.,

λ : T ∗G→ G× g∗; pg 7→(g, T ∗e Lg(pg)) .

Then its inverse is given by

λ−1 : G× g∗ → T ∗G; (g, µ) 7→ T ∗g Lg−1(µ).

Let Θ and Ω := −dΘ be the canonical one-form and
the symplectic structure on T ∗G, and θ and ω be their
pull-backs via the left trivialization, i.e.,

θ := (λ−1)∗Θ, ω := (λ−1)∗Ω.

According to Abraham and Marsden (1978, Proposi-
tion 4.4.1 on p. 315) (see also the reference therein),
for any (g, µ) ∈ G × g∗ and any (v, α), (w, β) ∈
T(g,µ)(G× g∗),

θ(g,µ)(w, β) =
〈
µ, TgLg−1(w)

〉
(19)

and

ω(g,µ)((v, α), (w, β))

=
〈
β, TgLg−1(v)

〉
−
〈
α, TgLg−1(w)

〉
+
〈
µ, [TgLg−1(v), TgLg−1(w)]

〉
.

(20)

Given a function h : G × g∗ → R, the corresponding
Hamiltonian vector field Xh ∈ X(G × g∗) defined by
iXhω = dh is given by

Xh(g, µ) =

(
TeLg

(
δh

δµ

)
, ad∗δh

δµ
µ− T ∗e Lg(dgh)

)
,

where dg stands for the exterior differential with re-
spect to g.

Legendre Transform and Hamiltonian Formu-
lation
We may apply a time-independent Legendre trans-
form using the initial Lagrangian as follows: Let us
define the initial Lagrangian L0 : G × g → R by set-
ting L0(g, ξ) := L(g, ξ, 0), and the time-independent
Legendre transform

FL0 : g→ g∗; ξ 7→ δL0

δξ
(g, ξ, t) = r(0) I(ξ),
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whose inverse is given by

(FL0)−1 : g∗ → g; µ 7→ 1

r(0)
I−1(µ).

We define the initial Hamiltonian H : G × g∗ → R as
follows:

H(g, µ) :=
〈
µ, (FL0)−1(µ)

〉
− L0

(
g, (FL0)−1(µ)

)
=

1

2r(0)

〈
µ, I−1(µ)

〉
+ r(0)f(g).

Its associated Hamiltonian vector field XH on g∗ is
defined as iXHω = dH using the symplectic form ω on
G× g∗ (see (20)):

XH(µ) = ad∗δH
δµ
µ− T ∗e Lg(dgH).

Then we may rewrite (7) as follows:

µ̇ = −γ(t)µ+ ad∗δH
δµ
µ− T ∗e Lg(dgH)

= XH(µ)− γ(t)µ,
(21)

where we set γ(t) := r′(t)/r(t).

Conformal Symplecticity
Given the Lagrangian of the form r(t)L0(q, q̇), the
Euler–Lagrange equation is

d

dt

(
r(t)

∂L0

∂q̇

)
− r(t)∂L0

∂q
= 0. (22)

We would like to show that the two-form r(t)dp ∧ dq
with p := ∂L0/∂q̇ is preserved in time in two different
ways. The first is based on the variational principle:
Consider

dd

∫ t1

t0

r(t)L0(q, q̇)dt,

which is obviously 0 because any exact form is closed.
On the other hand, it is the same as (due to integration
by parts)

d

(∫ t1

t0

(
r
∂L0

∂q
dq − d

dt

(
r
∂L0

∂q̇

)
dq

)
dt+ r

∂L0

∂q̇
dq

∣∣∣∣t1
t0

)

The first term is zero because of (22). Therefore,

0 = d

(
r
∂L0

∂q̇
dq

∣∣∣∣t1
t0

)
= d(rpdq)|t1t0 = rdp ∧ dq|t1t0

The second proof uses the Hamiltonian formulation.
We may write the Hamiltonian system corresponding
to the Euler–Lagrange equation for the Lagrangian of
the form r(t)L0(q, q̇) as follows:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
− γ(t)p, (23)

where the Hamiltonian H is obtained via the Legendre
transform of L0(q, q̇) not r(t)L0(q, q̇).

In what follows, we would like to generalize the work
of McLachlan and Perlmutter (2001)—in which γ is
set to be constant—to derive the conformal symplec-
ticity of dissipative Hamiltonian systems of the above
type. Let P be an (exact) symplectic manifold with
symplectic form Ω = −dΘ and H : P → R be a
(time-independent) Hamiltonian. Let us define a time-
dependent vector field XH,(·) : R × P → TP by defin-
ing, for any t ∈ R, a vector field XH,t on P by setting

XH,t := XH − Zt,

where XH is the Hamiltonian vector field on P defined
by

iXHΩ = dH,

and the time-dependent vector field Z(·) : R×P → TP
is defined as follows: Let Ω(·) be the time-dependent
symplectic form on P defined as, for any t ∈ R,

Ωt := r(t)Ω.

We define Zt by setting

iZtΩt = −r′(t)Θ.

In terms of the canonical coordinates (q, p) for P , we
have

Zt = pi
∂

∂pi
,

and hence we have

XH,t(q, p) =
∂H

∂pi

∂

∂qi
+

(
∂H

∂qi
+ γ(t)pi

)
∂

∂pi
.

Therefore, XH,t yields the dissipative Hamiltonian sys-
tem (23).

Let Φ: R × R × P → P be the time-dependent flow
of XH,(·) (assuming for simplicity that the solutions
exist for any time t ∈ R with any initial time t0 ∈
R). Then, for any t0, t1 ∈ R (see, e.g., Lee (2013,
Proposition 22.15)),

d

dt
Φ∗t,t0Ωt

∣∣∣∣
t=t1

= Φ∗t1,t0

(
∂

∂t
Ωt

∣∣∣∣
t=t1

+ LXH,t1 Ωt1

)
= Φ∗t1,t0(r′(t1)Ω + LXHΩt1 + LZt1 Ωt1)

= Φ∗t1,t0
(
r′(t1)Ω + r(t1)LXHΩ + r(t1)LZt1 Ω

)
= Φ∗t1,t0

(
r′(t1)Ω− r(t1)

(
diZt1 Ω + iZt1 dΩ

))
= Φ∗t1,t0

(
r′(t1)Ω− diZt1 Ωt1

)
= Φ∗t1,t0(r′(t1)Ω− d(−r′(t1)Θ))

= Φ∗t1,t0(r′(t1)Ω + r′(t1)dΘ)

= 0.
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Therefore, we have

Φ∗t1,t0Ωt1 = Ωt0 . (24)

Now, (21) is a special case of the above setting. Specif-
ically, we may define a time-dependent vector field
Z(·) : R × (G × g∗) → T (G × g∗) by setting, for any
t ∈ R,

iZtωt = −r′(t)θ,

where ωt := r(t)ω. This yields Zt(µ) = γ(t)µ. Then
we may write (21) as

µ̇(t) = (XH − Zt)(µ(t)).

Let ϕ : R×R×(G×g∗)→ G×g∗ be the time-dependent
flow of this system. Then, the conformal symplectic-
ity (24) implies that, for any t0, t1 ∈ R,

ϕ∗t,t0ωt = ωt0 .
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