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a b s t r a c t

We present a set of programs for measuring lifetimes τ of nuclear states by the Doppler shift
attenuation method (DSAM). The algorithms are based on the analysis of a probabilistic model of the
processes occurring during a DSAM experiment. This analysis allows us to formulate the calculation
of the theoretical lineshape as the application of an integral transform that converts the probability
density of the cascade time (the time elapsed from nucleus creation to state decay) into the probability
density of the (scaled) photon energy in the laboratory reference frame. The kernel of this integral
transform, which encapsulates information related to the processes of nuclei stopping and photon
detection, is independent of the state decay process, and hence needs not be recalculated on every
trial of a candidate τ -value, allowing for fast computation of theoretical lineshapes. Further efficiency is
gained by using algorithms that approximate continuous random variables by suitably chosen discrete
ones. These codes were used to measure the lifetimes and sidefeeding times of the excited states of
the normally deformed bands of 83Y (Rodriguez, et al. 2019) finding for all states good agreement
between the experimental lineshape and the best-fitting theoretical one.
Program summary
Program Title: AhKin
Program Files doi: http://dx.doi.org/10.17632/559kb329p2.1
Licensing provisions: MIT
Programming language: C++
Nature of problem: Measurement of lifetimes of excited nuclear states by the Doppler shift attenuation
method. This involves simulating the measured energy spectrum (lineshape) of photons emitted in
transitions between excited states of a nucleus traveling in a stopping material. The reduction in time of
the nucleus velocity relates the state lifetime to the observed Doppler shift of the photon’s energy. The
measured lifetime is assumed as the value producing the theoretical lineshape that best approximates
the experimental spectrum.
Solution method: A probabilistic model allows to formulate the computation of theoretical lineshapes
as the evaluation of an integral transform that converts the probability density of cascade times to
the Doppler-shifted photon energy spectrum. The kernel of this integral transform is independent
of the state decay process, and need not be recalculated for every trial of a candidate lifetime
value, permitting swift computation of lineshapes. Additional algorithmic efficiency is obtained by
approximating continuous random variables by discrete ones.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Measured lifetimes of excited nuclear states can be used to
estimate their electric quadrupole moments and hence provide
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contrasting information for theoretical models of the nuclear
structure [1,2]. Lifetimes of picosecond order can be determined
by the Doppler shift attenuation method (DSAM) [1–8].

In a DSAM experiment, a reaction produces nuclei in excited
states and with a recoiling velocity. (Examples of such reactions
are fusion–evaporation and Coulomb excitation reactions [9].)
The nuclei then decay to lower energy states by emission of
gamma rays. Due to the nuclei’s velocity, the photon’s energy, as
measured by detectors at rest, presents a Doppler shift. In DSAM,
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the nuclei slow down in a material (backing). As a result, photons
emitted early on, when the nucleus speed is ‘‘high’’, present a
higher Doppler shift compared to photons emitted later, when
the nucleus has almost stopped. Consequently, if the lifetime of
the decaying nuclear state is comparable to the characteristic
stopping time scale, the energy spectrum of the transition pho-
tons (lineshape) broadens and takes a shape that depends on the
lifetime.

During DSAM data analysis, a theoretical calculation of the
lineshape is performed. When possible, all of the many parame-
ters affecting the calculation output are fixed at predetermined
values, except for the proposed lifetime of the decaying state,
which is varied while the theoretical lineshape is compared
with the experimental spectrum. The value which produces the
lineshape that bears the most resemblance (according to some
quantitative comparison index) to the experimental spectrum is
declared as the ‘‘experimentally measured lifetime’’.

Different codes have been written for DSAM. The program
fits [1,10] uses a one dimensional model of the nuclei slowing-
down that relies on the electronic and nuclear components of the
stopping power and includes the scattering of velocity directions
at low energies by means of the Blaugrund approximation [11].
The codes lilifit [2,12], gamma [13,14], lineshape [15,16], apcad
[17] and the one used in Ref. [18] perform a Monte Carlo simula-
tion of the slowing-down of ions in the target and the backing
that traces the ion’s history of direction and speed. All of the
above programs take into account the finite solid angle of the
detectors and the feeding of the state through both known levels
and sidefeeding states.

The contribution of this work is not a new physical model
of the processes that intertwine in a DSAM experiment. Rather,
we analyze a probabilistic model of the relationship between
these processes, and arrive at a formulation of the computation
of theoretical lineshapes in terms of an integral transform that
converts the state population into the photon energy spectra. The
kernel of this integral transform, containing information related
to the nuclei slowing-down and photon detection, is indepen-
dent of the state gamma decay, and, as a result, needs not be
recomputed for each postulated lifetime value, permitting fast
computation of theoretical lineshapes. Additional efficiency is at-
tained by approximating continuous random variables by discrete
ones.

Section 2 presents the random variables that determine the
theoretical lineshape and introduces the continuous and discrete
methods for lineshape calculation. In Section 3, the lifetime is
related to the photon’s energy Doppler shift. The calculation of
the probability density of the cascade time (the time elapsed from
nucleus creation to state decay) is described in Section 4. Sec-
tion 5 shows the deduction of the integral transform for lineshape
computation. The continuous method is explained in Sections 6
to 9, whereas the discrete method is presented in Section 10.
The codes are described in Section 11 and applied to actual
experimental data in Section 12. Section 13 summarizes this work
and discusses possible improvements.

2. The probabilistic setup

As a result of the reaction used to study the nucleus of interest,
many states are populated that decay by emission of gamma rays.
However, when measuring lifetimes, attention is focused on a
single state transition at a time, which we call the transition of
interest and whose initial state is named the state of interest.

In this work, we take as the test with random outcome (the
analogue of throwing a dice) the creation of a nucleus, which
at some point of its history undergoes the transition of interest
emitting a photon with wave vector direction inside the solid an-
gle spanned by a specific detector. For instance, ‘‘One 83Y nucleus

makes a transition from the 25/2+ state to the 21/2+ state by
emitting a photon which falls into detector nd of the detector
array’’. Experimental techniques are used to try to exclude data
originated from any event which does not satisfy these condi-
tions. The outcome of the test will consist of all the quantities
that determine the shape of the transition energy spectrum. As
we will discuss below, the Doppler shift depends on the nucleus
velocity at the instant of emission of the photon, u, and the
photon wave vector direction k̂. The nucleus speed decreases (on
average) as the time from its creation increases. Therefore, u will
be related to the time ζ elapsed since the creation of the nucleus
up to the instant of the photon emission. It is through ζ that the
lifetime relates to the lineshape. To take into account the effect
of the detector’s finite solid angle span, it will be necessary to
distinguish tests in which the photon was detected from those
in which it went undetected. For that purpose, a discrete variable
D is introduced which takes the values D = 0 (undetected)
and D = 1 (detected). Together the random variables u, k̂, ζ
and D constitute the test outcome. Although these quantities are
conceived of as observables, they are not actually measured in the
experiment. However, they serve to build up a model with which
the lifetime (of the state of interest) is related to the lineshape
(of the transition of interest).

Two approaches were followed to compute the theoretical
lineshapes. A lineshape is the probability density of the measured
photon energy which is a function of other continuous random
variables. The discrete approach consists of approximating any of
the involved continuous random variables by discrete ones. Let
Y be a generic continuous random variable with density fY (y),
where fY (y) ̸= 0 only for ya < y < yb. The interval [ya, yb] can be
partitioned by a grid of NY evenly spaced points yi = ya + i∆y,
∆y = (yb−ya)/NY , i = 0, 1, . . . ,NY . Then, the continuous random
variable Y is approximated by a discrete one Ỹ that can take as
values only the midpoints of all subintervals yi = (yi + yi+1)/2,
i = 0, 1, . . . ,NY − 1, with probability P {̃Y = yi} =

∫ yi+1
yi

fY (y)dy.
The lineshape is then approximated by performing operations
with these random variables as described in Section 10. Although
this approach seems intuitively valid, it is difficult to asses the ac-
curacy with which the real lineshape is being estimated. A better
approximation is provided by the continuous method where the
probability density fY (y) is numerically computed at the discrete
set of points yi and then linearly interpolated to produce a con-
tinuous approximation to the exact probability density. However,
the discrete approach has advantages over the continuous one:
it is more efficient, since it avoids performing integrations, and
more robust as it circumvents the divergence to infinity of some
probability densities in the limit y → 0. Thus, we computed
lineshapes by the continuous method as a way of validating the
results of the discrete one, but provide for the software repository
the code that implements the discrete method. The continuous
method is presented in Sections 6 to 9, whereas the discrete
approach is explained in Section 10.

3. Lifetime and Doppler shift

An excited state is characterized by quantum numbers asso-
ciated to observables of angular momentum and parity among
others. In the present context, it is convenient to label such states
as |ψi⟩, i = 1, 2, . . ., where a particular value of i corresponds to
a specific combination of quantum numbers. When undergoing
spontaneous decay, a nucleus on an excited state |ψ1⟩ stays in
that state for a time ξ1, and then it makes a transition to a state
of lower energy, |ψ2⟩. Similarly, for |ψ2⟩ excited, the nucleus stays
in |ψ2⟩ for a period of duration ξ2 which finishes with a transition
to |ψ3⟩. This process takes place until the ground state is reached.
Fig. 1 shows the evolution in time of the nuclear state over a
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Fig. 1. Characteristic evolution of nuclear state in time. The vertical axis
represents the state energy.

period on which two transitions take place. Observations over en-
sembles of nuclei show that the durations ξi are random variables
whose probability density fξi (t) are accurately approximated (for
a discussion of the validity of this approximation see Ref. [19],
for instance) by an exponential

fξi (t) =
1
τi
e−t/τi , (1)

for t ≥ 0 and, since no realization of ξi is ever negative, fξi (t) = 0
for t < 0. The parameter τi is known as the mean lifetime of
state |ψi⟩ and is often called simply the lifetime. The transition
from |ψi⟩ to |ψi′⟩ is signaled by the emission of a photon with
energy Eγ = Ei − Ei′ , where Ei is the energy of |ψi⟩.

The lifetime τi provides information about the states |ψi⟩ and
|ψi′⟩ through the relation with the transition matrix element
of the interaction Hamiltonian of the electromagnetic radiation,
Hint [20],
1
τi
∝ ⟨ψi|Hint|ψi′⟩ . (2)

This allows to test the validity of theoretical models of the nuclear
structure.

When τi is sufficiently small, ξi cannot be measured directly
— Otherwise, samples of ξi would allow the estimation of τi
on the basis of (1). Instead, τi is estimated from the probability
density of a measurable quantity affected by ξi. For DSAM, the
measurable quantity is the energy of the photon emitted in the
transition |ψi⟩ → |ψi′⟩.

As explained above, nuclei are created with a non-zero veloc-
ity with respect to the laboratory reference frame. As a result, the
energy E of photons emitted by these nuclei displays a Doppler
shift when observed in this frame. The Doppler shift is deter-
mined by the velocity of the nucleus at the instant of emission
u and the photon’s wave vector direction k̂. To first order in

α =
u · k̂
c
, (3)

with c the speed of light, we have [21]

E = Eγ (1+ α). (4)

The nucleus velocity changes in time because it slows down
inside a material. Moreover, the nucleus velocity v(t) measured
from the instant of creation of the nucleus is a stochastic process.
This is the consequence of several facts: the finite width of the
distribution of projectile energies, the random linear momentum
of the evaporated particles, and the random collisions the nucleus
experiences while slowing down. The physics of these processes
is well known, so reliable estimates of the probability density
fv(t)(r) are available (the model considered here is presented in
Section 6). The time ζi (cascade time) elapsed since the creation
of the nucleus until the photon emission relates u to v(t) via

u = v(ζi). (5)

ζi is the summation of the times spent in all the states occupied
before |ψi⟩, and therefore ζi = ξ1+· · ·+ξi, which is also a random
variable. The probability density of E, fE(r), closely related to the
measured energy spectrum, is determined by the distributions
of v(t), k̂, and ζi. The detector-recorded photon energy Ẽ is, in
general, different from E, since a zero-mean random Gaussian
noise δ with standard deviation σδ is added to E during detection,
Ẽ = E + δ. Hence, the probability density of Ẽ, f̃E(r), is given by
the convolution of fE(r) with the detector’s impulse response fδ(r)
(the distribution of δ) [22],

f̃E(r) =
∫
∞

−∞

fE(r − s)fδ(s)ds. (6)

Recall that the measured energy spectrum is a histogram
constructed from a sample of f̃E(r). Since the value of τi decides
the distribution of ζi, fζi (t), it also molds the measured energy
spectrum. This connection is the key element of DSAM.

In what follows we calculate the distributions of v(t), k̂ and ζi
and discuss how they give rise to the distribution fE(r). We begin
with ζi.

4. The distribution of ζi

In this section we discuss the relation between the probability
density of ζi, fζi (t), and the lifetime. In the ensuing discussion, the
state of interest is labeled by the index n.

The nucleus’ entry state (the state the nucleus appears on
when it is created) can be any of all the states connected to the
state of interest |ψn⟩ through a sequence of physically allowed
decaying transitions. Such set of states together with the particu-
lar tree topology formed by the transitions joining them is known
as the population pattern of the state of interest. For convenience,
the index i labels the states of the population pattern in such a
way that if state |ψi′⟩ makes a decaying transition to (populates)
|ψi′′⟩ then i′ > i′′. It follows that the index of the state of interest n
is the maximum index value and it is also the number of states of
the population pattern (when including in it the state of interest
itself). Fig. 3 shows a hypothetical population pattern with the
corresponding state indices. The state of interest in this case is
n = 8.

Note that with this convention the entry state is not al-
ways |ψ1⟩. Hence, it becomes more appropriate to denote by
{i1, i2, . . . , n} the states visited by a cascade [For instance,
{i1, i2, n} = {5, 7, 8} for cascade (a) in Fig. 3, whereas {i1, i2, i3, i4,
n} = {1, 2, 4, 6, 8} for cascade (b)], in which case

ζn = ξi1 + ξi2 + · · · + ξn. (7)

Each state in the population pattern has a probability P0
i of

being the entry state. The probability of transitions between
states is described by the branching ratio bik, defined as the
conditional probability that state |ψk⟩ makes a transition to |ψi⟩,
provided |ψk⟩ has already been reached. When k is not one
of the immediately preceding states of i, bik = 0. Moreover,∑n

i=1 bik = 1, for any k. In the language of graph theory, the
matrix B with elements bik is the generalized adjacency matrix
of the edge-weighted graph associated to the population pattern.
Because of the indexing convention defined above, B is strictly
lower triangular.

When the entry state and the state of interest do not coincide,
Eq. (7) can be written as

ζn = ζν + ξn, (8)

where ζν is the cascade time of the immediately preceding state
|ψν⟩. Due to (8) it is possible to express the probability density of
ζn, fζn (t), in terms of the distributions fζν (t) of all the immediately
preceding states of |ψn⟩, each one of which, in turn, can be
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Fig. 2. Velocity of nucleus at the moment of the photon emission, u, and photon
wave vector direction, k̂, in relation to the projectile beam and the detector
(cylinder). The origin O coincides with the reaction site.

Fig. 3. Population pattern and two cascades (a) and (b) (wide gray lines).

expressed in terms of the probability densities of the cascade
times of its own immediately preceding states. As proven in
Appendix A, this recursive relationship, which holds for any state
i, is expressed by the differential equation

dfζi
dt
= −λifζi + λi

i−1∑
k=1

bik
qk
qi

fζk , (9)

where λi = 1/τi and qi is the probability that the cascade of a test
contains state |ψi⟩ (particularly, qn = 1), which can be computed
using qi = P0

i +
∑i−1

k=1 bikqk. The ODE system (9) is subject to the
initial condition

fζi (0) = P0
i /(τiqi), (10)

as shown in Appendix A.
The relation (9) is more often found in terms of the state

populations Pi(t), defined as

Pi(t) = qiτifζi (t), (11)

under the form of the Bateman equations [23]

dPi
dt
= −λiPi +

i−1∑
k=1

bikλkPk, i = 1, 2, . . . , n, (12)

which can be obtained readily by substitution of (11) into (9).
Eqs. (9) for all the states can be gathered into a single vector

equation
df
dt
= Af, (13)

where f = [fζ1 , fζ2 , . . . , fζn ]
T (the exponent T denotes matrix

transposition) and A is a matrix with elements aii = −λij and

aij = λibijqj/qi. Since A is triangular, its eigenvalues are its
diagonal elements −λi. Therefore, if no two λi are equal, the
general solution of (13) is

f(t) =
n∑

i=1

cidie−λit . (14)

where di is the eigenvector of A with eigenvalue −λi. The coef-
ficients ci can be found from the initial condition (10) via the
linear system

Dc = f0, (15)

where D is the lower triangular matrix with columns di, c =
[c1, c2, . . . , cn]T and f0 = [fζ1 (0), fζ2 (0), . . . , fζn (0)]

T .
Rather than computing D and c each in turn, we follow a more

efficient procedure to get f(t). The solution (14) can be written as

f(t) = Zη(t), (16)

where Z = Dc is a lower triangular matrix and

η(t) =
[
e−λ1t , e−λ2t , . . . , e−λnt

]T
.

Substitution of (16) into (15) together with use of (10) gives
the following recurrence relationships for the computation of the
elements zij of Z ,

zij =
1

λi − λj

i−1∑
k=j

aikzkj, j = 1, 2, . . . , i− 1, (17)

zii = f0i −
i−1∑
j=1

zij, (18)

which correspond to the faster algorithm.

5. The distribution of E

In this section we derive the probability density of E from
those of ζn, v(t) and k̂. In the sequel, we drop the subindex from
the cascade time as we will be dealing with a single nuclear state.

Eq. (4) implies the following relationship between the proba-
bility density fE(r) and the probability density of α, fα(r),

fE(r) =
1
Eγ

fα

(
r − Eγ
Eγ

)
. (19)

Hence, we will focus on the calculation of fα(r). For that purpose
we need the probability density of u, fu(r). Assuming that v(t) and
ζ are stochastically independent, from (5) it follows that

fu|ζ (r|t) = fv(t)(r), (20)

where fu|ζ (r|t) is the conditional probability density of u given
that ζ = t . Using the law of total probabilities, we have

fu(r) =
∫
∞

0
fu|ζ (r|t)fζ (t)dt (21)

=

∫
∞

0
fv(t)(r)fζ (t)dt. (22)

The other piece of information required in order to calculate fα(r)
is the probability distribution of k̂. Only photons with direction
k̂ within the solid angle spanned by the detector (as viewed
from the reaction site) are susceptible of detection (see Fig. 2).
Satisfaction of this condition does not grant detection, however,
given the random nature of the radiation-matter interaction. As a
result, the questions (i) ‘‘what is the probability that a photon that
has entered the detector has done it with direction k̂ = r̂?’’ (or,
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more strictly speaking, with direction within a differential solid
angle element around r̂) and (ii) ‘‘what is the probability that a
detected photon has entered the detector with direction k̂ = r̂?’’
have different answers. To distinguish the probability densities
defined by the two questions we introduce the random variable
D which takes the values D = 1 when the photon is detected and
D = 0 when it goes undetected through the detector. Question
(ii) defines the conditional probability density of k̂ given D =
1, fk̂|D(r̂|1). Question (i) disregards the value of D, and hence
defines the total probability density of k̂, fk̂(r̂). Since only detected
photons contribute to the energy spectrum, we must use fk̂|D(r̂|1)
in the computation of fα(r). We defer to Section 7, the calculation
of fk̂|D(r̂|1) which is based on the detector geometry and fk̂(r̂).

Eq. (3), implies

fα(r) =
d
dr

∫
s·ŵ/c≤r

fu(s)fk̂|D(ŵ|1)d3s d2w, (23)

where we have used the stochastic independence of u and k̂.
Substituting (23) into (22) and changing the order of integration
(justified by Fubini’s theorem) we have

fα(r) =
∫
∞

0
fα|ζ (r|t)fζ (t)dt (24)

where

fα|ζ (r|t) =
d
dr

∫
s·ŵ/c≤r

fv(t)(s)fk̂|D(ŵ|1)d3s d2w (25)

is the conditional probability density of α given ζ = t . Eq. (24)
can be seen as an integral transform, with kernel fα|ζ (r|t), that
converts the distribution of cascade times, fζ (t), into the distri-
bution of (nondimensional) shifts, fα(r). In Eq. (24), the processes
that determine the transition lineshape are factored into two
independent expressions. On the one hand, the kernel fα|ζ (r|t)
condenses the information pertaining to the stopping process and
the detector geometry. On the other hand, the information related
to the population pattern, the lifetimes, in particular, is contained
in fζ (t). The kernel is given in the sense that it is computed
on the basis of well established knowledge about the processes
involved. The lifetimes are the unknown sought to be determined
by the DSAM experiment. So different values of the lifetimes
and different population patterns might be tried in order to fit
the lineshapes while the models of the stopping process and the
detector remain static. This separation into a static and a variable
part of the computation of lineshapes is taken full advantage of in
the formulation presented by (24). The kernel is independent of
the lifetimes, so it is computed only once. The variable part, fζ (t)
can be computed efficiently (by the method of Section 4) given
that it is unconnected to the stopping and detection processes.

The code fits uses an approximation that simplifies the cal-
culation of the distribution of velocities, consisting of neglecting
the velocity component normal to the projectile beam. Hence,

v(t) = v∥(t)ê3, (26)

where the velocity component parallel to the beam, v∥(t), is a
scalar stochastic process with probability density fv∥(t)(r) and ê3
is a unit vector in the direction of the beam. In this case, Eq. (3)
takes the form

α = β κ, (27)

where β = u/c , u = uê3, and

κ = k̂ · ê3 (28)

is the cosine of the angle between the photon wave vector and
the beam. Consequently, (25) becomes

fα|ζ (r|t) =
∫
∞

0

1
|s|

fβ|ζ
( r
s

⏐⏐⏐ t) fκ|D(s|1)ds, (29)

Fig. 4. Stopping power S for 83Y in 181Ta.

where

fβ|ζ (r|t) = cfv∥(t)(cr) (30)

and

fκ|D(r|1) =
d
dr

∫
ê3·ŝ<r

fk̂|D(ŝ|1)d2s. (31)

In the following sections we describe the computation of fv∥(t)(r)
and fκ|D(r|1).

6. Slowing down of nuclei in a material

As the nucleus penetrates the stopping material, its velocity
v changes direction with respect to the projectile beam ê3 by a
scattering angle Θ . On average, the component of v normal to
ê3 cancels out, whereas for the parallel component, the nucleus
speed v(t) gets multiplied by the mean of the cosine of the
scattering angle cosΘ ,

v∥(t) = v(t)cosΘ.

Following fits, we assume that the random initial speed v(0),
with distribution fv(0)(r), is evolved deterministically into the
speed v(t) according to the differential equation

dv
dt
= −g(v), (32)

where g(v) ≥ 0 is defined below. We will find out the rule for
computing the distribution of v(t), fv(t)(r), on the basis of fv(0)(r).

When a nucleus performs an infinitesimal displacement dx
within the stopping material, it changes its kinetic energy T by an
amount dT = −S(T )dx, where S(T ) ≥ 0 is known as the stopping
power [24]. (Fig. 4 shows the stopping power of 83Y traveling
inside 181Ta, computed with the program SRIM-2008.04 [25].)
Hence, T as a function of the distance x traveled inside the
stopping material obeys the differential equation

dT
dx
= −S(T ). (33)

Using the Newtonian expression for T ,

T =
1
2
mv2 (34)

with m the nucleus mass and v = dx/dt , we can turn (33) into
the evolution equation (32) with

g(v) =
1
m

S
(
1
2
mv2

)
. (35)

Eq. (32) implies that v(0) is mapped into v(t) by

v(t) = Φt [v(0)], (36)
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where Φt is the time evolution operator of Eq. (32). As a con-
sequence of the theorem on transformation of random variables,
fv(t)(r) is related to fv(0)(r) by

fv(t)(r) =
⏐⏐⏐⏐ d
dr
Φ−t (r)

⏐⏐⏐⏐ fv(0) [Φ−t (r)] , (37)

where we have used Φ−1t (r) = Φ−t (r). Separation of variables
applied to (32) gives the following implicit relation for Φ−t (r),∫ Φ−t (r)

r

du
g(u)
= t. (38)

Differentiation of (38) with respect to r produces
d
dr
Φ−t (r) =

g[Φ−t (r)]
g(r)

. (39)

Let T (r) denote the time necessary for the speed v(t) to decrease
from r to a very small reference value ϵ. According to (38),

T (r) =
∫ r

ϵ

du
g(u)

. (40)

From the definitions of Φt (r) and T (r), the following property
holds

T [Φ−t (r)] = T (r)+ t. (41)

Let us define the function F(s) by means of

F[T (r)] = g(r)fv(0)(r). (42)

Substituting (39) into (37) and using (42) and (41), we obtain

fv(t)(r) =
F [T (r)+ t]

g(r)
, (43)

which provides an efficient method for the calculation of fv(t)(r).
The distribution fv(0) is derived from the distribution of the

initial kinetic energy T (0), fT (0)(r), assumed as a normal distribu-
tion with standard deviation σT and mean T , truncated to ±3σT
and renormalized, meaning that fT (0)(r) = 0 for r < T − 3σT or
r > T + 3σT . From (34) and the theorem on transformation of
random variables,

fv(0)(r) = mrfT (0)

(
1
2
mr2

)
. (44)

Hence fv(0)(r) = 0 outside the interval v−0 ≤ r ≤ v+0 with

v±0 =

√
2(T ± 3σT )/m. As a result, fv(t)(r) is non zero only in

v−(t) ≤ r ≤ v+(t), where

v±(t) = Φt (v±0 ) (45)

= T −1
[
T (v±0 )− t

]
. (46)

Since scattering is significant only at low kinetic energies, we
assumed Θ = 0 for T above a threshold, chosen as 5 MeV
for the reason explained below. For T below the threshold, we
used the formalism developed by Blaugrund [11] (explained in
Appendix B) to obtain cosΘ as function of the speed v, cosΘ =
C(v). As a result v∥(t) = B[v(t)] where

B(v) =
{
v C(v), T < 5 MeV,
v, otherwise.

In a preliminary stage, lineshapes were computed for 83Y stop-
ping in 181Ta and different values of the threshold of T . It was
found that the threshold value of 5 MeV produced the best fits to
the experimental lineshape. Fig. 5 shows C(v) computed by the
procedure in Appendix B.

The distribution fv∥(t)(r) is calculated from fv(t)(r) via the rule
for transformation of random variables

fv∥(t)(r) =
1

B′[B−1(r)]
fv(t)[B−1(r)], (47)

Fig. 5. Average scattering cosine as function of the speed v, cosΘ = C(v) for 83Y
slowing down in 181Ta. The function is defined up to v ≈ 3.41 µm/ps (dashed
line), corresponding to T = 5 MeV.

where the derivative of B, B′, is approximated by second order
centered finite differences.

When t → ∞, v±(t) → 0. In particular, fv(t)(r) enters the
interval [0, ϵ] after the time T (v−0 ) and is completely inside this
interval after T (v+0 ). Issues may arise when v−(t) approaches
zero. For example, fv∥(t)(B[v−(t)]) might tend to infinity. On the
other hand, we are not interested in finding the detailed shape
of fv∥(t)(r) on the interval 0 ≤ r < B(ϵ), since any variations in
this narrow range will be smeared out by the multiplication of β
by κ [cf. Eq. (27)] and even more so by the convolution with the
detector impulse response. Thus, when t > T (v−0 ), we proceed
as follows. For B(ϵ) ≤ r ≤ B[v+(t)], we compute fv∥(t)(r) using
(47) and (43), while for 0 ≤ r < B(ϵ), we approximate fv∥(t)(r)
by a linear function ensuring continuity of fv∥(t)(r) at r = B(ϵ)
and distribution normalization,

∫ B[v+(t)]
0 fv∥(t)(r)dr = 1. Moreover,

it is assumed that once fv∥(t)(r) is fully contained in the interval
[0,B(ϵ)], at t = T (v+0 ), it becomes time invariant, fv∥(t)(r) =
f
v∥

[
T (v+0 )

](r) for t > T (v+0 ).

As an illustration, the mean kinetic energy T is computed next
for a fusion–evaporation reaction. In this reaction, projectile and
target nuclei fuse and produce a composite nucleus which decays
by emission of nucleons and alpha particles into different residual
nuclei (evaporation), one of which is the nucleus of interest. T is
obtained on the basis of two assumptions: (i) linear momentum is
conserved during the collision leading to fusion; and (ii) initially
the residual nucleus moves with the speed of the composite
nucleus (evaporation produces fluctuations around this speed).
These lead to

T =
mmp

(mp +mt )2
Tp, (48)

where mp and Tp are the projectile’s mass and kinetic energy,
respectively, and mt is the target’s mass. For example, for a
collision of 32S (projectile) at Tp = 135 MeV with 58Ni (target)
at rest and residual nucleus 83Y, Eq. (48) gives T = 44.267 MeV.

Fig. 6 shows fv(t)(r), computed as previously described, for 83Y
stopping in 181Ta (cf. Fig. 4) with initial energy distribution fT (0)(r)
given by T = 44.267 MeV, as above, and σT = 0.1T .

7. The distribution of wave vector directions

In this section we describe how to calculate fκ|D(r|1) using
(31).

We begin by computing fk̂|D(r̂|1). A known fact [22] of the
interaction of radiation with matter is that the conditional prob-
ability P

{
D = 1

⏐⏐⏐k̂ = r̂
}
that a photon be detected given that its

direction is k̂ = r̂ is related to the length w(k̂) of the segment
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Fig. 6. Distribution fv∥(t)(r) with r corresponding to possible values of v∥(t) for
83Y stopping in 181Ta with T = 44.267 MeV and σT = 0.1T , for the following
times: 0 ps (blue), 0.2 ps (green), 0.45 ps (red), 0.66 ps (magenta), 0.8 ps (black),
0.92 ps (cyan) and 1.03 ps (yellow). From t = 0.45 ps to t = 0.66 ps, the
distribution decreases in height due to the multiplication by the mean scattering
cosine for v < 3.41 µm/ps . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

of the straight line along k̂ contained inside detector crystal (the
detector, for brevity),

P
{
D = 1

⏐⏐⏐k̂ = r̂
}
= 1− exp(−µw(r̂)), (49)

where µ is the crystal’s coefficient of absorption. For small µw,
(49) can be simplified by Taylor series expansion of its right-hand
side, giving

P
{
D = 1

⏐⏐⏐k̂ = r̂
}
≈ µw(r̂). (50)

Eq. (50) allows the computation of fk̂|D(r̂|1) by means of Bayes’
formula,

fk̂|D(r̂|1) =
P

{
D = 1

⏐⏐⏐k̂ = r̂
}
fk̂(r̂)

P {D = 1}
(51)

where

P {D = 1} =
∫
Ω

P
{
D = 1

⏐⏐⏐k̂ = r̂
}
fk̂(r̂)d

2r, (52)

is the marginal probability of a photon being detected.
In order to evaluate (31) using (51), the directions r̂ are

parametrized by the two angles, θ ′ and φ′, of the spherical
coordinates defined with respect to a detector reference frame
{ê′1, ê

′

2, ê
′

3}. The detector frame is obtained by rotation of the
laboratory reference frame {ê1, ê2, ê3} (origin O at the reaction
site), with ê3 aligned with the projectile beam (as before), ê1
pointing upward, and ê2 completing the right-handed set (Fig. 2).
In this frame, r̂ is described by the polar and azimuthal angles, θ
and φ respectively, through the relation

r̂ = sin θ cosφ ê1 + sin θ sinφ ê2 + cos θ ê3. (53)

Let θd and φd denote the angular coordinates of the detector axis
(which points toward the reaction site, cf. Fig. 2) in the laboratory
frame. The laboratory frame is mapped into the detector frame
(with ê′i being the image of êi) through a rotation around ê2 by
an angle θd, followed by an independent rotation around ê3 by
φd.

The expression for w(r̂) as function of the detector frame
angles, w(θ ′, φ′), is simpler than the equivalent one for the lab-
oratory frame angles, w(θ, φ), hence the former is preferred. For

a cylindrical detector, w(r̂) has no dependence on the azimuthal
angle φ′, w(r̂) = w(θ ′). Elementary geometry yields

w(θ ′) =
{
H sec θ ′, 0 ≤ θ ′ < θ1,

R csc θ ′ − L sec θ ′, θ1 ≤ θ
′ < θ2,

(54)

where H and R are the detector’s height and radius, respectively,
L is the distance from the origin to the nearest detector circular
face, tan θ1 = R/(L+ H), and tan θ2 = R/L.

The boundary of the integration region in (31), ê3 · r̂ = const.,
needs to be expressed, like the integrand, in terms of θ ′ and φ′. Let
us define h(θ ′, φ′) = ê3 · r̂ = ê3 · (sin θ ′ cosφ′ ê′1+ sin θ ′ sinφ′ ê′2+
cos θ ′ ê′3.). Since ê3 is the polar axis, h(θ ′, φ′) is independent of
the detector’s azimuthal angle φd. So, without loss of generality,
we can choose φd = 0, in which case ê3 = − sin θd ê′1 + cos θd ê′3
and, as a result,

h(θ ′, φ′) = − sin θd sin θ ′ cosφ′ + cos θd cos θ ′. (55)

The distribution fk̂(r̂) is the angular radiation pattern of the
state transition, restricted to the solid angle spanned by the
detector. Assuming the detector is narrow enough so that the
radiation pattern does not change significatively within the solid
angle, we approximate fk̂(r̂) by an isotropic distribution. Let ϑ ′

and ϕ′ denote the random polar and azimuthal angles of k̂ with
respect to the detector frame. In terms of ϑ ′ and ϕ′, fk̂(r̂) takes
the form

fϑ ′,ϕ′ (θ ′, φ′) =
sin θ ′

Ω
, (56)

where Ω is the solid angle of the region 0 ≤ θ ′ ≤ θ2 and
0 ≤ φ′ ≤ 2π . Similarly, P

{
D = 1

⏐⏐⏐k̂ = r̂
}

becomes

P
{
D = 1

⏐⏐(ϑ ′, ϕ′) = (θ ′, φ′)
}
= µw(θ ′). (57)

Substituting (56) and (57) into (51),

fκ|D(r|1) =
1

I(κmax)
dI
dr

(58)

where

I(r) =
∫
h(θ ′,φ′)≤r

w(θ ′) sin θ ′dθ ′dφ′ (59)

and κmax = cos(θd − θ2) is the maximum possible κ-value.
I(κmin) = 0, where κmin = cos(θd + θ2) is the minimum possible
κ-value. Note that it is unnecessary to know µ since it cancels
out from (58). Fig. 7 shows fκ|D(r|1) obtained from numerical
calculation of (59) with the function dblquad from the scipy
Python module on a grid of evenly spaced points with meshsize
(κmax−κmin)/100. The derivative in (58) was approximated by the
second-order centered finite-differences formula. The detector
parameters are θd = 52.8◦, R = 3.55 cm, H = 8 cm, and L = 25.5
cm.

8. The kernel fα|ζ(r|t)

fα|ζ (r|t) can now be computed evaluating the integral in (29),
repeated here,

fα|ζ (r|t) =
∫ smax

smin

1
s
fβ|ζ

( r
s

⏐⏐⏐ t) fκ|D(s|1)ds, (60)

where the more precisely defined integration limits smin and smax
are determined by the ranges over which both fβ|ζ (r/s|t) and
fκ|D(s|1) are different from zero: smin = max{κmin, cr/B[v+(t)]},
for all times, and smax = min{κmax, cr/B[v−(t)]}, when t ≤ T (v−0 ),
or smax = κmax, otherwise.

Fig. 8 shows fα|ζ (r|t) obtained from fv∥(t)(r) and fκ|D(r|1) dis-
played in Figs. 6 and 7, respectively [recall that fβ|ζ (r|t) is derived
from fv∥(t)(r) using Eq. (30)]. For a given t ≤ T (v−0 ), fα|ζ (r|t) is non
zero only in the interval κminB[v−(t)] < cr < κmaxB[v+(t)].
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Fig. 7. Distribution fκ|D(r|1) with r corresponding to possible values of κ
[defined by Eq. (28)] for a cylindrical detector with parameters θd = 52.8◦ ,
R = 3.55 cm, H = 8 cm, and L = 25.5 cm. The distribution is exactly zero for
r ≤ κmin or r ≥ κmax .

Fig. 8. The kernel fα|ζ (r|t) for 83Y slowing down in 181Ta and the detector
geometry used in Fig. 7. The kernel is plotted as function of the variable r ,
which corresponds to possible values of α, for different times: 0 ps (blue), 0.2
ps (green), 0.45 ps (red), 0.66 ps (magenta), 0.8 ps (black), 0.92 ps (cyan) and
1.03 ps (yellow) . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

9. Computation of lineshape and measurement of the lifetime
τ

The distribution fα(r) is computed by Eq. (24). Let tα
−
(r) and

tα
+
(r) denote the endpoints of the largest interval on which

fα|ζ (r|t) > 0, for given r . With this notation, (24) becomes

fα(r) =
∫ tα
+
(r)

tα
−
(r)

fα|ζ (r|t)fζ (t)dt (61)

where the lower integration limit is given by

tα
−
(r) =

⎧⎨⎩
lin(r), 0 ≤ cr < κminB(ϵ)
tv
−
[B−1(cr/κmin)], κminB(ϵ) < cr < κminB(v−0 )

0, κminB(v−0 ) ≤ cr ≤ κmaxB(v+0 )

with lin(r) > T (v−0 ) denoting the lower limit for the linear
interpolating function and tv

−
(r) defined by v−[tv−(r)] = r , hence

tv
−
(r) = T (v−0 )− T (r). The upper limit, on the other hand, is

tα
+
(r) =

{
∞, 0 ≤ cr < κmaxB(ϵ)
tv
+
[B−1(cr/κmin)], κmaxB(ϵ) ≤ cr ≤ κmaxB(v+0 )

where tv
−
(r) = T (v+0 ) − T (r). The case tα

+
(r) = ∞ results from

fα|ζ (r|t) becoming time invariant for t > T (v+0 ).
For finite tα

+
(r), the integral in (61) was computed by the trape-

zoid method using the function trapz from the scipy.integrate

Python module. For tα
+
= ∞, the integral was split into two terms,

fα(r) =
∫ T (v+0 )

tα
−
(r)

fα|ζ (r|t)fζ (t)dt + fα|ζ [r|T (v+0 )]
∫
∞

T (v+0 )
fζ (t)dt, (62)

and the first term was calculated by the trapezoid method,
whereas the integral in the second one was computed analyti-
cally.

To obtain the theoretical lineshape f̃E(r) using (6), fE(r) is
derived from fα(r) using (19), and the integral in (6), with fδ(r)
truncated to the interval [−3.5σδ, 3.5σδ] and renormalized, is
evaluated by the trapezoid method.

The dependence of the theoretical lineshape f̃E(r) on the sup-
posed value of the lifetime τ is indicated explicitly by writing it
as f̃E(r; τ ). To find the ‘‘real’’ value of τ , f̃E(r; τ ) is compared with
the experimental lineshape, given as a histogram of the number
of photons Xi recorded with energy in any one of NE intervals
Ei ≤ E < Ei+1, i = 0, 1, . . . ,NE − 1, Ei = E0 + i∆E, where
∆E is the given experimental channel width. The real or measured
lifetime τ ∗ is assumed as the value of τ producing the theoretical
lineshape that better fits the experimental one, with goodness of
fit measured by the reduced chi-squared χ2

r (τ ) [26],

χ2
r (τ ) =

1
N

N∑
i=1

[Xi − CY (τ )Yi(τ )]2

σ 2
i

,

where Yi(τ ) is the probability of finding Ẽ in [Ei, Ei+1),

Yi(τ ) = P{Ei ≤ Ẽ < Ei+1} =
∫ Ei+1

Ei

f̃E(r; τ )dr, (63)

CY (τ ) is the normalization constant

CY (τ ) =
∑N

i=1 XiYi(τ )∑N
i=1 Y

2
i (τ )

,

and σi =
√
Xi, assuming the counts Xi have a Poisson distribution.

More exactly, the measured τ ∗ is the τ -value at which χ2
r (τ )

takes the minimum, χ2
min, and the endpoints of the measurement

uncertainty interval are τa and τb, τa < τ ∗ < τb, such that
χ2
r (τa) = χ

2
r (τb) = χ

2
min + 1 [27].

10. Algorithms of the discrete method

This section explains the algorithms used by the discrete
method for theoretical lineshape calculation, which approximates
continuous random variables by discrete ones. In Section 12,
the outcomes of this approach and the continuous method are
compared.

10.1. Calculation of fv∥(t)(r)

We select a time range [0, tmax] and represent it with a dis-
crete set of times ti = i∆t, i = 0, 1, . . . ,Nt , ∆t = tmax/Nt .
Similarly, we choose a velocity range [0, vmax], v+0 < vmax, and
divide it with a grid vi = i∆v, i = 0, 1, . . . ,Nv , ∆v =
vmax/Nv , where Nv is the number of grid points. The probability
density fv∥(ti)(r), i = 0, 1, . . . ,Nt , is approximated by the discrete
distribution P{v∥(ti) = vj} = pvij , j = 0, 1, . . . ,Nv − 1, where
pvij ≈

∫ vj+1
vj

fv∥(ti)(r)dr is computed as described below.

The energy range [T−3σT , T+3σT ] is represented by a discrete
grid Tl = T − 3σT + l∆T , l = 0, 1, . . . ,NT , ∆T = 6σT/NT , with
NT even, so that TNT /2 = T . The probability density fT (0)(r) is
approximated by the discrete distribution P{T (0) = Tl} = pTl ,
where pTl = fT (0)(Tl)/CT with CT =

∑NT
l=1 fT (0)(Tl). Using this

distribution, the probabilities pvij are computed by Alg. 1.



A. Garzón, W. Rodriguez, F. Cristancho et al. / Computer Physics Communications 246 (2020) 106854 9

Algorithm 1 Calculation of the discrete distribution of v∥(t), pvij .

1: sij ← 0, i = 0, 1, ...,Nt , j = 0, 1, ...,Nv − 1
2: for l← 0, 1, ...,NT do
3: v0l ←

√
2Tl/m

4: ṽ← BuildInterpolant(v0l )
5: for i← 0, 1, ...,Nt do
6: v← ṽ(ti)
7: v← B(v)
8: find j such that v ∈ [vj, vj+1)
9: sij ← sij + pTl

10: end for
11: end for
12: pvij ← sij, i = 0, 1, ...,Nt , j = 0, 1, ...,Nv − 1

In step 4 of Alg. 1, function BuildInterpolant solves Eq. (32)
numerically using Runge–Kutta order four method, for initial con-
dition v0l , up to tf > tmax, and builds a function that interpolates
this solution. This interpolant is then assigned to function ṽ,
which is called in step 6.

10.2. Calculation of fκ|D(r|1)

We divide the range [−1, 1] with a grid of points κi = −1 +
i∆κ, i = 0, 1, . . . ,Nκ , ∆κ = 2/Nκ , and approximate the
probability density fκ|D(r|1) by the discrete distribution P{κ =
κ i} = pκi , where κ i = (κi + κi+1)/2, i = 0, 1, . . . ,Nκ − 1, and
pκi ≈

∫ κi+1
κi

fκ|D(r|1)dr is computed by the Monte Carlo method
implemented by Alg. 2.

Algorithm 2 Calculation of the discrete distribution of κ , pκi
1: si ← 0, i = 1, ...,Nκ
2: for l← 1, 2, ...,Nshots do
3: yθ ← Uniform([0, 1])
4: yφ ← Uniform([0, 1])
5: θ ′ ← arccos[1− (1− cos θ2)yθ ]
6: φ′ ← 2πyφ
7: κ ← h(θ ′, φ′)
8: find i such that κ ∈ [κi, κi+1)
9: si ← si + w(θ ′)

10: end for
11: Cκ ←

∑Nκ−1
i=0 si

12: pκi ← si/Cκ , i = 0, ...,Nκ − 1

In step 3 of Alg. 2, Uniform([0, 1]) returns a realization of a
random variable uniformly distributed on the interval [0, 1].

10.3. Calculation of fα|ζ (r|t)

The probability density fα|ζ (r|t) will be approximated for the
same set of times ti, i = 0, 1, . . . ,Nt as in Alg. 1. The range
containing all possible α-values, [−vmax/c, vmax/c], is divided
with a grid of 2Nα + 2 points αj = (j − 1/2)∆α, j = −Nα, . . . −
1, 0, 1, . . . ,Nα + 1, ∆α = 2vmax/[c(2Nα + 1)]. And the probabil-
ity density fα|ζ (r|ti) is approximated by the discrete distribution
P{α = αj|ζ = ti} = pα,ζij , where αj = (αj + αj+1)/2 and
pα,ζij ≈

∫ αj+1
αj

fα|ζ (r|ti)dr is calculated by Alg. 3.

10.4. Calculation of fα(r)

The probability density fα(r) is approximated by the discrete
distribution P{α = αj} = pαj ≈

∫ αj
αj−1

fα(r)dr , where the values pαj

Algorithm 3 Calculation of the discrete kernel pα,ζij .

1: sij ← 0, i = 0, 1, ...,Nt , j = 1, 2, ...,Nα
2: for i← 0, 1, ...,Nt do
3: for j← 1, 2, ...,Nv do
4: if pvij ̸= 0 then
5: for l← 1, ...,Nκ do
6: α← vjκ l
7: find k such that α ∈ [αk, αk+1)
8: sik ← sik + pvijp

κ
k

9: end for
10: end if
11: end for
12: end for
13: pα,ζij ← sij, i = 0, 1, ...,Nt , j = −Nα, ..., 0, ...,Nα

are calculated by the discrete analogue of Eq. (61),

pαj =
i+(j)∑

i=i−(j)

pα,ζij pζi , (64)

where i−(j) and i+(j) are respectively the first and last indices i
for which pα,ζij ̸= 0 for a given j, and pζi are the probabilities of
the discrete approximation of fζ (t), P{t = ti} = pζi where the set
of ti values is the same used by Alg. 3 and pζi =

∫ ti+1
ti

fζ (t)dt is
computed analytically.

Since limt→∞ v±(t) = 0, there exists a first value ic , such that
for any i ≥ ic , p

α,ζ

ij = 0, if j ̸= 0 and pα,ζi0 = 1. This means that
i+(0) = ∞ and for j = 0, Eq. (64) becomes

pα0 = pζ
∞
+

ic−1∑
i=i−(0)

pα,ζij pζi (65)

where pζ∞ =
∫
∞

tc
fζ (t)dt with tc = ic∆t . Eq. (65) is analogous to

(62).

10.5. Calculation of fE(r) and f̃E(r)

Let E ′ denote the photon energy shift, E ′ = E − Eγ , whose
probability density fE′ (r) = fE(r − Eγ ) is approximated by the
discrete distribution P{E ′ = E ′ i} = pE

′

i with E ′ i = (E ′i + E ′i+1)/2

and pE
′

i ≈
∫ E′i+1
E′i

fE′ (r)dr , where the grid E ′i is described next.
We choose an interval [−E ′max, E

′
max] large enough as to contain

the shifted interval over which the experimental lineshape is
given, [E0 − Eγ , ENE − Eγ ]. The interval [−E ′max, E

′
max] is divided

by the grid E ′i with subinterval length ∆E ′ ten times smaller
than the experimental channel width, E ′i = (i − 1/2)∆E ′, i =
−NE′ , . . . ,−1, 0, 1, . . . ,NE′ + 1, ∆E ′ = ∆E/10. This grid is
‘‘congruent’’ with the experimental grid Ei, meaning that there
exists i∗ such that E ′i∗+10i = Ei. The probabilities pE

′

i are obtained
via Alg. 4

Algorithm 4 Calculation of the discrete distribution of the photon
energy shift, pE

′

i

1: si ← 0, i = −NE′ , ...,−1, 0, 1, ...,NE′

2: for j←−Nα, ...,−1, 0, 1, ...,Nα do
3: E ′ ← Eγαj
4: find i such that E ′ ∈ [E ′i , E

′

i+1)
5: si ← si + pαj
6: end for
7: pE

′

i ← si, i = −NE′ , ...,−1, 0, 1, ...,NE′
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The theoretical lineshape f̃E(r) is approximated by the distri-

bution P {̃E = Eγ +E ′ i} = p̃Ei , p̃
E
i ≈

∫ E′i+1
E′i

f̃E(Eγ + r)dr , for the same

grid E ′ i used in Alg. 4. To approximate the convolution in (6), we
use the discrete version of the detector impulse response fδ(r),
given by P{δ = E ′ i} = pδi , where pδi = fδ

(
E ′ i

)
/Cδ if |E ′ i| ≤ 3.5σδ

or pδi = 0 otherwise, and Cδ =
∑

i fδ(E ′ i). The probabilities p̃Ei are
obtained via the discrete analogue of the convolution in (6),

p̃Ei =
∑

j

pE
′

i−jp
δ
j ,

with null terms excluded from the summation, for efficiency.
To calculate the reduced chi-squared χ2

r (τ ), the probability
Yi(τ ) defined by (63) is computed as

Yi(τ ) =
9∑

j=0

P Ẽ
i∗+10i+j.

11. Programs

The following are the programs submitted with this work.
They implement the discrete method for the calculation of the
theoretical lineshape and the measurement of the lifetime. Their
operation is described in the programs’ documentation.

prob_cos: Computes the numerical approximation to fκ|D(r|1)
using Alg. 2.

stopping: Calculates the numerical approximation to the ker-
nel fα|ζ (r|t) using algorithms 1 and 3.

AhKin_A: Computes χ2
r (τ ) for a list of τ -values. Points can

be added to this list interactively to refine the location of the
global minimum of χ2

r (τ ). The theoretical lineshape and χ2
r (τ )

are calculated using the algorithms described in Sections 10.4 and
10.5.

AhKin_B: Finds a local minimum of χ2
r (τ ) using golden section

search [28]. It also determines the endpoints τ of the uncertainty
interval by solving the equation χ2

r (τ )− (χ2
min+ 1) = 0 using the

bisection method. An option allows the search range to be set
so that the minimum found corresponds to the global minimum.
Like AhKin_A, this program uses the algorithms in Sections 10.4
and 10.5 to compute the theoretical lineshape and χ2

r (τ ).

12. A study case

The programs of the previous section were used to measure
level lifetimes and sidefeeding times of the excited states of 83Y
populated by the fusion–evaporation reaction 58Ni(32S, α3p)83Y
at 135 MeV [29], conducted at Lawrence Berkeley National Lab-
oratory. Evaporated particles were identified by the microball
array [30], whereas gamma-rays were recorded by the gamma-
sphere array [31], consisting of 110 HPGe detectors organized
in a spherical arrangement composed by 17 rings of detectors
with each ring located at a fixed polar angle θ . To select gamma-
rays originated by 83Y events, coincidence with the detection of
one α particle and three protons was demanded. Experimental
lineshapes were collected from energies recorded at four pairs
of adjacent rings and, for lineshape fitting, each pair was rep-
resented by the weighted average θ̄ of the polar angle, yielding
angles θ̄ = 35.0◦, 52.8◦, 127.2◦, and 145.5◦. More details of the
data analysis and the measured lifetimes can be found in Ref. [29].

For all transitions analyzed, good agreement was found be-
tween the experimental lineshape and the best-fitting theoretical
one. As an illustration, Fig. 9 shows the best fit to the lineshape
of the transition between the Iπ = 45/2− and 41/2− states (π is
parity and I is spin) of the negative parity and positive signature
band, (−,+), of 83Y [2], with Eγ = 1594.6 keV, for all four angles.
The χ2

r (τ ) found by AhKin_A/B and the measured values τ ∗ of

the 45/2− state are displayed by Fig. 10. Fig. 11 depicts the best
fit to the lineshape of a different transition, 29/2+ → 25/2+ of
the (+,+) band, with Eγ = 1193.1 keV. For this transition, the
χ2
r (τ ) found both by AhKin_A/B and by the continuous method

are displayed by Fig. 12. Note that for all angles, AhKin_A/B and
the continuous method produce the same argument minima τ ∗
of χ2

r (τ ) and the same uncertainty interval [τa, τb], χ2
r (τa,b) =

χ2
min+1, thus giving identical measurements of the lifetime of the

29/2+ state. Moreover, at the resolution used in Fig. 11, the best
fitting lineshapes generated by AhKin_A/B and the continuous
method are almost indistinguishable (for this reason the latter
were not plotted). This indicates that the discrete method used
by AhKin_A/B provides an accurate solution of the probabilistic
model for lineshape computation.

13. Concluding remarks

We presented a set of programs for measuring lifetimes of
nuclear states by the Doppler shift attenuation method (DSAM).
The programs compute theoretical lineshapes for proposed life-
time values τ until the value τ ∗ that produces the best fit to the
experimental lineshape is found. Here fitness is measured by the
reduced chi-squared χ2

r (τ ). The algorithms implemented by the
codes are based on a probabilistic model of the processes occur-
ring during a DSAM experiment. The analysis of this model allows
us to formulate the calculation of the theoretical lineshape as
the application of an integral transform. This transform converts
the probability density of the cascade time (time elapsed since
the nucleus is created until it leaves the state of interest) fζ (t; τ )
into the probability density of the (scaled) photon energy in
the laboratory reference frame (the theoretical lineshape before
convolution with the detector impulse response),

fα(r; τ ) =
∫
∞

0
fα|ζ (r|t)fζ (t; τ )dt.

The kernel of this integral transform fα|ζ (r|t) contains the infor-
mation related to the nucleus stopping process and the detector
geometry and is independent of the cascade time. Thus, the
integral transform separates the calculation of the theoretical
lineshape into a static part, the kernel fα|ζ (r|t), that does not
need to be recomputed every time a new lifetime value is tried,
and a variable part, the cascade time distribution, which can
be calculated efficiently since it is independent of the stopping
process. This separation permits fast computation of theoretical
lineshapes and, therefore, swift sampling of the curve of χ2

r (τ )
and identification of the minimum χ2

r (τ
∗).

The practical calculation of the lineshapes was carried out in
two ways. In the continuous method, the probability densities of
continuous random variables were approximated numerically at
a discrete set of points, which were then linearly interpolated.
In the discrete method, continuous random variables were ap-
proximated by discrete ones. The continuous method provides
a theoretical lineshape which is a reliable approximation to the
exact solution of the probabilistic model, the ‘‘true’’ lineshape,
and was used to validate the discrete method. In several test
cases, we found that the continuous and discrete methods pro-
duce outcomes that for practical purposes are identical. Here, we
present programs implementing the algorithms of the discrete
method since they are much faster than those of the continuous
one.

The following are the codes attached to this work. Program
stopping computes the kernel using a one-dimensional model
of the stopping process that includes a scattering angle at low
kinetic energies. It takes as input the distribution of the projec-
tion of the photon direction onto the projectile beam, calculated
by program prob_cos, which takes into account the detector’s
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Fig. 9. Best fit (smooth solid line) to the experimental lineshape (histogram) of the 45/2− → 41/2− transition of the (−,+) band, with Eγ = 1594.6 keV, found by
AhKin_B for four different detector polar angles. For each angle, the (rounded) measured lifetime of state 45/2− is displayed.

Fig. 10. χ2
r (τ ) of the fit to the experimental lineshape of the 45/2− → 41/2− transition of the (−,+) band, found by AhKin_A/B. On each subplot, the vertical

dashed line marks the argument minimum τ ∗ of χ2
r (τ ), χ

2
r (τ
∗) = χ2

min , while the horizontal dashed line indicates χ2
min + 1.

Fig. 11. Best fit (smooth solid line) to the experimental lineshape (histogram) of the 29/2+ → 25/2+ transition of the (+,+) band, with Eγ = 1193.1 keV, found
by AhKin_B for four different detector polar angles. For each angle, the (rounded) measured lifetime of state 29/2+ is displayed.

angular aperture. Program AhKin_A takes the kernel as input
and computes the theoretical lineshape (performing the integral
transform) and χ2

r (τ ) for a list of τ -values that can be easily
refined interactively. It can be used to obtain an estimate of
the global minimum of χ2

r (τ ). AhKin_B finds automatically the
global minimum of χ2

r (τ ) (if the search range is suitably set)
and the limits of the uncertainty interval, hence providing the
measurement of τ .

This set of programs has been used to measure the lifetimes
of states of 83Y populated by the fusion–evaporation reaction

58Ni(text32S, α3p)83Y at 135 MeV, conducted at Lawrence Berke-
ley National Laboratory, with evaporated charged particles and
gamma-rays detected by the microball and gammasphere ar-
rays, respectively [29]. In most cases, we found good agreement
between the experimental lineshapes and the best-fitting theo-
retical one, which gives us confidence that the physical model
used and the solution implemented in the code are reliable.

As future work, calculation of the kernel using a more ac-
curate model of the interaction of nuclei with matter could be
pursued. The new model might consider the angular dispersion
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Fig. 12. χ2
r (τ ) of the fit to the experimental lineshape of the 29/2+ → 25/2+ transition of the (+,+) band, found by AhKin_A/B (solid blue line) and by the

continuous method (dashed cyan line) for four different detector polar angles. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

of the residual nuclei’s initial velocity, estimated theoretically
or experimentally from the energies of the evaporated particles,
and the finite width of the target film. It might also simulate
three dimensional collisions of the residual nuclei with atoms of
the backing [32]. This new kernel could be used by the current
versions of programs AhKin_A and AhKin_B, i.e. without any
need for source code changes, due to the separation of kernel
and lineshape computation. Hence, this modularity not only con-
tributes to the code’s efficiency but also facilitates updating the
simulation model.
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Appendix A. Recurrence formula for probability densities fζi (t)

The index ν of the immediately preceding state of |φn⟩ is a
random variable that takes values in the set Un of all possible
immediately preceding states (for n = 8 in Fig. 3, U8 = {6, 7}).
We extend the definition of ν to include the case in which |φn⟩ is
the entry state, which is assigned the value ν = 0. The different
cases can be summarized as

ζn =

{
ξn, ν = 0,
ζν + ξn, ν ∈ Un,

(A.1)

where Un is the set of all possible immediately preceding states
of |ψn⟩. In calculating the probability density of ζi we take into
account the contributions of all the possible cases listed by (A.1)
(with n substituted by i). Using the law of total probabilities:

fζi (t) =
P0
i

qi
fζi|ν(t|0)+

∑
k∈Ui

bik
qk
qi

fζi|ν(t|k), (A.2)

where fζi|ν(t|k) is the conditional probability density of ζi given
that ν = k. We divided the probabilities P0

i and qk by qi in order
to condition on cascades that contain |ψi⟩. From (A.1) we see that

fζi|ν(t|0) = fξi (t) (A.3)

and

fζi|ν(t|k) = fζk+ξi (t). (A.4)

Since the times ξ1, ξ2, . . . , ξi are independent random variables,
so are ζk and ξi. Consequently,

fζk+ξi (t) =
∫
∞

−∞

fζk (s)fξi (s− t)ds. (A.5)

Substituting (1) into (A.5), we have

fζk+ξi (t) =
1
τi
e−t/τi

∫ t

0
fζk (s)e

−s/τids. (A.6)

Substitution of (A.3), (A.4), (1) and (A.6) into (A.2), yields

fζi (t) =
1
τi
e−t/τi

⎛⎝P0
i

qi
+

∑
k∈Ui

bik
qk
qi

∫ t

0
fζk (s)e

s/τids

⎞⎠ . (A.7)

Eq. (A.7) is the desired recurrence formula. We can formulate this
recurrence formula as a differential equation taking the derivative
on both sides of (A.7) to obtain
dfζi
dt
= −

fζi
τi
+

1
τi

∑
k∈Ui

bik
qk
qi

fζk . (A.8)

Considering that bik = 0 if k does not populate i, leads to (9).
The required initial condition for (A.8) can be found by evaluating
(A.7) at t = 0, which yields fζi (0) = P0

i /(τiqi).

Appendix B. Computation of the average scattering angle co-
sine, cosΘ

We obtain cosΘ as function of the kinetic energy T using
the formalism developed by Blaugrund [11], whose equations are
expressed in terms of a nondimensional kinetic energy ε defined
by

ε = 10.2
M
A1

T
mec2

(B.1)
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where me is the mass of the electron and

M =
1.63× 103A1A2

Z1Z2
(
Z2/3
1 + Z2/3

2

)1/2
(A1 + A2)

with Ai and Zi denoting respectively the mass and atomic num-
bers of the residual nucleus (i = 1) and the stopping material
(i = 2). For 83Y stopping in 181Ta, A1 = 83, Z1 = 39, A2 = 181,
and Z2 = 73.

The mean scattering cosine is computed by

cosΘ = C̃(ε) ≡ exp
[
−

1
2
A2

A1
GI(ε)

]
(B.2)

where

G =

⎧⎪⎨⎪⎩
1+

2
3
r −

7
15

r2, r < 1
2
3
+

8
15

1
r
, r > 1

with r = A1/A2, and

I(ε) =
∫ ε0

ε

Sn(z)
z [Sn(z)+ Se(z)]

dz

where ε0 corresponds to the ‘‘initial’’ kinetic energy T = 5 MeV,
and Sn(ε) and Se(ε) are respectively the nondimensional atomic
and electronic stopping power, approximated as

Sn(ε) = 0.6111e−
√
ε/1.919

(
1− e−

√
ε/0.2406

)
and

Se(ε) = k
√
ε, (B.3)

where

k = Z1/6
1

0.0793Z1/2
1 Z1/2

2 (A1 + A2)3/2(
Z2/3
1 + Z2/3

2

)3/4
A3/2
1 A1/2

2

.

Using (B.1), (B.2), and (34), the mean scattering cosine can be
expressed as a function of the speed v, cosΘ = C(v).
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