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ŽWe study a rate-type viscoelastic system proposed in I. Suliciu Int. J. Engng.
Ž . .Sci. 28 1990 , 827�841 , which is a 3 � 3 hyperbolic system with relaxation. As the

relaxation time tends to zero, this system converges to the well-known p-system
formally. In the case that the solutions of the p-system are piecewise smooth,
including finitely many noninteracting shock waves, we show that there exist
smooth solutions for Suliciu’s model which converge to those of the p-system
strongly as the relaxation time goes to zero. The method used here is the so-called

Žmatched asymptotic analysis suggested in J. Goodman and Z. P. Xin Arch. Ration.
Ž . .Mech. Anal. 121 1992 , 235�265 , which includes two parts: the matched asymp-

totic expansion and stability analysis. � 2000 Academic Press

Key Words: piecewise smooth solution; viscoelasticity; matched asymptotic analy-
sis; zero relaxation limit.

1. INTRODUCTION

We are interested in the asymptotic behavior of the rate-type viscoelas-
tic system

� � u � 0,t x

u � p � 0, x � R1 , t � 0,t x 1.1Ž .
p � � pŽ .R

p � E� � ,Ž . t
�

as the relaxation time � goes to zero. Here � and �p denote strain and
stress, respectively, u is related to the particle velocity, and E is a positive
constant, called the dynamic Young’s modulus.
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� �This system was proposed in 9 to introduce a relaxation approximation
to the system

� � u � 0,t x
1.2Ž .

u � p � � 0.Ž . xt R

Ž . Ž .Since the system 1.2 can be obtained from 1.1 by an expansion proce-
Ž .dure as the leading order, it is natural to expect that 1.2 governs the

Ž .evolution of the solutions to 1.1 as � � 0. For smooth flow, this state-
ment can be easily verified by Hilbert expansion and a standard energy
estimate argument. However, when discontinuities occur in the solutions

Ž .of 1.2 , the analysis is much more complicated and more difficulties
appear.

� � � �Motivated by 1 and 10 , we use the method of matched asymptotic
� �analysis introduced in 1 to overcome the difficulties, i.e., constructing

approximate solutions by matched asymptotic expansion and then estimat-
Ž .ing the error bounds. We show that the piecewise smooth solutions of 1.2

with finitely many noninteracting shocks satisfying the entropy conditions
and subcharacteristic condition are strong limits as � � 0 of solutions of
Ž .1.1 . For simplicity of presentation, we only discuss the case in which the

Ž .solution of 1.2 is a distribution solution smooth up to a single shock.
We make the following assumptions:

Ž . � Ž .H p � � 0,1 R

Ž . � Ž .H p � � 0,2 R

Ž . � � Ž . �H p � � E,3 R

Ž . Ž � �.where H is the so-called subcharacteristic condition see 6 .3
Ž . Ž . Ž .It is easy to know that, under H � H , 1.2 is strictly hyperbolic and1 2

genuinely nonlinear, with eigenvalues

1�2 1�2� �� � � �p � � 0 � �p � � � . 1.3Ž . Ž . Ž .Ž . Ž .1 R R 2

Ž Ž . Ž ..We now give our main result. A function � x, t , u x, t is called a0 0
Ž .single-shock solution of 1.2 up to time T � 0 if

Ž . Ž Ž . Ž .. Ž .i � x, t , u x, t is a distributional solution of 1.2 in the0 0
1 � �region R � 0, T .

Ž . Ž .ii There is a smooth curve, the shock, x � s t , 0 	 t 	 T , so that
Ž Ž . Ž .. Ž .� x, t , u x, t is sufficiently smooth at any point x � s t . The left and0 0

Ž Ž . Ž ..right limits of � x, t , u x, t and its derivatives exist at the shock0 0
Ž .x � s t .
Ž . Ž .iii Across the shock x � s t , the Rankine�Hugoniot conditions

hold,

s � l � � r � ul � ur ,Ž̇ .0 0 0 0
1.4Ž .

s ul � ur � � p � l � p � r .Ž .Ž̇ . Ž .Ž .0 0 R 0 R 0
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l Ž Ž . .In the following, we will always use the notations f � f s t � 0, t and
r Ž Ž . .f � f s t � 0, t .

Ž .iv The Lax-entropy condition

�l � s � �r or �r � s � �l˙ ˙1 1 2 2

is satisfied. For definiteness, we assume that the shock is in the second
family, i.e.,

�r t � s t � �l t . 1.5Ž . Ž . Ž . Ž .˙2 2

Ž . Ž . Ž .THEOREM 1. Under H � H , setting p � p � , there exist positi�e1 3 0 R 0
Ž .Ž .constants � and � , such that if � , u x, t is a single-shock solution up to0 0 0 0

time T with

T T 2�� �� � � , u , p x , t dx dt � ��, 1.6Ž . Ž . Ž .Ý H H H H x 0 0 0ž /Ž . Ž .0 x�s t 0 x�s t1	�	6

and

� r l � � r l � � r l � � �� � � � u � u � p � p 	 � , � t � 0, T , 1.7Ž .0 0 0 0 0 0 0

Ž � Ž � � � .Ž . Ž .then for each � � 0, � , there is a smooth solution � , u , p x, t of 1.10
with

� � � � � � 2� , u , p � � , u , p � L 0, T , H . 1.8Ž . Ž . Ž .Ž .0 0 0

Ž .Moreo�er, for any gi�en � � 0, 1 ,

2� � � �sup � � � , u � u , p � p x , t dx 	 C � 1.9Ž . Ž .Ž .H 0 0 0 1
1R0	t	T

and

� � �sup � � � , u � u , p � p x , t 	 C � , �h � 0, 1.10Ž . Ž .Ž .0 0 0 h
0	t	T

� Ž . �x�s t 
h

where C and C are positi�e constants independent of � .1 h

Ž .REMARKS. i The advantages of the matched asymptotic analysis
Ž � � � .method are that the structure of the solution � , u , p in Theorem 1

will be clear, since it is a perturbation of a formal solution which will be
constructed explicitly.

Ž . Ž � � � .ii The solutions � , u , p have carefully chosen initial data
which are essentially those of the Hilbert expansion and the shock-layer
expansion.
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Ž . Ž � � � .iii In particular, we have that, away from the shock, � , u , p
Ž . Ž .approximates � , u , p at an optimal rate in � , i.e., 1.10 .0 0 0

Ž .iv The same results hold for finite noninteracting shocks solutions
Ž .of 1.2 ; this is clear from our analysis.

Ž .v The technique used here can be extended to deal with the
� �general relaxation systems proposed by 5 .

Ž � �. Ž .It is known see 1 that if we can construct a formal solution for 1.1
Ž .by matching the truncated Hilbert expansion outer expansion and shock-

Ž . Ž .layer expansion inner expansion , then the existence of solutions to 1.1
Ž .and its convergence to the solutions of 1.2 can be reduced to the stability

analysis for the approximate solution. Since the dissipation of relaxation is
much weaker than viscosity, the limit here is more singular than those in
� �1 , and we need to use the higher-order corrections to weaken the

Ž . Ž .nonlinearity in the error equations between 1.1 and 1.2 . Comparing
� �with 10 , where the smooth steady shock profile can be constructed

explicitly, we only have an abstract result for the existence of shock
Ž .profiles for 1.1 . Due to the fact that the leading order, the time-depen-

dent shock profile, has exactly the shape of a steady shock profile with
parameters varying with time, this becomes crucial. However, we can get

Ž .enough information on shock profiles of 1.1 , and then a modified energy
� � � �estimate method as used in 2 and 4 gives the result.

Ž .For the stability analysis for the elementary waves of 1.1 , we refer to
� �2�4, 7 .

In the next section, we construct the approximate solutions by use of the
matched asymptotic expansion method. The existence and asymptotic

Ž .behavior of the solutions to 1.1 are proved in Section 3.

2. CONSTRUCTION OF APPROXIMATE SOLUTION

Ž .In this section we will construct an approximate solution for 1.1 by
using the method of matched asymptotic expansions. The outer solutions
come from the Hilbert expansion and the inner solutions are found by
shock-layer expansion. By matching the outer and inner solutions on an
appropriate ‘‘matching zone,’’ we will obtain the various outer and inner

Ž .functions and form a formal approximate solution for 1.1 . For conve-
Ž . Ž .nience, instead of 1.1 , we will use the following equivalent form of 1.1 ,

namely,
� � u � 0,t x

u � p � 0,t x 2.1Ž .
1

p � Eu � p � � p .Ž .Ž .t x R�
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2.1. Outer Expansion
0Ž . Ž 0 0 0.Ž . Ž . Ž .Ž .Let 	 x, t � � , u , p x, t and 	 x, t � � , u , p x, t , i �i i i i

Ž . Ž .0, 1, 2, . . . . In the zone away from the shock x � s t , solutions of 2.1
may be approximated by

	 0 x , t � �	 x , t � � 2	 x , t � 


 , x � s t . 2.2Ž . Ž . Ž . Ž . Ž .1 2

Ž . Ž .Substituting 2.2 into 2.1 and comparing the coefficients of power �
leads to

O ��1 p � 0 x , t � p0 , 2.3Ž . Ž . Ž .Ž .R

� 0 � u0 � 0,t x

O 1 u0 � p0 � 0, 2.4Ž . Ž .t x

p0 � Eu0 � �p � p� � 0 � ,Ž .t x 1 R 1

� � u � 0,1 t 1 x

O � u � p � 0, 2.5Ž . Ž .1 t 1 x

� 1 �0 0 2p � Eu � �p � p � � � p � � ,Ž . Ž .1 t 1 x 2 R 2 R 12

� � u � 0,2 t 2 x2O �Ž . u � p � 0,2 t 2 x

2.6Ž .

etc.
Ž . Ž . Ž 0 0.From 2.3 , 2.4 becomes a closed system for � , u , which is1, 2

Ž .identical with 1.2 , and its solution can be taken as the piecewise smooth
functions described in Section 1. Thus we set

	 0 � � , u , p x , t � 	 x , t , x � s t . 2.7Ž . Ž . Ž . Ž . Ž .0 0 0 0

Ž .Next, we can get from 2.4 that3

p � � p � Eu � p� � �Ž . Ž .1 0 t 0 x R 0 1

� � E � p� � u � p� � � , x � s t . 2.8Ž . Ž . Ž . Ž .Ž .R 0 0 x R 0 1

Ž . Ž .We conclude from 2.8 that 2.5 becomes the following closed system1, 2
Ž .Ž .for � , u x, t ,1 1

� � u � 0,1 t 1 x
2.9Ž .

� �u � p � � � E � p � u , x � s t ,Ž . Ž . Ž .Ž . Ž .Ž .1 t R 0 1 R 0 0 xx x

Ž . Ž . Ž .and 2.8 � 2.9 are equations for 	 x, t .1
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Ž .Similarly, 	 x, t satisfies2

� 1 � 2p � � p � Eu � p � � � p � � , 2.10Ž . Ž . Ž . Ž .2 1 t 1 x R 0 2 R 0 12

� � u � 0,2 t 2 x
2.11Ž .

� �1 2u � p � � � p � Eu � p � � , x � s t .Ž . Ž . Ž .Ž . Ž .2 t R 0 2 1 t 1 x R 0 12x x

This process can be continued to find higher-order outer functions
Ž . Ž .	 x, t , i 
 3. 	 may be discontinuous at x � s t but are expected to bei i

Ž .smooth away from the shock uniformly up to x � s t .

2.2. Inner Expansion and Matching Conditions

Ž .Near the shock, the solution of 2.1 will be represented by a shock-layer
expansion of the form

X � , t � � X � , t � � 2 X � , t � 


 , 2.12Ž . Ž . Ž . Ž .0 1 2

Ž .where X � V , U , P and � is given byi i i i

x � s tŽ .
� � � � t , � , 2.13Ž . Ž .

�

Ž .in which � t, � is the perturbation of the shock position which is to be
determined later. Assume

� t , � � � t � �� t � � 2� t � 


 . 2.14Ž . Ž . Ž . Ž . Ž .0 1 2

Ž . Ž . Ž .Substituting 2.12 � 2.14 into 2.1 and matching powers of � , we have

�sV � U � 0,˙ 0� 0�

O ��1 �sU � P � 0, 2.15Ž . Ž .˙ 0� 0�

�sP � EU � p V � P ,Ž .˙ 0� 0� R 0 0

˙�sV � U � � V � � t V ,Ž .˙ ž /1� 1� 0 t 0 0�

˙O 1 �sU � P � � U � � t U , 2.16Ž . Ž . Ž .˙ ž /1� 1� 0 t 0 0�

˙ �� sP � EU � � P � � t P � p V V � P ,Ž . Ž .˙ ž /1� 1� 0 t 0 0� R 0 1 1

˙ ˙�sV � U � � V � � t V � � t V ,Ž . Ž .˙ ž / /2 � 2 � 1 t 0 1� 1 0�

˙ ˙O � �sU � P � � U � � t U � � t U , 2.17Ž . Ž . Ž . Ž .˙ ž / /2 � 2 � 1 t 0 1� 1 0�

˙ ˙� sP � EU � � P � � t P � � t P � 
 ,Ž . Ž .˙ ž /2 � 2 � 1 t 0 1� 1 0�
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etc., with

� 1 � 2
 � p V V � P � p V V .Ž . Ž .R 0 2 2 R 0 12

Ž .The inner expansion is assumed to be true in a zone of size O � around
Ž .x � s t .

The outer expansion and the inner expansion are expected to be valid in
� � � Ž . �the ‘‘matching zone,’’ in which � � � and x � s t is small. Therefore,

they must agree there. We can express the outer solutions in terms of �
and use Taylor’s series to find the following ‘‘matching conditions’’ as
� � 	�,

X � , t � 	 s t 	 0, t � o 1 , 2.18Ž . Ž . Ž . Ž .Ž .0 0

X � , t � 	 s t 	 0, t � � � � 	 s t 	 0, t � o 1 , 2.19Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .1 1 0 0 x

X � , t � 	 s t 	 0, t � � � � 	 s t 	 0, tŽ . Ž . Ž . Ž .Ž . Ž .2 2 0 1 x

� � 	 s t 	 0, tŽ .Ž .1 0 x

21� � � � 	 s t 	 0, t � o 1 , 2.20Ž . Ž . Ž . Ž .Ž .0 0 x x2

etc.
Ž . Ž .Equations 2.18 � 2.20 require that inner functions have algebraic

growth rates at both infinities.

2.3. Constructions of the Outer and Inner Functions

We construct the outer and inner functions order by order. Simultane-
Ž .ously, the matching conditions will be satisfied, and � t, � will be deter-

mined.
Ž .The leading order of outer functions, 	 x, t , is the single-shock solu-0

Ž . Ž . Ž .tion of 1.2 in Theorem 1. For fixed t taken as a parameter , X � , t ,0
Ž . Ž .determined by 2.15 , is exactly the traveling wave solution of 1.1 with the

Ž . Ž .boundary conditions 2.18 . Up to phase shift, X � , t can be uniquely0
Ž � � � �.determined see 2 and 4 . Here, since the shift can be absorbed by

Ž .� t, � , we can take it as zero. Although we could not get the explicit
Ž . � � Ž � �.formula for X � , t as in 10 , we have the following see 4 .0

Ž .LEMMA 2.1 Shock profile . Under the entropy condition and the subchar-
Ž . Ž . Ž l .acteristic condition, 2.15 and 2.18 ha�e a smooth solution � � , � , s �˙0

Ž .V , U , P which is unique up to a shift in � and satisfies V � 0, and0 0 0 0�

� � � � � � � r l �V � U � P 	 O 1 � � � ,Ž .0� 0� 0� 0 0

� � � r l � � �� � C � � � exp �C � ,Ž .Ž .� 1 0 0 2
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where C , i � 1, 2, is a positi�e constant. Furthermore, as � � ��, it holdsi
that, for some positi�e constants C , C , and C ,3 4 5

� l l l � � r l � � �� � � , u , p 	 O 1 � � � exp �C � ,Ž . Ž .Ž .0 0 0 0 0 3

� �
� �� I 	 O 1 exp �C � ,Ž . Ž .4l� � 0

� �
� �	 O 1 exp �C � .Ž . Ž .5� ṡ

Similar results hold as � � �� if we substitute � r for � l and make some0 0
re�isions.

Ž . Ž .We now turn to the first-order functions 	 x, t and X � , t . 	 , X ,1 1 1 1
and � will be determined at the same time.0

Ž . � �Integrating 2.16 over 0, � , we have1, 2

�˙sV � U � � V � V d� � c t ,Ž .˙ H1 1 0 0 0� 1
0

2.21Ž .
�˙sU � P � � U � U d� � c t ,Ž .˙ H1 1 0 0 0� 2

0

Ž . Ž .where c t and c t are integration constants to be determined. Equa-1 2
Ž . Ž .tions 2.16 and 2.21 give

P � f P � f h � f h � f1� 1 1 2 1 3 2 4

� f P � Q, 2.22Ž .1 1

where

s2 � p� V p� V 1Ž . Ž .˙ R 0 R 0
f � , f � , f � f ,1 2 3 222 ss � Es s � EŽ . ˙˙˙ ˙

E ṡ˙ ˙f � � U � U � � P � P ,ž / ž /4 0 0� 0 t 0 0� 0 t2 2s � E s � E˙ ˙
�˙h � � V � V d� � c t ,Ž .H1 0 0 0 t 1

0

�˙h � � U � U d� � c t .Ž .H2 0 0 0 t 2
0
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Ž .From 2.22 we obtain

�
P � , t � exp f � , t d�Ž . Ž .H1 1½ 5ž /0

��
� exp � f �, t d� Q � , t d� , 2.23Ž . Ž . Ž .H H 1½ 5ž /0 0

Ž . Ž . Ž .and then X can be determined provided that c t , c t , and � t can be1 1 2 0
determined, since we have

1
U � P � h ,Ž .1 1 2ṡ

2.24Ž .
1 1

V � � P � h � h .Ž .1 1 2 12 ss ˙˙

Ž . Ž . Ž . Ž .c t , c t , and � t will be determined in such a way that X � , t1 2 0 1
Ž . � �constructed above satisfies the matching conditions 2.19 . Similar to 10 ,

we observe that

Ž . Ž .LEMMA 2.2. Equation 2.19 will be satisfied if 2.19 hold.3 1, 2

Proof. We need to check that, for � � 	�, it holds that

P � , t � p s t 	 0, t � � � � p s t 	 0, t � o 1Ž . Ž . Ž . Ž . Ž .Ž . Ž .1 1 0 0 x

� p s t 	 0, t � � � � p� � � s t 	 0, t � o 1 .Ž . Ž . Ž . Ž . Ž .Ž . Ž .1 0 R 0 0 x

2.25Ž .

We only check the case for � � ��, since the case for � � �� is similar.
Ž .From 2.16 , we see that

˙P � sP � EU � p V V � � P � PŽ .˙1 1� 1� R 0 1 0 0� 0 t

2 ˙ ˙� s � E U � s� U � sU � p V V � � P � P .Ž . Ž .˙ ˙ ˙1� 0 0� 0 t R 0 1 0 0� 0 t

Ž . Ž .As � � ��, using 2.19 and 2.18 , we have1, 2

P � , t � s2 � E ur t � sur t � prŽ . Ž . Ž . Ž .˙ ˙̇ ˙1 0 x 0 0

� p� � r � r � � � � � r � o 1Ž . Ž .Ž . Ž .R 0 1 0 0 x

� �Eur � pr � p� � r � r � � � � p� � r � r � o 1Ž . Ž .Ž . Ž .Ž .0 x 0 t R 0 1 0 R 0 0 x

� p s t � 0, t � � � � p� � � s t � 0, t � o 1 ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .1 0 R 0 0 x
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ṙ r rŽ .where we have used 2.8 and the relations f � f � sf . The proof is˙t x
completed.

rŽ . Ž .In the following, we will also use the notations f t � lim f � , t� ���
lŽ . Ž .and f t � lim f � , t . It is clear that these are identical to the� ���

original definition. Due to the entropy condition, we see that

s2 � p� � l � 0, s2 � p� � r � 0,Ž .˙ ˙Ž .R 0 R 0

which, with Lemma 2.1 and the subcharacteristic condition, imply that

l � �f t � O 1 exp �� � as � � ��,	 4Ž . Ž .1 0f � , t � 2.26Ž . Ž .1 r½ � �f t � O 1 exp �� � as � � ��,	 4Ž . Ž .1 0

and

s2 � p� � l s2 � p� � rŽ .˙ ˙Ž .R 0 R 0l rf t � � 0, f t � � 0, 2.27Ž . Ž . Ž .1 12 2s s � E s s � EŽ . Ž .˙ ˙ ˙ ˙

where � � 0 is a suitable constant.0
By Lemma 2.1, we see that

l � �	 t � O 1 exp �� � as � � ��,	 4Ž . Ž .˙0 0X � , t � 2.28Ž . Ž .0 t r½ � �	 t � O 1 exp �� � as � � ��.	 4Ž . Ž .˙0 0

Ž . Ž .Then we can get the asymptotic behavior of V � , t and U � , t as1 1
follows,

1
l l l l l˙V � � s� � u � � s� � u � sc t � c tŽ . Ž .˙ ˙̇ ˙ ˙Ž . Ž .ž /1 0 0 0 0 0 1 2lA

� �� O t � O 1 exp �� � ,	 4Ž . Ž .11 0
2.29Ž .

1
r r r r r˙V � � s� � u � � s� � u � sc t � c tŽ . Ž .Ž .˙ ˙̇ ˙ ˙Ž .Ž .1 0 0 0 0 0 1 2rA

� �� O t � O 1 exp �� � ,	 4Ž . Ž .12 0

and

ṡ
l l l l l l l l˙U � � B � � u � � B � � u � B c t � c tŽ . Ž .˙ ˙Ž . Ž .ž /1 0 0 0 0 0 1 2lA

� �� O t � O 1 exp �� � ,	 4Ž . Ž .21 0
2.30Ž .

ṡ
r r r r r r r r˙U � � B � � u � � B � � u � B c t � c tŽ . Ž .Ž . ˙ ˙Ž .Ž .1 0 0 0 0 0 1 2rA

� �� O t � O 1 exp �� � ,	 4Ž . Ž .22 0
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where
p� VŽ .R 0�2A � s � p V , B � , 2.31Ž . Ž .˙ R 0 ṡ

and O , O , O , and O are known functions.11 12 21 22
Ž .From 1.2 , we have

s� l � ul s� r � ul˙̇ ˙ ˙̇ ˙0 0 0 0l r� � , � � ,0 x 0 x rl AA
2.32Ž .

s s˙ ˙
l l l l r r r ru � B � � u , u � B � � u .˙ ˙ ˙ ˙Ž .Ž .0 x 0 0 0 x 0 0rl AA
Ž . Ž . 	 � �4 Ž .Now, we set o 1 � O 1 exp �� � in 2.19 . The matching condition0

Ž . Ž . Ž .2.19 will be satisfied provided that we can choose c t and c t such1, 2 1 2
that

1
l l l l˙� � � � � � s� � u � sc t � c t � O t ,Ž . Ž . Ž .˙ ˙Ž .Ž .1 0 0 x 0 0 0 1 2 11lA

1
r r r r˙� � � � � � s� � u � sc t � c t � O t , 2.33Ž . Ž . Ž . Ž .Ž .˙ ˙Ž .1 0 0 x 0 0 0 1 2 12rA

and

ṡ
l l l l l l˙u � � u � � B � � u � B c t � c t � O t ,Ž . Ž . Ž .Ž .Ž .1 0 0 x 0 0 0 1 2 21lA

2.34Ž .
ṡ

r r r r r r˙u � � u � � B � � u � B c t � c t � O t .Ž . Ž . Ž .Ž .Ž .1 0 0 x 0 0 0 1 2 22rA
Ž . Ž . Ž .By use of 2.32 , 2.33 � 2.34 are reduced to

l l l l ˙ l l lsc t � c t � A � � � s� � u � � s� � u � A O t ,Ž . Ž . Ž .˙ ˙̇ ˙ ˙Ž .Ž .1 2 1 0 0 0 0 0 0 11

2.35Ž .
r r r r ˙ r r rsc t � c t � A � � � s� � u � � s� � u � A O t ,Ž . Ž . Ž .Ž .˙ ˙̇ ˙ ˙Ž .1 2 1 0 0 0 0 0 0 12

2.36Ž .

Blc t � c tŽ . Ž .1 2

Al Al
l l l l l l l˙� u � � B � � u � � B � � u � O t , 2.37Ž . Ž .˙ ˙ Ž .Ž .1 0 0 0 0 0 0 21s s˙ ˙

B rc t � c tŽ . Ž .1 2

Ar Ar
r r r r r r r˙� u � � B � � u � � B � � u � O t . 2.38Ž . Ž .Ž .˙ ˙Ž .1 0 0 0 0 0 0 21s s˙ ˙
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Ž . Ž . Ž . Ž .We can solve 2.35 and 2.37 for c t and c t to get1 2

l l l ˙ lc t � s� � u � � � � � � � O t ,Ž . Ž .˙ ˙Ž .1 1 1 0 0 0 0 31
2.39Ž .

l l l l ˙ lc t � s u � B � � � u � � u � O t ,Ž . Ž .˙ ˙Ž .2 1 1 0 0 0 0 32

Ž . Ž .where O t and O t are known functions. Similarly, we know from31 32
Ž . Ž .2.36 and 2.38 that

r r r ˙ rc t � s� � u � � � � � � � O t ,Ž . Ž .Ž .˙ ˙1 1 1 0 0 0 0 41
2.40Ž .

r r r r ˙ rc t � s u � B � � � u � � u � O t .Ž . Ž .Ž .˙ ˙2 1 1 0 0 0 0 42

Thus, the compatibility condition is

l r l r ˙ l r l rs � � � � u � u � � � � � � � � � � � O t � 0,Ž .˙ ˙ ˙Ž . Ž . Ž . Ž .1 1 1 1 0 0 0 0 0 0 51

l r l l r r ˙ l r l rs u � u � s B � � B � � � u � u � � u � u � O t � 0,Ž .˙ ˙ ˙ ˙Ž . Ž . Ž . Ž .1 1 1 1 0 0 0 0 0 0 52

2.41Ž .

Ž . Ž .where O t and O t are known functions.51 52
Introducing

l r l re � � s� � u � s � � � � u � u , 2.42Ž .˙ Ž̇ . Ž .11 1 1 1 1 1 1

� l r l l r re � � su � p V � � s u � u � s B � � B � , 2.43Ž . Ž .˙ ˙ ˙Ž . Ž .12 1 R 0 1 1 1 1 1

Ž .2.41 becomes

l r ˙ l re � � � � � � � � � � � O t ,Ž .˙ ˙ Ž .Ž .11 0 0 0 0 0 0 51

l r ˙ l re � � u � u � � u � u � O tŽ .˙ ˙ Ž .Ž .12 0 0 0 0 0 0 52 2.44Ž .

� �se � s � l � � r � � O t .Ž .˙ Ž̈ .11 0 0 0 52

Ž .Now we see that the matching conditions 2.19 will be satisfied if the1, 2
Ž . Ž .boundary values crossing the shock for 	 x, t satisfy 2.44 .1

Ž .Next, we will show 2.44 is exactly the relation between the boundary
Ž .data of 	 x, t required in solving the initial boundary value problems for1

Ž .linear hyperbolic equations 2.9 on � and � , respectively, with� �

� � x , t : x � s t , 0 	 t 	 T ,	 4Ž . Ž .�

� � x , t : x � s t , 0 	 t 	 T .	 4Ž . Ž .�

Ž .This is now routine by the standard theory. The system 2.9

� � u � 0,1 t 1 x

u � p� � � � E � p� � uŽ . Ž .Ž . Ž .Ž .1 t R 0 1 R 0 0 xx x
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� �Ž . Ž .has eigenvalues � � � � �p � and � � � �p � , with' 'Ž . Ž .1 0 R 0 2 0 R 0
Ž . t Ž . tcorresponding right eigenvectors r � �1, � and r � �1, � , re-1 1 2 2

spectively.
Setting

� n1 1� M 2.45Ž .u zž / ž /1 1

with

�1 �1
M � ,� �ž /1 2

we can diagonalize the system to obtain

� 0n n11 1�z zž / ž /ž /0 �1 12t x

0n1�1 �1� �M M � JM � M ,Ž . �Ž .xt zž / E � p � už /Ž .Ž .Ž .1 R 0 0 x x

2.46Ž .

where

0 �1
J � .�p � 0ž /Ž .R 0

By the characteristic method, with the help of the entropy condition, we
see that z l , z r, and nr will be determined by integrating along appropriate1 1 1

l Ž .characteristics, and only n needs to be specified at x � s t . This bound-1
Ž . Ž . Ž .ary condition can be obtained by 2.44 . Rewrite 2.44 in terms of n , z1 1

as

e n11 1� �sM � JM , 2.47Ž . Ž .˙e zž / ž /12 1

for which the solvability condition is

�le � e � z l �l � �l s � �l � nr s � �r �l � �rŽ .˙ ˙Ž . Ž . Ž .11 12 1 2 1 2 1 1 1 1

� z r s � �r �l � �rŽ .˙ Ž .1 2 1 2

� F t . 2.48Ž . Ž .1
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Ž . Ž .If 2.48 is satisfied, one can solve 2.47 to obtain

�2 22 2l l r r r r l ln � s � � n s � � � z s � � � z s � �Ž . Ž .˙ ˙ ˙ ˙Ž . Ž .ž /1 1 1 1 1 2 1 2

� s � l � � r � � O t , 2.49Ž . Ž .Ž̈ .0 0 0 53

Ž . Ž . Ž .where we have used 2.44 . By 2.44 , we also can reduce 2.48 into

d
l l r l r� � s � � � � � s � � � �	 4˙ ¨Ž . Ž .Ž .1 0 0 0 0 0 0dt

� F t � O t . 2.50Ž . Ž . Ž .1 53

Ž l r .This is a linear ordinary differential equation on � � � � , which0 0 0
l Ž .completely determines � up to a constant. Then we get n by 2.49 . The0 1

standard theory for mixed problems for linear hyperbolic systems gives the
Ž .smooth solutions to 2.9 over � and � , respectively. The outer� �

Ž .functions 	 x, t are determined then.1
Ž .By the constructions of 	 and � , the inner functions X � , t are1 0 1

Ž .obtained, and 2.19 are satisfied as well. We collect all the results1, 2
obtained so far as the following.

Ž . Ž .THEOREM 2.3. 	 x, t , X � , t , and � can be determined such that1 1 0

Ž . Ž . Ž .i 	 x, t and its deri�ati�es are uniformly continuous up to x � s t1
and

� � � 2� 	 x , t dx dt � ��, 2.51Ž . Ž .Ý HH x 1
Ž .x�s t� �� 	2

Ž . Ž .ii X � , t is smooth and, for some � � 0, we ha�e1 0

X � , t � 	 s t 	 0, t � � � � 	 s t 	 0, tŽ . Ž . Ž . Ž .Ž . Ž .1 1 0 0 x

� ��O 1 exp �� � , as � � 	�. 2.52	 4Ž . Ž .0

It is easy to see that the above procedure can be carried out to any
Ž . Ž .order. Especially, we can construct 	 x, t , X � , t , and � such that2 2 1

similar properties as in Theorem 2.3 hold.

2.4. Approximate Solutions

Ž .Now we construct a smooth approximate solution to 1.1 by patching
the inner and outer solutions discussed.
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Set

x � s tŽ .
2I x , t � X � � X � � X � � � �� , t 2.53Ž . Ž .Ž .0 1 2 0 1ž /�

and

O x , t � 	 � �	 � � 2	 x , t , x � s t . 2.54Ž . Ž . Ž . Ž .Ž .0 1 2

Ž . �Ž 1. Ž .Let m y � C R such that 0 	 m y 	 1 and0

� �1, y � 1,
m y � 2.55Ž . Ž .½ � �0, y 
 2.

2Ž .Take � � , 1 to be a constant. We define3

x � s tŽ .
�S x , t � m I x , tŽ . Ž .�ž /�

x � s tŽ .
� 1 � m O x , t � d x , t , 2.56Ž . Ž . Ž .�ž /ž /�

Ž . Ž . tŽ .where d x, t � d , d , d x, t is a higher-order correction to be deter-1 2 3
mined. We use the following notations:

t t t� � � �S � � , u , p , I � I , I , I , O � O , O , O .Ž . Ž . Ž .1 2 3 1 2 3

Using the structure of the various orders of inner and outer solutions, we
have

� � � u� � F � d � d ,t x 2 1 t 2 x

u� � p� � F � d � d ,t x 3 2 t 3 x 2.57Ž .
p� � Eu� � q S� � F � d � Ed � � ,Ž .t x 4 3 t 2 x

1 tŽ . Ž Ž . . Ž .where q f � p f � f for f � f , f , f , andR 1 3 1 2 3�

2 ˙ ˙ ˙F � � m � V � � � �� V � Vž /ž /2 1 1� 0 1 2 � 2 t

� m I � O � m I � O ,Ž . Ž .t 1 1 x 2 2

2 ˙ ˙ ˙F � � m � U � � � �� U � Už /ž /3 1 1� 0 1 2 � 2 t

� m I � O � m I � O ,Ž . Ž .t 2 2 x 3 3
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2 ˙ ˙ ˙F � � m � P � � � �� P � Pž /ž /4 1 1� 0 1 2 � 2 t

� m I � O � Em I � O ,Ž . Ž .t 3 3 x 2 2

� � �m� � 1 � m � � � � 1 � m p � Eu ,Ž . Ž . Ž .1 2 3 2 t 2 x

1
2� � p V � �V � � V	 Ž .1 R 0 1 2�

� � 1 �2 2� p V � � p V V � � p V V � p V V ,Ž . Ž . Ž . Ž . 4Ž .Ž .R 0 R 0 1 R 0 2 R 0 12

1
2� � p � � � � � � �	 Ž .2 R 0 1 2�

� � 1 �2 2� p � � � p � � � � p � � � p � � ,Ž . Ž . Ž . Ž . 4Ž .Ž .R 0 R 0 1 R 0 2 R 0 12

� � q S� � q S� � dŽ . Ž .Ž .3

� q mI � 1 � m O � mq I � 1 � m q O .Ž . Ž . Ž . Ž .Ž . Ž .Ž .
By Taylor’s expansion, we have

� � O 1 � 2 , � � O 1 � 2 .Ž . Ž .1 2

Due to the construction, we see that

� k
Ž3�k .� � �� �I � O x , t � O 1 � , in � � x � s t � 2� ,Ž . Ž . Ž . Ž .k� x

Ž . Ž .which can be obtained from the matching conditions 2.18 � 2.20 .
Ž .Choose d , d , d such that1 2 3

d � d � �F ,1 t 2 x 2

d � d � �F ,2 t 3 x 3

d � C d ,3 0 1

2.58Ž .

d x , 0 � d x , 0 � 0,Ž . Ž .1 2

l Ž .with C � 2 max � t . In view of the facts0 t ��0, T � 2

Ž . 	Ž . � Ž . � �i F , F , and m have their support in x, t : x � s t 	 2� , 0 	2 3
4t 	 T ,
Ž . �Ž k k .Ž .Ž . � Ž . Ž2�k .�ii � �� x F , F x, t 	 O 1 � , we have, by a standard2 3

characteristic argument, that

Ž . Ž .LEMMA 2.4. The solution d , d to 2.58 has compact support and1 2
satisfies, for integers 2 
 k 
 0,

k�
Ž3�k .� 1 � �d 	 O 1 � , � x , t � R � 0, T . 2.59Ž . Ž . Ž .k� x
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Thus, we can estimate � by use of the mean value theorem to get3

k�
Ž3�k .��1� 	 O 1 � . 2.60Ž . Ž .3k� x

We conclude that
� Ž . Ž .THEOREM 2.5. Let S x, t be the smooth function defined in 2.56 with

Ž . Ž . �d x, t determined in 2.58 . Then S satisfies

� � � u� � 0,t x

u� � p� � 0,t x 2.61Ž .
p� � Eu� � q S� � R x , t ,Ž . Ž .t x

Ž .with R x, t � F � d � Ed � � and4 3 t 2 x

k�
Ž3�k .��1R 	 O 1 � ,Ž .k� x

2.62Ž .
2k�� �T 2Ž3�k .��2R dx dt 	 O 1 � .Ž .H H k� x0 ��

This finishes the construction of the formal approximate solution to
Ž .1.1 .

3. STABILITY ANALYSIS

Ž .We now prove that there exists an exact solution to 1.1 in a neighbor-
� Ž .hood of our approximate solution S x, t , and, for � sufficiently small, the

Ž . � Ž .asymptotic behavior of the solution to 1.1 is governed by S x, t .
� � �Ž . Ž . Ž .Let S be an exact solution to 1.1 with initial data S x, 0 � S x, 0 .

We decompose the solution as

t
� � 1 � �S x , t � S x , t � � , � , w x , t , x , t � R � 0, T . 3.1Ž . Ž . Ž . Ž . Ž .Ž .

It is easy to show that

� � � � 0,t x

� � w � 0,t x
3.2Ž .

1 � �w � E� � p � � � � p � � w � R x , t ,Ž . Ž .Ž .Ž .t x R R�

� x , 0 � � x , 0 � w x , 0 � 0.Ž . Ž . Ž .



PIECEWISE SMOOTH SOLUTION TO VISCOELASTIC SYSTEM 315

Setting

˜ ˜� � � , � � � , w � w , 3.3Ž .˜x x

we have

˜ ˜� � � � 0,t x

�̃ � w � 0,˜t

1 � �˜ ˜w � E� � p � � � � p � � w � R x , t ,Ž . Ž .˜ ˜Ž .ž /t x x R x R�

˜ ˜� x , 0 � � x , 0 � w x , 0 � 0,Ž . Ž . Ž .˜

which implies

˜ ˜� � � � 0,t x

1 � �˜ ˜ ˜ ˜� � E� � � p � � � � p � � � � R x , t ,Ž . Ž .Ž .ž /t t x x R x R t� 3.4Ž .

˜ ˜ ˜� x , 0 � � x , 0 � � x , 0 � 0.Ž . Ž . Ž .t

Using the scalings

˜ ˜� � �� , � � �� , 3.5Ž .
and

x � s t tŽ .
y � , � � , 3.6Ž .

� �

Ž .we simplify 3.4 into

L � , � � 0,Ž .1

L � , � � F x , t ,Ž . Ž .2 3.7Ž .
� y , 0 � � y , 0 � � y , 0 � 0,Ž . Ž . Ž .�

where

L � � � s� � � ,˙1 � y y

L � � � s� � s � � s� � E� � � � s� � D� ,˙ ˙ ˙ ˙Ž . Ž . Ž .2 � y � y y y � y yy�

D � �p� � � ,Ž .R

3.8Ž .

F � � R � p � � � � � p � � � p� � � � .Ž . Ž .Ž .Ž .R y R R y
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� Ž .To study the existence and the asymptotic behavior of S x, t for �
Ž .small, it is sufficient to show that, for � sufficiently small, 3.7 has a

Tsmooth ‘‘small’’ solution up to � � . This will be carried out by an�

Ž . Žargument similar to the stability anlaysis for the shock profiles of 1.1 see
� � � �. �2 and 8 . The different part is that S depends on � and t here.

l Ž .In what follows, we use H l 
 1 to denote the usual Sobolev space

 
 
 
 2with the norm 
 , and 
 denotes the usual L -norm. We also use thel

following notation for simplicity:

k
2 2
 
 
 
g , g , . . . , g � g .Ž . Ým m1 2 k i

i�1

Ž .Let us define the solution space of 3.7 by

X 0, � � � , � � C 0 0, T ; H 2 , � � C 0 0, T ; H 1 , 3.9Ž . Ž . Ž . Ž . Ž .	 40 �

T Twith 0 � � 	 . Suppose that for some 0 � � 	 , there exists a solu-0 0� �

Ž . Ž . Ž . Ž .tion �, � to 3.7 , such that �, � � X 0, � . Denote the norm for0
Ž .�, � by

2 
 
 2 
 
 2N � � sup � , � s � � s . 3.10Ž . Ž . Ž . Ž . Ž .Ž .2 1t
0	s	�

The main result in this section is the following a priori estimate.

Ž . Ž .THEOREM 3.1. Suppose H � H are satisfied. There exist positi�e1 3
constants � , � , � , and K which are independent of � and � such that, if0 0 0 0 0

Ž .i 0 � � 	 � ,0

Ž . � r l � � r l � � r l �ii � � � � u � u � p � p 	 � ,0 0 0 0 0 0 0

Ž . Ž .iii N � 	 � ,0 0

then it holds that


 
 2 
 
 2sup � , � � � � �Ž . Ž . Ž .Ž .2 1�
0	�	� 0

�0 2 2
 
 
 
� � , � � � � � d�Ž . Ž .Ž .H 1 1ž /y y �
0

	 K � 6��3 , 3.11Ž .0

Ž . Ž .for �, � � X 0, � .0

Before making the energy estimate, we derive some properties of S�.
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� Ž . Ž .LEMMA 3.2. Let S x, t be defined as in 2.56 . Then it holds that

minŽ3 � , 1. � � �	 � O 1 � , x � s t 
 � ,Ž . Ž .0�i S x , t �Ž . Ž . � �½ � �X � O 1 � , x � s t 	 2� ,Ž . Ž .0

ii S� y , t � mX � O 1 � , S� � O 1 � .Ž . Ž . Ž . Ž .y 0 y �

Proof. This lemma can be shown by the construction of S�. Similar
� � � � Žlemmas can be found in 1 and 10 . The proof is the same see Lemma 4.2

� � .in 10 , for instance and the details will be omitted.

Now we proceed with the energy estimates. First, we establish the
following basic energy estimate.

LEMMA 3.3. Suppose the conditions in Theorem 3.1 are satisfied; then,
� �for all � � 0, � , we ha�e0

�
2 2 2
 
 
 
 
 
� , � � � � � s� � � � , � , � � s� s dsŽ . Ž . Ž . Ž .˙ ˙Ž . Ž .1 H� y y y � y

0

� ��
2� �� m V � dy dsH H 0 y

0 ��

	 O 1 � 6��3.Ž .

Proof. By the Sobolev embedding theorem, we know that � � � � isy
� � Ž � . � Ž .bounded. Thus we can choose E � sup p � � � � E in view of H .1 R y 2

We consider the equality

� � �� L � D�1 � � � s� � � L˙Ž . Ž .Ž .y 1 � y 2

� D�1 � � � � � s� F , 3.12Ž .˙Ž .Ž .� y

Ž . Ž .with 1 � � � E � E �2 E � E�E . Equation 3.12 can be reduced into1 1 1

� � �1G � G � G � G � D � � � � � s� F , 3.13Ž .˙Ž .Ž .1 2 3 4 � y�

with

1 �E
2 �1 2G � � � ��� � D � ,1 y y2 2

1 � 2�1 �1 2 �1 �1G � D � sD � � D � � s� � D � � � s� ,˙ ˙ ˙Ž . Ž .ž /2 y � y � y2 2

1 1 2�1 �1 �1G � � � 1 D � �D � sD � � s�Ž . ˙ ˙Ž .3 � y � y2 2
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1 1
�1 �1 �1 2� ED � �ED � �ED � � �� y y2 2

� �ED�1 � � s� � ,˙Ž .y � y y

1 1
�1 2 �1 2 �1 �1 	 4G � sD � � D � � D � � � s� � sD �� � 


 ,˙ ˙ ˙Ž . y4 y � � � y � y2 2

	 4where 


 denotes the terms which disappear after integrations withy
respect to y.

We see from Lemma 3.2 that

D�1 � D�2 p� � � mV � O 1 � ,Ž . Ž .Ž .y R 0 y
3.14Ž .

D�1 � O 1 � .Ž .�

Thus
D�1 � O 1 � � � . 3.15Ž . Ž . Ž .y 0

For � and � suitably small, there exist positive constants a , a , b , b ,0 0 1 2 1 2
and b such that3

a � 2 � � 2 	 G 	 b � 2 � � 2 ,Ž . Ž .1 y 1 1 y

2 22 2a � � � � s� 	 G 	 b � � � � s� ,˙ ˙Ž . Ž .ž / ž /2 � y 2 2 � y 3.16Ž .
22G 
 b � � � � s� .˙Ž .ž /3 3 y � y

Ž . Ž .We now estimate G . By 3.14 � 3.15 , we have4
1 �1 2 2 2sD � 
 b mV � � O 1 �� , 3.17Ž . Ž .˙ y 4 0 y2

1 �1 2 �1 �1� �� D � � D � � � s� � sD ��˙ ˙Ž .� � � y � y2

22 2	 O 1 � � � � � � � s� 3.18Ž . Ž .˙Ž .ž /y � y

for a positive constant b .4
Ž . � � Ž .We integrate 3.13 over 0, � � ��, �� to obtain, with the help of

Ž . Ž .3.16 � 3.18 , that


 
 2 
 
 2 
 
 2� � � � � � � � s� �Ž . Ž . Ž .˙Ž .1 � y

� � ��
2 2
 
 � �� � , � � s� s ds � m V � dy dsŽ .˙Ž .H H Hy � y 0 y

0 0 ��

�
2 2
 
 
 
	 O 1 � � s � � � s� s dsŽ . Ž . Ž .˙Ž .H 1ž /� y

0

� ��
�1� O 1 D � � � � � s� F dy ds . 3.19Ž . Ž .˙Ž .Ž .H H � y

0 ��
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By using the facts

F � � R � O 1 � 2 ,Ž . y

� �� �
2�1 2� � 
 
D � � � � � s� � dy ds 	 O 1 N � � s ds,Ž . Ž . Ž .˙Ž .Ž .H H H� y y y

0 �� 0

� ��
�1� �D � � � � � s� � R dy ds˙Ž .Ž .H H � y

0 ��

� � ��
2 2 2
 
 
 
	 O 1 � � s � � � s� s ds � � R dy ds,Ž . Ž . Ž .˙Ž .H H Hž /� y

0 0 ��

and

� �� �� ��
2 �1 2� R dy ds � � R x , � dx d�Ž .H H H H

0 �� 0 ��

	 O 1 � 6��3 ,Ž .

Ž .where the Sobolev embedding theorem has been used, we get, from 3.19 ,
that


 
 2 
 
 2 
 
 2� � � � � � � � s� �Ž . Ž . Ž .˙Ž .1 � y

� � ��
2 2
 
 � �� � , � � s� s ds � m V � dy dsŽ .˙Ž .H H Hy � y 0 y

0 0 ��

�
2 2
 
 
 
	 O 1 � � s � � � s� s dsŽ . Ž . Ž .˙Ž .H 1ž /� y

0

�
2 6��3
 
� O 1 N � � s ds � O 1 � . 3.20Ž . Ž . Ž . Ž . Ž .H y

0


 Ž .
 2To estimate � � , we investigate the following relation:y

E� � � � s� � L � � L˙Ž .Ž .y � y y 1 y 2

1 12 2� E� � � � s� � � �˙Ž .y � y y y2 2 �

2 	 4� � � � s� � D� � 


 . 3.21Ž .˙Ž . yy � y y
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Ž . � � Ž .Integrating 3.22 over 0, � � ��, �� , and using Young’s inequality,
one can easily obtain

�
2 2
 
 
 
� � � � s dsŽ . Ž .Hy y

0

�
2 2
 
 
 
	 O 1 � , � � s� � � � , � � s� s dsŽ . Ž . Ž .˙ ˙Ž . Ž .Hy � y y � yž /0

�
6��3
 
� O 1 N � � � � s ds � O 1 � . 3.22Ž . Ž . Ž . Ž . Ž .Ž .H y

0

Ž . Ž .Combining 3.20 and 3.22 , for � , � , and � suitably small, we arrive0 0 0
at


 
 2 
 
 2� , � � � � � s� �Ž . Ž . Ž .˙Ž .1 � y

� � ��
2 2
 
 � �� � , � , � � s� s ds � m V � dy dsŽ .˙Ž .H H Hy y � y 0 y

0 0 ��

�
26��3 
 
	 O 1 � � K� � s ds, 3.23Ž . Ž . Ž .H

0

Ž .for a positive constant K. Equation 3.23 implies that

�
2 26��3
 
 
 
� � 	 O 1 � � K� � s ds.Ž . Ž . Ž .H

0

Thus, Gronwall’s inequality gives that

� �
2 6��3
 
� s ds 	 O 1 � exp K� � � s ds. 3.24	 4Ž . Ž . Ž . Ž .H H

0 0

Ž . Ž .Inserting 3.24 into 3.22 , we have

�
2 2 2
 
 
 
 
 
� , � � � � � s� � � � , � , � � s� s dsŽ . Ž . Ž . Ž .˙ ˙Ž . Ž .1 H� y y y � y

0

� ��
2� �� m V � dy dsH H 0 y

0 ��

�
6��3	 O 1 � 1 � K� exp K� � � s ds	 4Ž . Ž .Hž /0

	 O 1 � 6��3.Ž .

This proves Lemma 3.3.
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For higher-order estimates, we have

LEMMA 3.4. Suppose the conditions in Theorem 3.1 are satisfied; then,
� �for all � � 0, � , we ha�e0


 
 2 
 
 2� , � � � � � s� �Ž . Ž .˙Ž . Ž .y y y y � y y

�
2
 
� � , � , � � s� s dsŽ .˙Ž .H ž /y y y y � y y

0

	 O 1 � 6��3.Ž .
Ž . Ž .Proof. Instead of 3.12 and 3.21 , we study

� � �� � L � D�1 � � � s� � � � L˙Ž . Ž .ž /y y y y 1 � y y x 2y

� D�1 � � � � � s� F , 3.25Ž .˙Ž .ž /y � y yy

and

E� � � � s� � L � � � L � �� F . 3.26Ž .˙Ž .ž /y y � y y y 1 y y y 2 y y yy

Repeating the procedure in the proof of Lemma 3.3, it is not difficult to
show

2 t 2
 
� , � � s� , � � � � , � � s� , � s d�Ž . Ž .˙ ˙Ž . Ž .Hž / ž /y y � y y y y y � y y yy y
0

	 O 1 � 6��3Ž .
� ��

�1� � � �� D � � � � � s� F � � F dy ds. 3.27Ž .˙Ž .H H ž /ž /y � y y y y yy
0 ��

We observe the following facts,
� ��

�1� � � � � �D � � � � � s� � � � R dy ds˙Ž .H H ž /ž /y � y y y yy
0 ��

� 2
	 � � , � , � � s� s dsŽ .˙Ž .H ž /1 y y y � y y

0

� ��
2 2� C � � R dy ds, 3.28Ž . Ž .H H1 y

0 ��

� �� �� ��
2 2 2� R dy ds � � R x , � dx d�Ž .H H H Hy x

0 �� 0 ��

	 O 1 � 4��1Ž .
	 O 1 � 6��3 , 3.29Ž . Ž .

� � � � 2 � � � �F � � R 	 O 1 � � � � � O 1 � � , 3.30Ž . Ž . Ž . Ž .Ž .y 0 y y y y y y
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and

� ��
�1� � � � � �D � � � � � s� � � F � � R dy dsŽ .˙Ž . yH H ž /ž /y � y y yy

0 ��

�
2
 
	 O 1 N � � , � , � � s� s ds, 3.31Ž . Ž . Ž . Ž .˙Ž .H 1y y � y

0

Ž . Ž .for any positive number � . Equations 3.27 � 3.31 with � suitably small1 1
imply Lemma 3.4.

Now with the help of Lemmas 3.3 and 3.4, Theorem 3.1 follows.
Ž . Ž .Turn to the initial value problem 3.7 now. The local in time existence

and uniqueness of the solution in the space X is standard. In view of the
local result, the a priori estimates, and Theorem 3.1, it follows from a
standard continuity argument for hyperbolic systems that

Ž . Ž .THEOREM 3.5. Suppose H � H are satisfied. Let � , � , � , and K1 3 0 0 0 0
� r l � � r l �be the suitable constants as in Theorem 3.1, such that � � � � u � u0 0 0 0

� r l � Ž �� p � p 	 � . Then for each � � 0, � , there exists a unique solution0 0 0 0
TŽ . Ž . Ž .�, � to 3.7 in X 0, satisfying�

T��2 2 2
 
 
 
 
 
sup � , � � � � � � � , � , � � d�Ž . Ž . Ž . Ž .Ž .Ž .2 1 H 1ž /� y y �
00	�	T��

	 K � 6��3 , 3.32Ž .0

TŽ . Ž .for �, � � X 0, .�

It follows from Theorem 3.5 and the structure of S� that, for each
� 1Ž � Ž . � �� � 0, � , there exists a smooth solution S to 1.1 on 0, T � R such0

Ž .that 1.8 is satisfied.
� Ž . Ž .Next we study the desired asymptotic behavior of S x, t . From 3.1 ,

Ž . Ž . Ž . Ž .3.3 , 3.5 , 3.6 , and 3.32 , we get that

2 2� � ˜ ˜
 
 
 
sup S � S 
, t � sup � , � , w 
, tŽ . Ž . Ž .˜ž /x x
0	t	T 0	t	T

2 
 
 2� � sup � , � , �Ž .x x t
0	t	T


 
 2� sup � , � , �Ž .y y �
0	�	T��

	 K � 6��3. 3.33Ž .0
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ŽOn the other hand, by the construction of the approximation solutions see
.Lemma 3.2 , we have


 � 
 2 �sup S � 	 	 O 1 � .Ž .0
0	t	T

Hence,

2� �
 
sup S � 	 	 O 1 � ,Ž .0
0	t	T

Ž .which is 1.9 .
Ž . Ž .To prove 1.10 , we use Sobolev’s inequality and 3.32 to obtain

� �� � � �sup S � S � sup � , � , �Ž . Ž .y y �
1 1x�R y�R


 
1�2 
 
1�2	 O 1 � , � , � � , � , �Ž . Ž . Ž .y y � y y y y � y

	 O 1 � Ž6��3.�2 .Ž .

5Ž . Ž .This and Lemma 3.2 i yield 1.10 , if we choose � � . The proof of6

Theorem 1 is completed then.
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