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1. Introduction

The goal of this paper is to investigate the asymptotic behavior of a reacting ow
of two modes with source terms as the relaxation time (or specially the reaction time)
goes to zero. The system in Eulerian form can be written as


(�r)t + (�ur)x = S;

(�s)t + (�us)x =−S;

(�u)t + (p+ �u2)x = 0;

(R.F.)

which was proposed by LeVeque et al. [5] to model the motion of reacting gas with
two modes. Where, �r is the density of the major mode and �s corresponds to the
minor mode, r+ s=1. u is the velocity, and p=�c2(r+�s) is the pressure which can
be derived by Avogadro’s Law. Here, c is the sound speed of the major mode. The
parameter � provides some tenuous link with real physics, if it is considered as the
number of molecules of the minor species produced from one molecule of the major
species. S is the source term

S =
�(rE(�)− r)

�
=−�(sE(�)− s)

�
;
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where � is the reaction time, rE(�) and sE(�) are equilibrium distributions. The reader
is refered to [5] for more physical and numerical background.
The equations in Lagrangian form of (R.F) can be written as (see [3])



vt − ux = 0;

ut + px = 0; x ∈ R1; t ¿ 0;

pt + pv−1vt =
1
�
(pR(v)− p);

(1.1)

where v¿ 0 is the speci�c volume, p¿ 0; pR(v)v= c2(rE + �(1− rE)).
As the relaxation time � goes to zero, we obtain formally the following well-known

p-system:{
vt − ux = 0;

ut + pR(v)x = 0;
(1.2)

which is exactly the leading order of the Hilbert expansion of the smooth solutions to
(1.1) about �. Therefore, we expect that (1.2) controls the evolution of the solutions
to (1.1) as �→ 0. For smooth ow, this expectation can be easily realized by Hilbert
expansion and a standard energy estimate argument. However, as for the case when
discontinuities occur in the solutions to (1.2), the analysis is much more complicated
and di�culties appear.
In this paper, inspired by [1, 9], we use the method of matched multiscale asymptotic

analysis introduced in [1] to conquer the di�culties, i.e., constructing approximate
solutions by matched multiscale asymptotic expansion and analyzing the stability of the
approximate solutions. More precisely, we �rst construct a formal solution to (1.1) by
matching the truncated Hilbert expansion (outer expansion, see Section 2.1) and shock
layer expansion (inner expansion, see Section 2.2). Then the existence of solution to
(1.1) and its convergence to the solution to (1.2) are reduced to the stability analysis
of the approximate solution (see [1]). However, because the dissipation of relaxation is
much weaker than viscosity, the asymptotic behavior here is much more singular than
that in [1]. So we have to use higher-order correction to weaken the nonlinearity in the
error equation between (1.1) and (1.2). On the other hand, di�erent from [9], where
the equation is semilinear and the smooth steady shock pro�le of it can be constructed
explicitly, system (1.1) is quasilinear and only an abstract result on the existence of
shock pro�les can be obtained. Besides, the leading order of shock layer expansion,
the time-dependent shock pro�le, is a steady shock pro�le with parameters varying
with time. This leads to di�culties. Furthermore, the quasilinearity of Eq. (1.1) also
leads to more di�culties than the semilinear case discussed in [9]. Therefore, much
more information on the shock pro�les of (1.1) and more careful analysis related to the
quasilinearity of (1.1) are required when we construct the approximate solutions and
make the corresponding energy estimates in H 3 space. The main result in the present
paper is to show that the piecewise smooth solutions to (1.2) with �nitely noninteracting
shocks satisfying the Lax-entropy condition and subcharacteristic condition are strong
limits of the solutions to (1.1) as �→ 0.
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For v¿ 0, we make the following assumptions:
(H1) p′

R(v)¡ 0;
(H2) p′′

R(v)¿ 0:
It is easy to know that, under (H1) and (H2), (1.2) is strictly hyperbolic and gen-

uinely nonlinear, with eigenvalues

�1 =−(−p′
R(v))

1=2¡ 0¡ (−p′
R(v))

1=2 = �2: (1.3)

For simplicity, we only discuss the case when the piecewise smooth solution of (1.2)
is a single-shock solution. A function (v0(x; t); u0(x; t)) is called a single-shock solution
of (1.2) up to time T ¿ 0 if

(i) (v0(x; t); u0(x; t)) is a distributional solution of (1.2) in R1 × [0; T ].
(ii) There is a smooth curve, the shock, x=s(t); 0 ≤ t ≤ T , such that (v0(x; t); u0(x; t))

is su�ciently smooth away from x= s(t) and the left and right limits of (v0(x; t);
u0(x; t)) and its derivatives at the shock x = s(t) exist.

(iii) Across the shock x = s(t), the Rankine–Hugoniot condition holds

ṡ(vl0 − vr0) = ul
0 − ur

0;

ṡ(ul
0 − ur

0) =−(pR(vl0)− pR(vr0)): (1.4)

(iv) The Lax-entropy condition

�l
1¡ṡ¡�r

1 or �r
2¡ṡ¡�l

2

are satis�ed. Here and in the following, we always use the notations fl=f(s(t)−0; t)
and fr = f(s(t) + 0; t).
Without loss of generality, we only consider the case when the shock is in the second

family, i.e.

�r
2(t)¡ṡ(t)¡�l

2(t): (1.5)

We also make another assumption: for some constants v1; v2 satisfying

0¡v1¡ min
0≤t≤T

vl0(t); max
0≤t≤T

vr0(t)¡v2;

(H3) |p′
R(v)|¡ inf 0≤t≤T min{pR(vl0(t))=v

l
0(t); pR(vr0(t))=v

r
0(t)}; v ∈ [v1; v2],

holds, where (H3) is the so-called subcharacteristic condition (see [7]).

Theorem 1. Assume that (v0; u0) (x; t) is a single-shock solution of (1:2) up to time
T ¿ 0; and let p0 = pR(v0). Under (H1)–(H3); there exist positive constants �0 and
�0; such that if∑

1≤�≤7

(∫ T

0

∫
x¡s(t)

+
∫ T

0

∫
x¿s(t)

)
|@�

x(v0; u0; p0) (x; t)|2 dx dt ¡+∞ (1.6)

and

|vr0 − vl0|+ |ur
0 − ul

0|+ |pr
0 − pl

0| ≤ �0; ∀t ∈ [0; T ]; (1.7)
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then for any � ∈ (0; �0]; there is a smooth solution (v�; u�; p�) (x; t) of (1:1) satisfying

(v�; u�; p�) ∈ L∞([0; T ]; H 2): (1.8)

Moreover; for any given � ∈ (0; 1);

sup
0≤t≤T

∫
R1

|(v� − v0; u� − u0; p� − p0) (x; t)|2 dx ≤ C1�� (1.9)

and

sup
0≤t≤T

|x−s(t)|≥h

|(v� − v0; u� − u0; p� − p0) (x; t)| ≤ Ch�; ∀h¿ 0; (1.10)

where C1 and Ch are positive constants independent of �.

Remark. (i) A careful analysis can show that conditions (H2) and (H3) are only
required to hold in a domain of v0(x; 0).
(ii) The advantages of the matched asymptotic analysis method are that the structure

of the solution (v�; u�; p�) in the Theorem 1 will be clear, since it is a perturbation of
a formal solution which will be constructed explicitly.
(iii) The solutions (v�; u�; p�) have carefully chosen initial data which are essentially

those of the Hilbert expansion and the shock-layer expansion.
(iv) In particular, we have that away from the shock, (v�; u�; p�) approximates

(v0; u0; p0) at an optimal rate in �, i.e. (1.10).
(v) The same results hold for �nitely noninteracting shock solutions of (1.2).
(vi) Due to our analysis, it is clear that the technique used here can be extended to

the general relaxation systems proposed by [4].

There are other results about relaxation system and its zero relaxation limit such as
[2–4, 6–10] and references therein.
In the next section, we construct the approximate solutions by use of the matched

multiscale asymptotic expansion method. The existence and asymptotic behavior of the
solutions to (1.1) are proved in Section 3.

2. Construction of approximate solution

In this section we will construct an approximate solution for (1.1) by using the meth-
ods of matched multiscale asymptotic expansions. The outer solutions are constructed
by the Hilbert expansion and inner solutions are obtained by shock layer expansion. By
matching the outer and inner solutions in an appropriate “matching zone”, we can get
the outer and inner functions with an appropriate order and make a formal approximate
solution to (1.1).



vt − ux = 0;

ut + px = 0;

pt + pv−1ux =
1
�
(pR(v)− p):

(2.1)
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2.1. Outer expansion

Let �0 (x; t) = (v0; u0; p0) (x; t) and �i (x; t) = (vi; ui; pi) (x; t); i = 0; 1; 2; : : : . In the
domain away from the shock x = s(t), solutions to (2.1) may be approximated by

�0(x; t) + ��1(x; t) + �2�2(x; t) + : : : ; x 6= s(t): (2.2)

Substituting (2.2) into (2.1) and comparing the coe�cients of power �, we get

O(�−1)pR(v0(x; t)) = p0; (2.3)

O(1)




{
v0t − u0x = 0;

u0t + p0x = 0;

p0t + p0v−10 u0x =−p1 + p′
R(v

0)v1;

(2.4)

O(�)




{
v1t − u1x = 0;

u1t + p1x = 0;

p1t + p0v−10 u1x + [p1v−10 − p0v−12 v1]u0x

=− p2 + p′
R(v

0)v2 + 1
2p

′′
R(v

0)v21;

(2.5)

O(�2)




{
v2t − u2x = 0;

u2t + p2x = 0;

etc:

(2.6)

Combined with (2.3), �rst and second equations of (2.4) becomes a closed system
for (v0; u0). This system is equivalent to (1.2). Its solution can be chosen as the
single-shock solution of (1.2). Hence we set

�0 = (v0; u0; p0) (x; t) ≡ �0(x; t); x 6= s(t): (2.7)

Next, we can obtain from the third equation of (2.4) that

p1 = −(p0t + p0v−10 u0x) + p′
R(v0)v1

= −(p0v−10 + p′
R(v0))u0x + p′

R(v0)v1;
x 6= s(t): (2.8)

We conclude from (2.8) that the �rst and second equations of (2.5) becomes the
following closed system of (v1; u1) (x; t):{

v1t − u1x = 0;

u1t + (p′
R(v0)v1)x = ((p0v

−1
0 + p′

R(v0))u0x)x;
x 6= s(t) (2.9)

and (2.8) and (2.9) are equations for �1(x; t).
Similarly, �2(x; t) satis�es

p2 =−(p1t + p0v−10 u1x + [p1v−10 − p0v−12 v1]u0x)

+p′
R(v0)v2 +

1
2p

′′
R(v0)v

2
1 (2.10)



910 L. Hsiao et al. / Nonlinear Analysis 42 (2000) 905–929

and 


v2t − u2x = 0;

u2t + (p′
R(v0)v2)x = p1t + p0v−10 u1x

+(p1v−10 − p0v−12 v1)u0x − 1
2p

′′
R(v0)v

2
1)x;

x 6= s(t); (2.11)

The above process can be used to �nd higher-order outer functions �i(x; t); i ≥ 3
which are expected to be smooth away from the shock uniformly up to x = s(t).

2.2. Inner expansion and matching conditions

Near the shock, the solution of (2.1) will be represented by a shock layer expansion
of the form

X0(�; t) + �X1(�; t) + �2X2(�; t) + · · · ; (2.12)

where Xi = (Vi; Ui; Pi); i = 0; 1; 2; 3; : : : ; � is given by

�=
x − s(t)

�
+ �(t; �) (2.13)

and �(t; �) is a perturbation of the shock position to be determined later and has the
form of

�(t; �) = �0(t) + ��1(t) + �2�2(t) + · · · : (2.14)

Substituting (2.12)–(2.14) into (2.1) and matching the powers of �, we have

O(�−1)




−ṡV0� − U0� = 0;

−ṡU0� + P0� = 0;

−ṡP0� + P0V−1
0 U0� = pR(V0)− P0;

(2.15)

O(1)




−ṡV1� − U1� + V0t + �̇0(t)V0� = 0;

−ṡU1� + P1� + U0t + �̇0(t)U0� = 0;

−ṡP1� + P0V−1
0 U1� + (P1V

−1
0 − P0V−2

0 V1)U0�

=− (P0t + �̇0(t)P0�) + p′
R(V0)V1 − P1;

(2.16)

O(�)




−ṡV2� − U2� + V1t + �̇0(t)V1� + �̇1(t)V0� = 0;

−ṡU2� + P2� + U1t + �̇0(t)U1� + �̇1(t)U0� = 0;

−ṡP2� + P0V−1
0 U2� + (P1V

−1
0 − P0V−2

0 V1)U1�

+(P2V0 + P0V−3
0 V 21 − 2P1V−2

0 V1 − P0V−2
0 V2)U0�

+P1t + �̇0(t)P1� + �̇1(t)P0� = p′
R(V0)V2 − P2 + 1

2p
′′
R(V0)V

2
1 ;

(2.17)

etc.
The above inner expansion is to be true in a zone of size O(�) around x = s(t).
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In order to construct a smooth solution to (1.1), the outer expansion and the inner
expansion are required to be valid and to agree with each other in the “matching zone”,
where |�|→∞ and |x − s(t)| is small. Expressing the outer solutions in terms of �
and using Taylor’s expansion, we easily get the following “matching conditions” of
the outer expansion and the inner expansion as �→ ∓∞:

X0(�; t) = �0(s(t)∓ 0; t) + o(1); (2.18)

X1(�; t) = �1(s(t)∓ 0; t) + (�− �0)�0x(s(t)∓ 0; t) + o(1); (2.19)

X2(�; t) = �2(s(t)∓ 0; t) + (�− �0)�1x(s(t)∓ 0; t)

− �1�0x(s(t)∓ 0; t) + 1
2 (�− �0)2�0xx(s(t)∓ 0; t) + o(1); (2.20)

etc.
Eqs. (2.18)–(2.20) require that inner functions have algebraic decay rates as

�→ ∓∞.

2.3. Constructions of the outer and inner functions

We need to construct the outer and inner functions order by order at the same time,
make sure the corresponding matching conditions, and determine the value of �(t; �).
The leading order of outer functions, �0(x; t), is exactly the single-shock solution to

(1.2) in Theorem 1. For any �xed t (viewed as a parameter), X0(�; t) determined by
(2.15) is just the travelling wave solution to (1.1) with the boundary conditions (2.18).
Up to a phase shift, X0(�; t) can be uniquely determined (see [3]). Since the shift can
be absorbed by �(t; �), we can take it as zero. Although, we could not get the explicit
formula for X0(�; t) as in [9], we have the following properties of the travelling wave
(see [3, 8]).

Lemma 2.1 (Shock pro�le). Under the Lax-entropy condition and the subcharacter-
istic condition, (2:15) and (2:18) has a smooth solution �(vl0; u

l
0; p

l
0; �; ṡ)=(V0; U0; P0),

which is unique up to a shift in � and satis�es V0� ¿ 0, and

|�− (vl0; ul
0; p

l
0)| ≤ O(1)|vr0 − vl0| exp(−C3|�|);

|V0��| ≤ O(1)|vr0 − vl0|V0�;
|@k

��|¡C1|vr0 − vl0| exp(−C2|�|); 1 ≤ k ≤ 3; as �→−∞;

where Ci (i = 1; 2; 3) are positive constants. Similar results hold as �→ +∞ if we
replace vl0; u

l
0; p

l
0 by vr0; u

r
0; p

r
0 and make some revisions.

So far, we have constructed the leading order functions �0(x; t) and X0(�; t). Now,
we continue to construct the second-order functions �1(x; t) and X1(�; t). It will be
shown in the following that �1; X1 and �0(t) must be determined at the same time.
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Integrating �rst and second equations of (2.16) over [0; �], we have


ṡV1 + U1 = �̇0V0 +
∫ �

0
V0� d�+ c1(t);

ṡU1 − P1 = �̇0U0 +
∫ �

0
U0� d�+ c2(t);

(2.21)

where c1(t) and c2(t) are integration constants to be determined. Eqs. (2.16) and (2.21)
lead to

U1� = fU1 + Q; (2.22)

where

f = (ṡ2 + p′
R(V0) + (ṡV

−1
0 + P0V−2

0 )U0�) (ṡ(ṡ
2 − P0V−1

0 ))−1;

Q=
1

ṡ(ṡ2 − P0V−1
0 )

(
−ṡ
∫ �

0
U0t d�− p′

R(V0)

)

∫ �

0
V0t d�− (ṡU0 + p′

R(V0)V0)�̇+ ṡ(ṡU0t + P0t) + ṡc2(t)− p′
R(V0)c1(t)

+U0�

(
ṡV−1
0

(
c2(t)−

∫ �

0
U0t d�

)
− P0V−2

0

(
c1(t) +

∫ �

0
V0t d�

)

− �̇(ṡV−1
0 U0 + P0V−1

0 )
))

:

From (2.22) we obtain

U1(�; t)=

(
exp

{∫ �

0
f(�; t) d�

})(∫ �

0
exp
{∫ �

0
−f(�; t) d�

}
Q(�; t) d�

)
: (2.23)

Then X1 can be determined, provided that c1(t); c2(t) and �0(t) have been determined,
because we have


V1 =

1
ṡ

(
�̇0V0 +

∫ �

0
V0� d�+ c1(t)− U1

)
;

P1 = ṡU1 − �̇0U0 −
∫ �

0
U0� d�− c2(t) +

1
ṡ
h1:

(2.24)

c1(t); c2(t) and �0(t) will be determined in such a way that X1(�; t) constructed
above satis�es the matching conditions (2.19). Similarly to [9], we have:

Lemma 2.2. The third equation of (2:19) will be satis�ed if �rst and second equations
of (2:19) hold.

Proof. We only need to check that as �→ ∓∞
P1(�; t) = p1(s(t)∓ 0; t) + (�− �0)p0x(s(t)∓ 0; t) + o(1) (2.25)
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holds. Let us only consider the case of �→ +∞. The case of �→ −∞ is similar.
By virtue of the second equation of (2.16) × ṡ+ third equation of (2.16), we get

P1 =p′
R(V0)V1 + (ṡ

2 − P0V−1
0 )U1� − (ṡ�̇0 + P1V−1

0 − P0V−2
0 V1)U0�

− ṡU0t − �̇0P0� − P0t : (2.26)

Using the �rst and second equations of (2.19), (2.18), second equation of (2.4), (2.3),
(2.8) and Lemma 2.1, noticing the relations ḟr =fr

t + ṡfr
x, we �nd, as �→ +∞, that

the right-hand side of (2.26) is equivalent to

p′
R(v

r
0)(v

r
1 + (�− �0)vr0x) + (ṡ

2 − P0V−1
0 )ur

0x(t)− ṡu̇r
0(t)− ṗr

0 + o(1)

=(−P0V−1
0 ur

0x − pr
0t + p′

R(v
r
0)v

r
1) + (�− �0)p′

R(v
r
0)v

r
0x + o(1)

=p1(s(t) + 0; t) + (�− �0)p′
R(v0)v0x(s(t) + 0; t) + o(1)

=p1(s(t)∓ 0; t) + (�− �0)p0x(s(t)∓ 0; t) + o(1);

which is exactly the right-hand side of (2.25). The proof is completed.

In the following, we will also use the notations fr(t) ≡ lim�→+∞ f(�; t) and
fl(t) ≡ lim�→−∞ f(�; t).
Due to entropy condition, subcharacteristic condition and Lemma 2.1, we have

f1(�; t) =

{
fl
1(t) + O(1) exp{−�0|�|} as �→ −∞;

fr
1(t) + O(1) exp{−�0|�|} as �→ +∞

(2.27)

and

fl
1(t) =

ṡ2 + p′
R(v

l
0)

ṡ(ṡ2 − P′
R(V0)V

−1
0 )

¿ 0; fr
1(t) =

ṡ2 + p′
R(v

r
0)

ṡ(ṡ2 − P′
R(V0)V

−1
0 )

¡ 0; (2.28)

where �0¿ 0 is a suitable constant.
By Lemma 2.1, we see that

X0t(�; t) =

{
�̇l
0(t) + O(1) exp{−�0|�|} as �→ −∞;

�̇r
0(t) + O(1) exp{−�0|�|} as �→ +∞:

(2.29)

Let

A= ṡ2 + p′
R(V0); B=

p′
R(V0)
ṡ

: (2.30)

By (1.2), we can make the following relations:

vl0x = (ṡv̇
l
0 − u̇l

0) (A
l)−1; vr0x = (ṡv̇

r
0 − u̇l

0) (A
r)−1;

ul
0x = ṡ(Al)−1(Blv̇l0 + u̇l

0); ur
0x = ṡ(Ar)−1(Brv̇r0 + u̇r

0):



914 L. Hsiao et al. / Nonlinear Analysis 42 (2000) 905–929

Then by (2.23), the �rst equation of (2.24) and the above relations, we can get the
following asymptotic behavior of V1(�; t) and U1(�; t):

V l
1 =

1
Al (�̇0(ṡv

l
0 − ul

0) + ṡc1(t) + c2(t)) + �@xvl0 + @xul
0

+O11(t) + O(1) exp{−�0|�|} as �→−∞;

V r
1 =

1
Ar (�̇0(ṡv

r
0 − ur

0) + ṡc1(t) + c2(t)) + �@xvr0 + @xur
0

+O12(t) + O(1) exp{−�0|�|} as �→+∞

(2.31)

and

Ul
1 =

1
Al (�̇0(ṡu

l
0 + p′

R(V0)v
l
0) + p′

R(V
l
0)c1(t)− ṡc2(t)) + �@xul

0 − ṡ@xul
0

+O21(t) + O(1) exp{−�0|�|} as �→−∞;

U r
1 =

1
Ar (�̇0(ṡu

r
0 + p′

R(V0)v
r
0) + p′

R(V
r
0 )c1(t)− ṡc2(t)) + �@xur

0 − ṡ@xur
0

+O22(t) + O(1) exp{−�0|�|} as �→+∞;

(2.32)

where O11; O12; O21 and O22 are known functions.
Therefore, the matching conditions (�rst and second of (2.19)) will be satis�ed if

we choose c1(t) and c2(t) such that


vl1 − �0vl0x =
1
Al (�̇0(ṡv

l
0 − ul

0) + ṡc1(t) + c2(t)) + @xul
0 + O11(t);

vr1 − �0vr0x =
1
Ar (�̇0(ṡv

r
0 − ur

0) + ṡc1(t) + c2(t)) + @xur
0 + O12(t);

(2.33)




ul
1 − �0ul

0x =
1
Al (�̇0(ṡu

l
0 + p′

R(V0)v
l
0) + p′

R(V
l
0)c1(t)

−ṡc2(t))− ṡ@xul
0 + O21(t);

ur
1 − �0ur

0x =
1
Ar (�̇0(ṡu

r
0 + p′

R(V0)v
r
0) + p′

R(V
r
0 )c1(t)

−ṡc2(t))− ṡ@xur
0 + O22(t):

(2.34)

By virtue of (2.33) and (2.34), we obtain, respectively,{
c1(t) = (ṡvl1 + ul

1)− �0v̇l0 − �̇0vl0 + O31(t);

c2(t) =−ṡ(ul
1 − Blvl1) + �0u̇l

0 + �̇0ul
0 − Alul

0x + O32(t);
(2.35)

{
c1(t) = (ṡvr1 + ur

1)− �0v̇r0 − �̇0vr0 + O41(t);

c2(t) = ṡ(ur
1 − Brvr1) + �0u̇r

0 + �̇0ur
0 − Arur

0x + O42(t);
(2.36)

where O31(t); O32(t); O41(t); O42(t) are known functions.
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From (2.35) and (2.36), we get the following relations:

ṡ(vl1 − vr1) + (u
l
1 − ur

1)− (�0(vl0 − vr0))̇ + O51(t) = 0; (2.37)

ṡ(ul
1 − ur

1)− ṡ(Blvl1 − Brvr1)− (�0(ul
0 − ur

0))̇ + (A
lul
0x − Arur

0x) + O52(t) = 0;

(2.38)

where O51(t) and O52(t) are known functions.
De�ne

e11 ≡ −[ṡv1 + u1] = ṡ(vl1 − vr1) + (u
l
1 − ur

1); (2.39)

e12 ≡−[ṡu1 − p′
R(V0)v1 + (p0v

−1
0 + p′

R(v0))u0x]

= ṡ(ul
1 − ur

1)− ṡ(Blvl1 − Brvr1) + (p
l
0v

l−1
0 + p′

R(v
l
0))u

l
0x

− (pr
0v

r−1
0 + p′

R(v
r
0))u

r
0x; (2.40)

then (2.37) and (2.38) become

e11 = �0(v̇l0 − v̇r0) + �̇0(vl0 − vr0) + O61(t); (2.41)

e12 = �0(u̇l
0 − u̇r

0) + �̇0(ul
0 − ur

0) + O62(t)

=−ṡe11 − �s(vl0 − vr0)�0 + O62(t); (2.42)

where we have used the relation (u̇l
0 − u̇r

0) = ṡ(v̇l0 − v̇r0)− �s(vl0 − vr0); and −O61 =O51;
−O62 = O52 − ((pl

0v
l−1

0 + p′
R(v

l
0))u

l
0x − (pr

0v
r−1

0 + p′
R(v

r
0))u

r
0x). Now we �nd that the

matching conditions (�rst and second of (2.19)) will be satis�ed if the boundary values
crossing the shock for �1(x; t) satisfy (2.41) and (2.42).
Next, we will show that (2.41) and (2.42) are exactly the relation between the

boundary data of �1(x; t) needed to solve the initial boundary value problem for linear
hyperbolic equations (2.9) in 
+ and 
−; respectively, where


− = {(x; t): x¡ s(t); 0 ≤ t ≤ T}; 
+ = {(x; t): x¿ s(t); 0 ≤ t ≤ T}:
System (2.9), i.e.,{

v1t − u1x = 0;

u1t + (p′
R(v0)v1)x = ((pR(v0)=v0 + p′

R(v0))u0x)x

has eigenvalues �1(v0)=−√−p′
R(v0) and �2(v0)=

√−p′
R(v0) with corresponding right

eigenvectors r1 = (−1; �1)T and r2 = (−1; �2)T, respectively.
Let (

v1
u1

)
=M

(
n1
z1

)
(2.43)
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with

M =

(−1 −1
�1 �2

)
:

Then we can diagonalize system (2.9) to obtain

(
n1
z1

)
t
+

(
�1 0

0 �2

)(
n1
z1

)
x

=−M−1(Mt + (JM)x)
(
n1
z1

)
+M−1

(
0

((p0v−10 + p′
R(v0))u0x)x

)
; (2.44)

where

J =

(
0 −1

p′
R(v0) 0

)
:

By the characteristic method, we see, due to the entropy condition, that zl1; zr1 and
nr
1 will be determined by integrating along appropriate characteristics, and only nl

1 is
required to be speci�ed at the left-hand side of x=s(t). The value of nl

1 can be obtained
by (2.41) and (2.42). Rewrite (2.41) and (2.42) in terms of (n1; z1) as(

e11
e12

)
=
[
(−ṡM + JM)

(
n1
z1

)]
+
[(

0
p0v−10 + p′

R(v0))u0x)x

)]
: (2.45)

This is a system of two equations about an unknown nl
1, for which the solvability

condition is

�le11 + e12 = zl1(�
l
2 − �l

1) (ṡ− �l
2) + nr

1(ṡ− �r
1) (�

l
1 − �r

1)

+zr1(ṡ− �r
2) (�

l
1 − �r

2)− [p0v−10 + p′
R(v0))u0x]

≡ F1(t): (2.46)

If (2.46) is satis�ed, one can solve (2.45) to obtain

nl
1 = (ṡ− �l

1)
−2((nr

1(ṡ− �r
1)
2 + zr1(ṡ− �r

2)
2 − zl1(ṡ− �l

2)
2)

+ �s(vl0 − vr0)�0 + O(t); (2.47)

where we have used (2.42). By (2.42), we can also reduce (2.46) to

(�l
1 − ṡ)

d
dt
{�0(vl0 − vr0)} − �s(vl0 − vr0)�0 = F1(t) + O(t); (2.48)

which is a linear ODE on �0(vl0 − vr0) and which completely determines �0 up to
a constant. Then we get nl

1 by (2.46). And the standard theory of mixed problems
for linear hyperbolic systems gives the smooth solutions to (2.9) in 
− and 
+,
respectively. The outer functions �1(x; t) are determined then.
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In terms of the construction of �1 and �0, we know the inner functions X1(�; t) and
�rst and second equations of (2.19) are satis�ed as well. We combine all the results
obtained so far to conclude the following theorem

Theorem 2.3. �1(x; t); X1(�; t) and �0 can be determined such that

(i) �1(x; t) and its derivatives are uniformly continuous up to x = s(t) and∑
|�|≤3

∫ ∫
x 6=s(t)

|@�
x�1(x; t)|2 dx dt ¡+∞; (2.49)

(ii) X1(�; t) is smooth and for some �0¿ 0

X1(�; t) = �1(s(t)∓ 0; t) + (�− �0)�0x(s(t)∓ 0; t)

+O(1) exp{−�0|�|} as �→∓∞ (2.50)

holds.

It is easy to see that the above procedure can be carried out to any order. In partic-
ular, we can construct �2(x; t); X2(�; t); �3(x; t); X3(�; t); �1 and �2 such that similar
properties in Theorem 2.3 hold.

2.4. Approximate solutions

Now, we construct a smooth approximate solution to (1.1) by patching the inner
and outer solutions discussed in the above.
Set

I(x; t) = (X0 + �X1 + �2X2 + �3X3)
(
x − s(t)

�
+ �0 + ��1 + �2�2; t

)
(2.51)

and

O(x; t) = (�0 + ��1 + �2�2 + �3�3) (x; t); x 6= s(t): (2.52)

Let m(y) ∈ C∞
0 (R

1) such that 0 ≤ m(y) ≤ 1 and

m(y) =

{
1; |y|¡ 1;

0; |y| ≥ 2:
(2.53)

Choose � ∈ ( 23 ; 1) as a constant. We set

S�(x; t) = m
(
x − s(t)

��

)
I(x; t) +

(
1− m

(
x − s(t)

��

))
O(x; t) + d(x; t); (2.54)

where d(x; t)=(d1; d2; d3)t(x; t) is a higher-order correction to be determined later. We
use the following notations:

S� = (v�; u�; p�)T; I = (I1; I2; I3)T; O = (O1; O2; O3)T:
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Using the structure of the various orders of inner and outer solutions, we have


v�t − u�
x = F2 + d1t − d2x;

u�
t + p�

x = F3 + d2t + d3x;

p�
t + p�(v�)−1u�

x − q(S�) = F4 + d3t + p�(v�)−1d2x −� ≡ R(x; t);

(2.55)

where q(f) = (1=�) (pR(f1)− f3) for f = (f1; f2; f3)T, and

F2 = �3m(�̇2V1� + (�̇1 + ��̇3)V2� + (�̇0 + ��̇1 + �2�̇2)V3� + V3t)

+mt(I1 − O1)− mx(I2 − O2);

F3 = �3m(�̇2U1� + (�̇1 + ��̇3)U2� + (�̇0 + ��̇1 + �2�̇2)U3� + U3t)

+mt(I2 − O2) + mx(I3 − O3); (2.56)

F4 = �3m(�̇2P1� + (�̇1 + ��̇3)P2� + (�̇0 + ��̇1 + �2�̇2)P3� + P3t)

+mt(I3 − O3) + p�(v�)−1mx(I2 − O2);

�= q(S�)− mq(I)− (1− m)q(O)− m(p�(v�)−1 − I3I−11 )I2x

− (1− m) (p�(v�)−1 − O3O−1
1 )O2x:

The construction of approximate solutions leads to

@k

@xk
(I − O) (x; t) = O(1)�(4−k)� in �� ¡ |x − s(t)|¡ 2��; (2.57)

which can be obtained from the matching conditions (2.18)–(2.20).
Choosing (d1; d2; d3) such that



d1t − d2x =−F2;

d2t + d3x =−F3;

d3 = C0d1;

d1(x; 0) = d2(x; 0) = 0

(2.58)

with C0 = 2maxt∈[0;T ] �l
2(t).

Due to the following facts

(i) F2; F3 and m have their supports in {(x; t): |x − s(t)| ≤ 2��; 0 ≤ t ≤ T},
(ii) |@k

x(F2; F3)(x; t)| ≤ O(1)�(3−k)�; 0 ≤ k ≤ 2;
we can obtain, by the characteristic method the following lemma.

Lemma 2.4. The solution (d1; d2) to (2:58) has a compact support and for integers
0 ≤ k ≤ 3 satis�es∣∣∣∣ @k

@xk
d
∣∣∣∣ ≤ O(1)�(4−k)� ∀(x; t) ∈ R1 × [0; T ]: (2.59)
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Furthermore; we can estimate � as follows:∣∣∣∣ @k

@xk
�
∣∣∣∣ ≤ O(1)�(4−k)�−1; 0 ≤ k ≤ 2: (2.60)

Now, we conclude with the following theorem.

Theorem 2.5. Let S�(x; t) be the smooth function de�ned in (2:54) with d(x; t) deter-
mined in (2:58). Then S� satis�es


v�t − u�

x = 0;

u�
t + p�

x = 0;

p�
t + p�v−1� u�

x − q(S�) = R(x; t)

(2.61)

with R(x; t) satisfying

|@k
xR| ≤ O(1)�(4−k)�−1; 0 ≤ k ≤ 2;∫ T

0

∫ +∞

−∞
|@k

xR|2 dx dt ≤ O(1)�2(4−k)�−2; 0 ≤ k ≤ 2:
(2.62)

So far, we have �nished the construction of the formal approximate solutions
to (1.1).

3. Stability analysis

We now prove that there exists a smooth solution to (1.1) in a neighborhood of
S�(x; t) and, for su�ciently small �, the asymptotic behavior of the solution to (1.1) is
governed by S�(x; t).
Let S� be an exact solution to (1.1) with initial data S�(x; 0)=S�(x; 0). We decompose

the solution as

S�(x; t) = S�(x; t) + ( ��; � ; �w)T(x; t); (x; t) ∈ R1 × [0; T ]: (3.1)

It is easy to show that


��t − � x = 0;

� t + �wx = 0;

�wt + (p� + �w) (v� + ��)−1 � x =
1
�
(pR(v� + ��)− pR(v�)− �w)− R(x; t);

��(x; 0) = � (x; 0) = �w(x; 0) = 0:

(3.2)

Setting

��= �̃x; � =  ̃ x; �w = w̃; (3.3)
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we have


�̃t −  ̃ x = 0;

 ̃ t + w̃ = 0;

w̃t + (p� + w̃) (v� + �̃x)
−1 ̃ xx =

1
�
(pR(v� + �̃x)− pR(v�)− w̃)− R(x; t);

�̃(x; 0) =  ̃ (x; 0) = w̃(x; 0) = 0;

which yields


�̃t −  ̃ x = 0;

 ̃ tt − (p� +  ̃ t) (v� + �̃x)
−1 ̃ xx

=− 1
�
(pR(v� + �̃x)− pR(v�) +  ̃ t) + R(x; t);

�̃(x; 0) =  ̃ (x; 0) =  ̃ t(x; 0) = 0:

(3.4)

Using the following scalings

�̃= ��;  ̃ = � ; (3.5)

and

y =
x − s(t)

�
; �=

t
�
; (3.6)

we simplify (3.4) into


L1(�;  ) = 0;

L2(�;  ) = F(x; t);

�(y; 0) =  (y; 0) =  �(y; 0);

(3.7)

where

L1 = �� − ṡ�y −  y;

L2 = ( � − ṡ y)� − ṡ( � − ṡ y)y − E yy + ( � − ṡ y)− D�y;

E = (p� − ( � − ṡ y))(v� + �y)−1;

D =−p′
R(v

�); (3.8)

F = �R− (pR(v� + �y)− pR(v�)− p′
R(v

�)�y)

+ ((p� − ( � − ṡ y)) (v� + �y)−1 − p�(v�)−1)u�
y:

To study the existence and the asymptotic behavior of S�(x; t) for su�ciently small �,
we only need to show that, for su�ciently small �, (3.7) has a smooth “small” solution
up to �= T=�. This will be realized by an argument similar to the stability analysis of



L. Hsiao et al. / Nonlinear Analysis 42 (2000) 905–929 921

the shock pro�les to (1.1) (see [3]). The di�erent part lies in that S� depends on � and
t here.
From now on, we use Hl (l ≥ 1) to denote the usual Sobolev space with the norm

‖·‖l and ‖·‖ to denote the usual L2-norm. We also use the following notation for
simplicity:

‖(f1; f2; : : : ; fk)‖2m ≡
k∑

i=1

‖fi‖2m:

Let us de�ne the solution space of (3.7) by

X (0; �0) = {(�;  ) ∈ C0(0; �0;H 3);  � ∈ C0(0; �0;H 2)} (3.9)

with 0¡�0 ≤ T=�. Suppose, for some 0¡�0 ≤ T=�, there exists a solution (�;  ) to
(3.7) such that (�;  ) ∈ X (0; �0). Denote the norm for (�;  ) by

N (�) = sup
0≤s≤�

(‖(�;  ) (s)‖3 + ‖ �(s)‖2): (3.10)

The main result in this section is the following a priori estimate.

Theorem 3.1. Suppose (H1)–(H3) are satis�ed. There exist positive constants �0; �0;
�0 and K0 which are independent of � and �0 such that if

(i) 0¡� ≤ �0;
(ii) |vr0 − vl0|+ |ur

0 − ul
0|+ |pr

0 − pl
0| ≤ �0;

(iii) N (�0) ≤ �0;
then for (�;  ) ∈ X (0; �0) the following inequality holds.

sup
0≤�≤�0

(‖(�;  ) (�)‖23 + ‖ �(�)‖22) +
∫ �0

0
(‖(�y;  y) (�)‖22 + ‖ �(�)‖22) d�

≤ K0�8�−3: (3.11)

To prove Theorem 3.1, we need the following lemmas.
First, by the construction of S� and with a method similar to the one used in [9],

we get some useful properties of S�.

Lemma 3.2. Let S�(x; t) be de�ned as in (2:54); then

(i) S�(x; t) =

{
�0 + O(1)�min(4�;1); |x − s(t)| ≥ ��;

X0 + O(1)��; |x − s(t)| ≤ 2��;
(ii) S�

y(y; t) = mX0y + O(1)�; S�
� = O(1)�.

(iii) v� ¿ 0; p� ¿ 0.

Now, we begin with the energy estimates. First, we establish the following basic
energy estimate.
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Lemma 3.3. Suppose the conditions in Theorem 3:1 are satis�ed; then; for all � ∈
(0; �0]; we have

‖(�;  ) (�)‖21 + ‖( � − ṡ y) (�)‖2 +
∫ �

0
‖(�y;  y;  � − ṡ y) (s)‖2 ds

+
∫ �

0

∫ +∞

−∞
m|V0y| 2 dy ds

≤ O(1)�8�−3:

Proof. We consider the equality

(k0�+  y)L1 + D−1(( � − ṡ y) + k0 )L2 = D−1(k0 + ( � − ṡ y))F; (3.12)

which can be reduced to

[G1 + G2]� + G3 + G4 = D−1(k0 + ( � − ṡ y))F; (3.13)

where

G1 = 1
2k0�

2 + � y +
1
2
D−1E 2y;

G2 = 1
2k0(D

−1 + ṡD−1
y ) 2 +

1
2
D−1( � − ṡ y)2 + k0D−1 ( � − ṡ y);

G3 = ((1− k0)D−1 − 1
2D

−1
� + 1

2 ṡD
−1
y ) ( � − ṡ y)2

+ (k0ED−1 − 1
2ED

−1
� + 1

2 ṡED
−1
y − 1

2D
−1(E� − ṡEy)− 1) 2y

+(ED−1)y( � − ṡ y) y;

G4 = 1
2k0(ṡD

−1
y − D−1

� ) 2 − k0D−1
�  ( � − ṡ y)

+ k0(E − ṡ2D−1
y + D−1Ey)  y + 1

2(ṡD
−1
y )� 2 + {: : :}y

and {: : :}y denotes the terms which disappear after integrations with respect to y.
By Sobolev embedding theorem and Lemma 3.2, we know that v� + �y ¿ 0 and

p� − ( � − ṡ y)¿ 0 are bounded. Thus we can choose k0 such that

1− k0¿k1¿ 0; inf{ED−1}k0 − 1¿k2¿ 0: (3.14)

We see from Lemma 3.2 that

D−1
y = D−2p′′

R(v
�) (mV0y + O(1)�);

D−1
� = O(1)�;

(3.15)

which implies

D−1
y = O(1)(�0 + �): (3.16)
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We easily get, by virtue of (3.7), that

E� − ṡEy = (v� + �y)−1(−2E yy − D�y +  � − ṡ y − F); (3.17)

which implies, by (3.8), (2.62), and Sobolev embedding theorem, that

E� − ṡEy = O(1) (N (�) + �0 + �): (3.18)

Therefore, for �0; �0 and �0 suitably small, there exist positive constants a1; a2; b1; b2
and b3 such that

a1(�2 +  2y) ≤ G1 ≤ b1(�2 +  2y);

a2( 2 + ( � − ṡ y)2) ≤ G2 ≤ b2( 2 + ( � − ṡ y)2);

G3 ≥ b3( 2y + ( � − ṡ y)2):

(3.19)

We now estimate G4. By (3.15) and (3.16), we have, for a positive constant b4, that
1
2 ṡD

−1
y  2 ≥ b4mV0y 2 + O(1)� 2; (3.20)

| − k0D−1
�  ( � − ṡ y) + k0(E − ṡ2D−1

y + D−1Ey)  y + 1
2(ṡD

−1
y )� 2|

≤ O(1)�( 2 +  2y + ( � − ṡ y)2): (3.21)

With the help of (3.17)–(3.21), we integrate (3.13) over [0; �]× (−∞;+∞) to obtain
‖�(�)‖2 + ‖ (�)‖21 + ‖( � − ṡ y) (�)‖2

+
∫ �

0
‖( y;  � − ṡ y)(s)‖2 ds+

∫ �

0

∫ +∞

−∞
m|V0y| 2 dy ds

≤ O(1)�
∫ �

0
(‖ (s)‖21 + ‖( � − ṡ y) (s)‖2) ds

+O(1)
∫ �

0

∫ +∞

−∞
|D−1( + ( � − ṡ y))F | dy ds: (3.22)

The last term of (3.22) can be estimated, with the help of (3.8), as follows:∫ �

0

∫ +∞

−∞
|D−1( + �( � − ṡ y))F | dy ds

≤ O(1)
∫ �

0

∫ +∞

−∞
|D−1( + �( � − ṡ y))|(�|R(x; t)|

+�2y + �0| � − ṡ y|+ �0|�y|) dy ds

≤ O(1) (N (�) + �0)
∫ �

0
‖�y (s)‖2 ds+ �

∫ �

0

∫ +∞

−∞
R2 dy ds

+O(1) (�+ �0)
∫ �

0
(‖ (s)‖2 + ‖( � − ṡ y) (s)‖2) ds
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and

�
∫ �

0

∫ +∞

−∞
R2 dy ds= �−1

∫ ��

0

∫ +∞

−∞
R2(x; �) dx d�

≤O(1)�8�−3;

which together with (3.22) yield

‖�(�)‖2 + ‖ (�)‖21 + ‖( � − ṡ y) (�)‖2

+
∫ �

0
‖( y;  � − ṡ y)(s)‖2 ds+

∫ �

0

∫ +∞

−∞
m|V0y| 2 dy ds

≤ O(1)�
∫ �

0
(‖ (s)‖21 + ‖( � − ṡ y) (s)‖2) ds

+O(1)N (�)
∫ �

0
‖�y(s)‖2 ds+ O(1)�8�−3: (3.23)

To estimate ‖�y(�)‖2, we use the following relation:
(E�y − ( � − ṡ y))@yL1 − �yL2

= [ 12E�
2
y − ( � − ṡ y)�y − 1

2 
2
y]� − �y( � − ṡ y)

+ (D − 1
2 (B� − ṡEy))�2y + {: : :}y: (3.24)

Integrating (3.24) over [0; �] × (−∞;+∞), using (3.16) and Young’s inequality, we
can obtain, similar to (3.23), that

‖�y(�)‖2 +
∫ �

0
‖�y(s)‖2 ds

≤ O(1)(‖( y;  � − ṡ y) (�)‖2 +
∫ �

0
‖( y;  � − ṡ y) (s)‖2 ds

+O(1) (N (�) + �)
∫ �

0
‖�y(s)‖ ds+ O(1)�8�−3: (3.25)

Combining (3.23) and (3.25), we have, for suitably small �0; �0 and �0 and for a
positive constant K , that

‖(�;  ) (�)‖21 + ‖( � − ṡ y) (�)‖2

+
∫ �

0
‖(�y;  y;  � − ṡ y) (s)‖2 ds+

∫ �

0

∫ +∞

−∞
m|V0y| 2 dy ds

≤ O(1)�8�−3 + K�
∫ �

0
‖ (s)‖ ds; (3.26)
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which implies

‖ (�)‖2 ≤ O(1)�8�−3 + K�
∫ �

0
‖ (s)‖2 ds:

Thus, the Gronwall’s inequality gives that∫ �

0
‖ (s)‖2 ds ≤ O(1)�8�−3

∫ �

0
exp{K�(�− �)} ds: (3.27)

Substituting (3.27) into (3.26), we have

‖(�;  )(�)‖21 + ‖( � − ṡ y) (�)‖2

+
∫ �

0
‖(�y;  y;  � − ṡ y) (s)‖2 ds+

∫ �

0

∫ +∞

−∞
m|V0y| 2 dy ds

≤ O(1)�8�−3
(
1 + K�

∫ �

0
exp{K�(�− �)} ds

)

≤ O(1)�8�−3:

The proof of Lemma 3.3 is complete.

Now, we deal with higher-order estimates. We have:

Lemma 3.4. Suppose the conditions in Theorem 3:1 are satis�ed; then; for all � ∈
[0; �0]; we have

‖(�;  ) (�)‖22 + ‖( � − ṡ y)y(�)‖2 +
∫ �

0
‖(�y;  y; ( � − ṡ y)) (s)‖21 ds

+
∫ �

0

∫ +∞

−∞
m|V0y| 2y dy ds

≤ O(1)�8�−3:

Proof. Using the following relations:

(k0�y +  yy)@yL1 + D−1(( � − ṡ y)y + k0 y)@yL2 = D−1( y + �( � − ṡ y)y)Fy

(3.28)

and

(E�yy − ( � − ṡ y)y)@yyL1 − �yy@yL2 =−�yyFy (3.29)

with the help of (3.14)–(3.18), we get, by repeating the procedure in the proof of
Lemma 3.3, that

‖(�y; ( � − ṡ y);  y) (�)‖21 +
∫ �

0
‖(�y; ( � − ṡ y);  y) (s)‖21 d�



926 L. Hsiao et al. / Nonlinear Analysis 42 (2000) 905–929

+
∫ �

0

∫ +∞

−∞
m|V0y| 2y dy ds

≤ O(1)�8�−3

+
∫ �

0

∫ +∞

−∞
(|D−1(k0 y + ( � − ṡ y)y)Fy|+ |�yyFy|) dy ds: (3.30)

Using the following estimate:

|Fy| ≤O(1)�|Ry|+ O(1) (�0 + |�yy|)�2y + O(1)|�y||�yy|

+ �0(|( � − ṡ y)y|+ |�yy|+ |( � − ṡ y)|+ |�y|) (3.31)

and

O(1)�2
∫ �

0

∫ +∞

−∞
R2y dy ds= �

∫ ��

0

∫ +∞

−∞
R2x(x; �) dx d�

≤O(1)�6�−1

≤O(1)�8�−3; (3.32)

we can estimate the last term of (3.30), for a positive and suitably small �1, as∫ �

0

∫ +∞

−∞
|D−1(k0 y + ( � − ṡ y)y)Fy|+ |�yyFy|) dy ds

≤ �1

∫ �

0
‖(�yy;  y; ( � − ṡ y)y) (s)‖2 ds+ O(1)�8�−3

+O(1) (�0 + N (�))
∫ �

0
‖(�y;  y;  � − ṡ y) (s)‖21 ds; (3.33)

which, together with (3.30) and Gronwall’s inequality, leads to Lemma 3.4.

Lemma 3.5. Suppose the conditions in Theorem 3:1 are satis�ed; then; for all � ∈
[0; �0]; we have

‖(�;  )(�)‖23 + ‖( � − ṡ y) (�)‖22 +
∫ �

0
‖(�y;  y; ( � − ṡ y)) (s)‖22 ds

+
∫ �

0

∫ +∞

−∞
m|V0y| 2yy dy ds

≤ O(1)�8�−3:

Proof. Using the following relations:

(k0�yy +  yyy)@yyL1 + D−1(( � − ṡ y)yy + k0 yy)@yL2
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=D−1( y + �( � − ṡ y)yy)Fyy; (3.34)

(E�yyy − ( � − ṡ y)yy)@yyyL1 − �yyy@yyL2 =−�yyyFyy (3.35)

and the following estimates:

|Fyy| ≤O(1)|�Ryy|+ O(1) (1 + (�0 + |�yy|)|�yy|+ |�yyy|)�2y
+O(1) (�0 + |�yy|)|�y||�y|
+O(1)|�y||�yy|2 + O(1)|�||�yy|
+ �0(|( � − ṡ y)yy|+ |�yyy|
+(|( � − ṡ y)|+ |�y|) (1 + |�yy|+ |�yyy|)
+ (|( � − ṡ y)y|+ |�yy|) (1 + |�yy|)); (3.36)

�2
∫ �

0

∫ +∞

−∞
R2yy dy ds ≤ O(1)�8�−3; (3.37)

we can prove Lemma 3.5 with the help of (3.14)–(3.18) and a similar argument as
in the proof of Lemmas 3:3 and 3:4.

The combination of Lemmas 3:3–3:5 leads to Theorem 3.1.
Now, we turn to the initial value problem (3.7). Since there always exists a unique

solution to the initial value problem (3.7) in space X locally (in time), we get, by the
a priori estimates, Theorem 3.1 and a standard continuity argument for the hyperbolic
systems:

Theorem 3.6. Suppose (H1)–(H3) are satis�ed. Let �0; �0; �0 and K0 be the suit-
able constants as in Theorem 3:1; such that |vr0 − vl0| + |ur

0 − ul
0| + |pr

0 − pl
0| ≤ �0.

Then for each � ∈ (0; �0]; there exists a unique solution (�;  ) to (3:7) in X (0; T=�)
satisfying

sup
0≤�≤T=�

(‖(�;  ) (�)‖23 + ‖ �(�)‖22)

+
∫ T=�

0
‖(�y;  y;  �) (�)‖22 d� ≤ K0�8�−3 (3.38)

for (�;  ) ∈ X (0; T=�).

By Theorem 3.6 and the structure of S�, we �nd that, for each � ∈ (0; �0], there
exists a smooth solution S� to (1.1) on [0; T ]× R1 such that (1.8) is satis�ed.
Turn to the desired asymptotic behavior of S�(x; t). We have, from (3.1), (3.3),

(3.5), (3.6) and (3.38), that

sup
0≤t≤T

‖(S� − S�) (·; t)‖2 = sup
0≤t≤T

‖(�̃x;  ̃ x; w̃) (·; t)‖2
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= �2 sup
0≤t≤T

‖(�x;  x;  t)‖2

= sup
0≤�≤T=�

‖(�y;  y;  �)‖2

≤K0�8�−3: (3.39)

On the other hand, by the construction of the approximate solutions (see Lemma 3.2),
we have

sup
0≤t≤T

‖S� − �0‖2 ≤ O(1)��:

Hence, we have

sup
0≤t≤T

‖S� − �0‖2 ≤ O(1)��;

which is (1.9).
To prove (1.10), we use Sobolev’s inequality and (3.38) to obtain

sup
x∈R1

|(S� − S�)|= sup
y∈R1

|(�y;  y;  �)|

≤O(1)‖(�y;  y;  �)‖1=2‖(�yy;  yy;  �y)‖1=2

≤O(1)�(8�−3)=2: (3.40)

Eq. (3.40) and (i) of Lemma 3.2 yield (1.10), if we choose �¿ 5
8 . Theorem 1 is

proved.
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