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1 Background

The coupling theorem we proved in class:

Theorem 1.1. Let φt be a random variable [distance metric] satisfying:

• 0 ≤ φt ≤ B for some B ≥ 0

• φt = 0 implies φt+1 = 0

• E[∆φt] ≤ 0

• If φt > 0 then E[(∆φt)
2] > V for some V > 0

Then the coupling time T x,y from starting states x and y satisfies

E[T x,y] ≤ φ0(2B − φ0)

V

In general, you want to show some distance metric is decreasing (or at least non-increasing)
in expectation. If there’s an actual decrease, then its easy to get a good bound, but even if
its just non-increasing then enough variance guarantees it’ll get to 0 within polynomial time.

Note that for this to be useful, the upper bound B on the distance must be polynomial.

2 An Interesting Tiling Problem

We will work with a simply connected subset R ⊆ Zd (thought of as a union of unit cubes).
Usually we will think of R as being a hyper-rectangle, but it doesn’t have to be. Let ui
denote the unit vector in the ith coordinate and let u∗ = (1, 1, . . . , 1).

Let RL = {x ∈ R | ∃i ∈ [k], x− ui 6∈ R} denote the lower boundary of R.
A subset S ⊆ R is a downset if RL ⊆ S and

x ∈ S and x− ui ∈ R =⇒ x− ui ∈ S

for all i. The boundary of a downset S ⊆ R is

∂S = {x ∈ S | x+ u∗ /∈ S} .
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Note that ∂S contains exactly one element along the ray {x+ ku∗|k ∈ Z} for each x ∈ RL.
In particular, |∂S| is an invariant of R common to all downsets S ⊆ R, and for any downsets
S, T there is a natural bijection between ∂S and ∂T by v ↔ v + ku∗ (where k is the unique
integer such that v + ku∗ ∈ ∂T ).

(a) (b)

Figure 1: Downsets S in hyperrectangular subsets of Z2 and Z3. The red points are the
boundary of S. Note that there is exactly one boundary point on each diagonal.

We have talked in the context of lozenge tilings about the 3-dimensional version of the
following Markov chain on downsets of R:

• From any state S, pick (v, b) ∈ ∂S × {±1} uniformly.

• If b = +1 move to S ′ = S ∪ {v + u∗} if S ′ is monotone.

• If b = −1 move to S ′ = S \ {v} if S ′ is monotone.

• Otherwise remain at S.

The above chain converges to the uniform distribution over downsets of R (the transition
matrix is symmetric). What if we want to bias towards larger or smaller subsets? Consider
the following biased chain with bias λ > 1:

• From any state S, pick (x, b, p) ∈ ∂S × {±1} × (0, 1) uniformly.

• If b = +1 move to S ′ = S ∪ {x+ u∗} if S ′ is monotone.

• If b = −1 and p ≤ 1/λ move to S ′ = S \ {x} if S ′ is monotone.

• Otherwise remain at S.

Exercise. Use the detailed balance equations to check that in the stationary distribution of
this chain each configuration S has weight proportional to λ|S|.

Question 2.1. When can we show that the biased chain is fast-mixing?
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2.1 An attempt at a coupling argument

Let’s try the natural coupling using the Hamming distance d(S, T ) = |S ⊕ T |: in each
step pick (x, b, p) to update S, and update T according to (x′, b, p), where x′ is the unique
corresponding element of ∂T along the same diagonal ray (i.e., with x′ = x+ ku∗).

The issue is that while (in two dimensions) there may always be at least as many good
moves as bad moves, the bad moves may be more likely (recall that increase moves are more
likely than decreases).

Figure 2: There are two good moves and two bad moves, but increases are more likely than
decreases, so overall the bad moves are more likely to occur.

The same situation from Figure 2 in d > 2 dimensions is even worse: there are still only
two good moves (one up, one down) but now d bad moves (all up).

Remark 2.2. It’s only to be expected that this would fail in higher dimensions, as the
unweighted version doesn’t work well there either (with 2 good moves and up to d bad
moves). Istead in class we discussed a modified chain for d = 3 where we added or removed
whole towers, and it is good to note that the argument for towers also fails in the biased
case, for similar reasons.

2.2 A suggested fix

Note that the bad moves are all higher up than the good moves, so let’s make the distances
of lower moves greater, giving more weight to the expected improvement from good moves.
In particular, we’ll define a new distance metric

φ(S, T ) =
∑

x∈S⊕T

λ(M−x·u
∗)/2,

where M = maxx∈R x · u∗ is the height of the highest point in R. This distance puts more
weight on the lower differences between S and T than it does on the higher differences.

Note that (unlike the Hamming distance) this distance φ(S, T ) need not always be
integral, so it is conceivable that the distance could keep decreasing indefinitely with-
out ever actually coupling. Fortunately, if S 6= T we have some x0 ∈ S ⊕ T and so
φ(S, T ) ≥ λ(M−x·u

∗)/2 ≥ λ0 = 1. This means that we can still get fast coupling if we
can show that the expected distance decreases by a multiplicative factor after each step.

In particular, if we have

E[φ(St+1, Tt+1)] ≤ βφ(St, Tt)
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then since unequal states are always at distance at least 1 we still have

P[St 6= Tt] ≤ E[φ(St, Tt)] ≤ βtB ≤ e−(1−β)tB,

where B is the maximum distance between any two states. Setting this ≤ ε gives the result

τ(ε) ≤ lnB/ε

1− β
,

which is polynomial as long as 1 − β is at least inverse polynomial (assuming B is at most
exponential).

But what if we cannot get β < 1, or 1 − β is exponentially small? Theorem 1.1 may
still apply, but we do not get a polynomial bound for this problem since B is not necessarily
polynomial for our new metric. In fact, we can see that

B ∼
∑
x∈R

λ(M−x·u
∗)/2 ≤ λ(M−m)/2 |R| ,

where m = minx∈R x · u∗ is the height of the lowest point in R. This is exponential in the
“width” M −m of R.

3 Exponential Metrics

A statement of the full exponential metric theorem:

Theorem 3.1 (Greenberg, Pascoe, Randall, 2009). Let φ : Ω× Ω → R+ ∪ {0} be a metric
that takes on finitely many values in {0} ∪ [1, B]. Let U ⊆ Ω × Ω be such that for all
(Xt, Yt) ∈ Ω × Ω, there exists a path Xt = Z0, Z1, ..., Zr = Yt such that (Zi, Zi+1) ∈ U for
0 ≤ i < r and

∑r−1
i=0 φ(Zi, Zi+1) = φ(Xt, Yt).

Let M be a lazy Markov chain on Ω and let (Xt, Yt) be a coupling of M, with φt :=
φ(Xt, Yt). Suppose there exists a β ≤ 1 such that, for all (Xt, Yt) ∈ U ,

E[φt+1] ≤ βφt.

1. If β < 1, the mixing time satisfies

τ(ε) ≤ ln(Bε−1)

1− β
.

2. If there exists κ, η ∈ (0, 1) such that P[|φt+1 − φt| ≥ ηφt] ≥ κ for all t provided that
Xt 6= Yt, then

τ(ε) ≤
⌈

e ln2(B)

ln2(1 + η)κ

⌉ ⌈
ln ε−1

⌉
Note here distances don’t have to be integer, as long as none are between 0 and 1.

Additionally, the mixing time is bounded by ln(B) instead of B.
Proof Sketch. Define new distance

ψt =

{
ln(φt) : φt > 0
−2 ln 2 : φt = 0

Lemmas relate the expected changes in φ and ψ, and the probabilities that these changes are
large. One can then bound the coupling time of ψ, similar to how we proved the coupling
theorem in class, by appealing to the Optional Stopping Theorem.
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4 Applying the Exponential Metric Theorem

4.1 Analysis of Biased Monotone Surfaces

First note that if T = S ∪ {x} then the bad moves from (S, T ) are those which try to add
some x + ui (which may succeed in T but fail in S) or remove some x − ui (which may
succeed in S but fail in T ). Note that at most d such moves can be simultaneously possible,
as any bad increase and bad decrease must be in the same dimension. To see this, note that
adding x + ui is only possible in T if all of the elements x + ui − u′i are in T , but removing
x−uj is only possible in S if none of the elements x−uj +u′j are in S. In particular, if both
moves are possible then x + ui − uj ∈ T \ S, so ui = uj. That is, either all bad moves are
increases (at most d), all are decreases (again at most d) or all bad moves are in the same
dimension (at most 2).

(a) Bad increases
(b) A bad increase and oppos-
ing decrease (c) Bad decreases

Figure 3: Possible sets of bad moves. S is given by grey cubes and x is red. Every bad
increase must be opposite every bad decrease.

Now we are ready to analyze the expected change in distance after one coupled move of
the chain, starting from (S, T = S ∪ {x}) at distance φ(S, T ) = λ(M−x·u

∗)/2. Write α = |∂R|
for the number of possible locations at which to attempt an increase or decrease.

Note that a bad move adding x+ ui increases the distance to

φ(S, T ′) = λ(M−x·u
∗)/2 + λ(M−(x+ui)·u

∗)/2 = (1 + 1/
√
λ)φ(S, T ),

while a bad move removing x− ui increases the distance to

φ(S ′, T ) = λ(M−x·u
∗)/2 + λ(M−(x−ui)·u

∗)/2 = (1 +
√
λ)φ(S, T ).

However, the bad removal only occurs with probability 1/λ (given that we pick the correct
location and direction), so in either case the expected increase in distance (conditioned on
picking a bad location and direction, of which there are at most d) is 1√

λ
φ(S, T ).

There are two good moves, occuring with probabilities 1 and 1/λ, each decreasing the
distance by φ(S, T ), so the expected change in distance after moving from S, T is at most

∆φ ≤
(

d

2α
√
λ
− 1 + 1/λ

2α

)
φ(S, T ).

The multiplicative factor β = d
2α
√
λ
− 1+1/λ

2α
is nonpositive when

√
λ > 2

d−
√
d2−4 . If λ is

significantly larger than this then we can apply the usual coupling noted above for multi-
plicative decreases. But using the new exponential coupling theorem we can get polynomial
mixing right up to this boundary.
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(a) (b)

Figure 4: Two tilings of a 16 × 16 square by 16 rectangles, each of area 16. The shaded
rectangles in (a) are not dyadic, but tiling (b) is dyadic.

Theorem 4.1. The biased monotone surface chain is fast mixing when
√
λ > 2

d−
√
d2−4 .

Remark 4.2. For d = 2 this is good for all λ ≥ 1. For larger d it suffices to take λ ≥ d2. It
is an open question whether these chains are fast mixing for smaller λ.

Proof. From Theorem 3.1 it suffices to find κ, η > 0 such that

P[|φ(St+1, Tt+1)− φ(St, Tt)| > ηφ(St, Tt)] ≥ κ

whenever |St ⊕ Tt| = 1. Indeed, we always have at least one good increase move, which
occurs with probability 1/2α and decreases the distance by φ(St, Tt), so η = 1 and κ = 1/2α
suffice.

4.2 Other uses of the exponential metric coupling bound

The exponential metric theorem, above, shows fast mixing for a different problem in “Phase
Transitions in Random Dyadic Tilings and Rectangular Dissections,” by Cannon, Miracle,
and Randall; to appear, 26th Symposium on Discrete Algorithms, 2015.

The Model: An n× n square in the plane, where n = 2k for some integer k, tiled by n
rectangles, each of area n, as in Figure 4. A tiling is dyadic if each rectangle can be written
in the form

[s2u, (s+ 1)2u]× [t2v, (t+ 1)2v],

for some nonnegative integers s, t, u, v. Intuitively, dyadic tilings are formed by dividing the
square in half, either horizontally or vertically; dividing each of those halves in half again,
either horizontally or vertically; and repeating until rectangles are of area n. See Figure 5.

The Unweighted Chain: An edge flip removes a common side of two adjacent rectan-
gles, and replaces it in the perpendicular direction, as long as the result is another dyadic
tiling; see Figure 6. The unweighted Markov chain picks an edge uniformly at random, and
the flip occurs (if the result is a dyadic tiling) with probability 1/2.

Exercise. Edge flips connect the state space of all n× n dyadic tilings.

When all possible edge flips are equally likely to occur, it’s not known if this Markov
chain is rapidly mixing. A standard path coupling argument, where the distance between
two tilings is the number of edge flips needed to get from one to the other, doesn’t work,
because there could be more bad moves that good moves; see Figure 7, which shows subsets
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n = 16

n = 16

Figure 5: Dyadic tilings are formed by successively dividing existing rectangles in half,
horizontally or vertically, until there are n = 2k rectangles.

(b)(a)

Figure 6: Some dyadic tilings for n = 16. Tilings (a) and (b) differ by an edge flip, shown
in bold

of two tilings that differ by one edge flip. In fact, it’s not obvious that even an exponential
metric could be applied.

Notice that the bad moves involve flipping edges of different lengths than the good moves,
so it might be possible to introduce some weights (varying with edge lengths) and correspond-
ing distances (from an exponential metric) so that good moves get more weight compared
to bad moves.

The Weighted Chain: For a weighted version of the chain, let λ < 1, where the closer
λ is to 1 the closer to uniform the distribution that we’re sampling from is. Consider the
Markov chain that picks an edge uniformly at random. If it is flippable, call the edge it flips
to e′, and flip to e′ with probability min{1, λ|e′|−|e|}. This means a longer edge always flips
to a shorter edge, but a shorter edge flips to a longer edge with some probability less than
one.

Exercise. For a tiling σ, let |σ| denote the sum of all edges in σ. Show the weighted Markov
chain above has stationary distribution π, where for all dyadic tilings σ, π(σ) = λ|σ|/Z for
some normalizing constant Z.

This weighted chain can be coupled: Pick uniformly at random an integer point in the
n×n square, an orientation o ∈ {vertical, horizontal}, and and a random value r ∈ (0, 1). If
the point is the midpoint of a flippable edge e in orientation o, then e is flipped if r is less than
the probability of the flip occurring. Note this coupling may have more stationary probability
at each vertex than described above, but the relative probabilities of moves occurring stays
the same.
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Figure 7: A subset of two coupled tilings that differ by an edge flip between e and f . In At
flipping e is a good move but flipping g or h is a bad move. In Bt, flipping f is a good move,
but flipping i or j is a bad move.

Theorem 4.3. The weighted chain is rapidly mixing for all λ < 1.

This follows from a path coupling argument, with an appropriate exponential metric.
The Metric: Two tilings that differ by a flip between e and e′, where |e| > |e′|, are at

distance λ|e
′|−|e| ≥ 1. Distances between any two tilings differing by more than a flip are just

the sum of distances along a shortest path of flips between them. Distances could certainly
be exponential and are not necessarily integer, but are all at least one.

Proof of Theorem 4.3: Let q be the probability that a given edge is selected to be
flipped, the same for all flippable edges; the flip then actually occurs with some probability
depending on the lengths of e and e′.

Consider any two tilings differing by a flip between edge e and edge f ; we’ll just consider
the case where |e| ≥ 8|f |. As in Figure 7, there can be bad flips to the left or the right of e
but not both, because of dyadic properties; similarly, there can be bad flips above or below
f but not both. Looking at Figure 7, where e has length 2a and f has length 2b:

• Bad edge flips g and h are each selected with probability q, flips occur with probability
λ4a−b, and the change in distance is λb−4a.

• Bad edge flips i and j are each selected with probability q, flips occur with probability
1, and the change in distance is λ4b−a.

• Good move flipping e to f is selected with probability q, occurs with probability 1,
and the change in distance is −λ2b−2a.

• Good move flipping f to e is selected with probability q, occurs with probability λ2a−2b,
and the change in distance is −λ2b−2a.
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Altogether, assuming n is large enough so that λ < 3−1/
√
n, if φt = λ2b−2a is the distance

between the two coupled chains that differ by one step at time t ,

E[φt+1 − φt] ≤ −q − qλ2b−2a + 2q + 2qλ4b−a

= −qλ2b−2a(λ2a−2b + 1− 2λ2a−2b − 2λ2b+a)

= −qφt(1− λ2a−2b − 2λ2b+a)

...E[φt+1] ≤ (1− qc)φt.

The constant c above just depends on how close λ is to the bound given above. This, along
with the other hypotheses of the exponential metric theorem, show that the weighted edge

flip chain for dyadic tilings is rapidly mixing for all λ < 1, in time ln(Bε−1)
qc

= O(n2 log(n/ε)).
For full details and calculations, see Section 3 of “Phase transitions in Random Dyadic
Tilings and Rectangular Dissections.”

References

• S. Greenberg, A. Pascoe, and D. Randall.“Sampling biased lattice configurations using
exponential metrics.” In 20th Symposium on Discrete Algorithms, volume 21, pages
225-251, 2009.

• S. Cannon, S. Miracle, and D. Randall.“Phase transitions in random dyadic tilings and
rectangular dissections.” Symposium on Discrete Algorithms, 2015, to appear.

9


