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Markov Chain Fundamentals (Contd.)

Recap from last lecture:

- A random walk on a graph is a special type of Markov chain used for analyzing algorithms.

- An irreducible and aperiodic Markov chain does not have a unique stationary distribution (π)
unless it is also ergodic.

- The stationary distribution is a fixed point which a Markov chain tends to approach irrespective
of the starting point in the state space.

- Given an irreducible and ergodic Markov chain, we would like to know why(!) and how fast it
approaches the stationary distribution.

- Given an exponential state space Ω, we would like to design a Markov chain that samples from a
probability distribution defined on the state space in O(poly(log |Ω|)) time.

Reversible Markov Chains

These are Markov chains that satisfy the condition of Detailed Balance, i.e.

π(x) · P (x, y) = π(y) · P (y, x)

where π is a stationary distribution corresponding to the transition matrix P . If the Markov chain
is also ergodic, π is the unique stationary distribution.

For finite state spaces, π can be found from the condition of detailed balance above and the fact
that π is a discrete probability distribution (Σx π(x) = 1).

As a reverse implication, if we have a desirable stationary distribution πdes and a set of transitions
(a Markov Kernel to be precise) defined on the state space, we can derive suitable values for the
transition probabilities to achieve πdes.

Note: A Markov kernel is a transition matrix analogue for Markov chains in general (as opposed
to those with a finite state space). It is essentially a succinct representation of transitions defined
on a (usually exponential) state space.

Example: Given an undirected graph G = (V,E), (say C4), find a uniformly random indepedent
set from G.

Here, the vertices in the state space are independent sets in C4, and we connect any two sets σi
and σj , if one can be arrived from the other by adding or deleting exactly one vertex from V . To
enforce aperiodicity on the resulting finite and irreducible Markov chain (hence making way for
ergodicity and an easier analysis), we also add a self-loop to every σi.
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Note that every σi has |σi| neighbours with one less vertex, where |σi| is the size of the corre-
sponding independent set. In this particular case, every σi 6=0 has 3 neighbours (in the figure, solid
bubbles indicate the vertices in the indepedent set).

Figure 1: Markov kernel for sampling an independent set of C4

Now let’s try to configure the kernel for uniform sampling.

Try 1: Being in any state, choose one of the neighbours uniformly.

This gives us for example P (σ5, σ1) = 1/3 and P (σ1, σ5) = 1/5, and hence π(1)/π(5) = 5/3, which
is a non-uniform distribution. Clearly this is not a good choice.

Try 2 (Metropolis Method): Choose (v, b) ∈u V x{0, 1}. If b = 0, try to remove vertex v from the
indepedent set. If b = 1, try to add vertex v to the indepedent set.

Let’s consider σ4. There is a 1/2n = 1/8 chance that we move to σ1 (v = vertex in the independent
set, b = 0), 1/8 chance that we move to σ6 (v = vertex diagonally opposite to the one in the
independent set, b = 1), and a 3/4 chance that we stay put (owing to either, a violation of the
independent set property or the action suggested by the method being inapplicable). Likewise, the
chance that we move from σ1 (or σ6) to σ4 is also 1/8. Other cases can be worked out in a similar
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manner. We will see that the resulting distribution is uniform, i.e, π(i)/π(i 6= j) = 1 (whenever
(σi, σj) is an edge), even though it may be approached very slowly (why?).

Incidentally, an identical distribution is achieved by applying Glauber Dynamics (or Heat Bath),
but that does not hold true in general.

Total Variation Distance

In order to be able to calculate the rate of convergence to the stationary distribution, given an
initial distribution, we must know ”how far” the current distribution is from the stationary distri-
bution at any point of time; this is measured by the Total V ariation Distance.

For any set E ∈ Ω, let’s define

P (E) = Σx∈EP (x)

Then given two distributions P and Q on Ω, the total variation distance between them is given by

||P −Q||TV = MaxE⊆Ω|P (E)−Q(E)|

Lemma: Given two distributions P and Q on Ω,

||P −Q||TV = 1
2
Σx∈Ω|P (x)−Q(x)| = 1

2
||P −Q||1

Proof: Let A = {x ∈ Ω : P (x) ≥ Q(x)} and B be any subset of Ω. Then

P (B)−Q(B) ≤ P (A ∩B)−Q(A ∩B) ≤ P (A)−Q(A)

The first inequality is true because any x ∈ A ∩ B̄ satisfies P (x) − Q(x) ≤ 0, so the difference
in probability cannot decrease when such elements are eliminated.. For the second inequality too,
note that including more elements of B cannot decrease the difference in probability.

By exact parallel reasoning,

Q(B)− P (B) ≤ Q(Ā)− P (Ā) = P (A)−Q(A)

Thus for any set B ⊆ Ω,

|P (B)−Q(B)| ≤ Q(Ā)− P (Ā) = P (A)−Q(A)

Thus, by definition,

||P −Q||TV = MaxB⊆Ω|P (B)−Q(B)| = 1
2
[(Q(Ā)−P (Ā)) + (P (A)−Q(A))]

= 1
2
(Σx∈Ā|Q(x)− P (x)|+ Σx∈A|P (x)−Q(x)|)

= 1
2
Σx∈Ω|P (x)−Q(x)| �

Figure 2 presents an intuitive picture of the lemma. Since both P and Q are probability distribu-
tions, the area under each individual curve is 1. So, the sum of areas marked ’+’ equals the sum
of areas marked ’-’ = 1

2 (total area enclosed between the curves) = TV .
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Figure 2: Total Variation Distance between P and Q

Spectral Gap and Mixing Time

The Mixing T ime τε of a Markov chain with a stationary probability distribution π (or Peq) is
given by

τε = Min∀P0{t : ||πt − π||TV < ε}

Note: Some texts also define mixing time as τ = τ1/4.

From elementary linear algebra, we know that any irreducible and ergodic Markov chain with a
transition matrix P will have π as an eigenvector with eigenvalue 1 since

π · P = 1 · π

Also, the Perron − Frobenius theorem states that any real n x n matrix A with strictly positive
entries (aij > 0, 1 ≤ i, j ≤ n) has a positive, real eigenvalue λ0 (called the Perron-Frobenius eigen-
value) such that for every other eigenvalue, |λi| < λ0 for all i 6= 0. This eigenvalue is characterized
by a unique associated eigenvector v0 with strictly positive components.

Thus, in the context of irreducible and ergodic Markov chains, λ0 = 1 and v0 = π.

If |λ1| ≥ |λ2| ≥ |λ3| ≥ ... ≥ |λN−1| be the remaining eigenvalues of P , where N = |Ω|, δ = 1− |λ1|
is referred to as the Spectral Gap, the difference between the two dominating eigenvalues.

The following inequality (which we will prove in next lecture) relates the mixing time of a Markov
chain to its spectral gap.

τε ≤ ln(Nε−1)
δ
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Clearly, smaller the spectral gap (closer the two dominating eigenvalues), larger the mixing time.

Example: Given the two-state Markov chain in the figure below and an initial probability distri-
bution of (1, 0), calculate the total variation distance from π at time t.

Figure 3: Example

Here P =

[
0 1

1/2 1/2

]
, and π0 = [1 0]. Using πt = π0 ·P t, we get: π1 = [0 1], π2 = [1/2 1/2], π3 =

[1/4 3/4], and so on.

Also, λ0 = 1, and the other eigenvalue (= −1/2) can be obtained from the trace of P ( = sum of
eigenvalues). The corresponding eigenvectors are v0 = [1/3 2/3] and v1 = [1 − 1].

Now since every vector can be written as a linear combination of the eigenvectors, π0 = 1 · v0 + 2
3v1

(note here that the multiplicity of v0(= π) is 1 as expected), and πt = π0 · P t = (v0 + 2
3v1) · P t =

v0 + 2
3λ

t
1 · v1.

So, ||πt − π||TV = 1
2 ||

2
3λ

t
1 · v1||.

Note that any starting probability distribution π0 can be represented as a linear combination of
the eigenvectors including v0 (stationary distibution) and hence its evolution πt with t as shown
below,

π0 = v0 + Σi 6=0aivi; πt = v0 + Σi 6=0aiλ
t
ivi

and since |λi 6=0| < 1, the vi 6=0 components diminish as t grows larger, making πt → v0.

5


