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Main Idea:
Gibbs sampler over Gaussian mixture models with Dirichlet priors is a Markov chain. The authors present
the lower bound for the mixing time of this Markov chain under two different settings.

Brief Overview:
1. Mixture models of Gaussians: Basically mixture of (spherical) gaussians can be described by the
following distribution,
k k
P(x) = YwN(xlu,0?) st. Yw;=1.
=1 =1
The Bayesian approach to specify such mixture models is to provide a generative process by which
observable quantities e.g. (x,x,,...x,) are created and to obtain a posterior distribution for them. One of the
popular application of this approach in machine learning domain is to use such posterior distribution for
drawing inference upon unobserved quantities. Unfortunately, the solution to the posterior distribution is not
usually closed form, thus we have to sample from this distribution. Gibbs sampler is used for such purposes.

2. Mixing Rates: Although Gibbs sampler is used for sampling from the posterior distribution, mixing
time of the chain tells us how long till the samples start coming from the desired distribution (within
an approximate bound).

To answer this, the authors use the theorem (Sinclair 1988) which provides a lower bound for t,,;. in
terms of the inverse of the conductance of a markov chain. The key idea behind it is,
a. We bound the conductance of our Markov chain (Gibbs sampler) from above.
b. We bound the mixing time from below by taking inverse of the conductance.

3. Lower Bounds: The basic setting assumes mixture of spherical Gaussian clusters from which we
will draw the data points. The lower bounds are calculated in two settings, first when number of
clusters are misspecified. And second, when number of clusters are correctly specified. This yields
the primary contribution by the authors, described as the two theorems stated in the following
section.

Primary Contribution:
Theorem 1: For proper setting of §, the mixing time of the induced Gibbs sampler with a misspecified
number of mixtures is bounded as,
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Theorem 2: For proper setting of dand o, the mixing time of the induced Gibbs sampler with a correctly
specified number of mixtures is bounded below as,

o4 d -(1;(12
2 02 () e

1, - 1
min €€%°,

ming

T _1 2/2
2@ T(a). "%



Details:

L. Mixture Model of Gaussians and Gibbs Sampling:

The mixing rate of Gibbs sampler can vary wildly depending on the application, from nearly linear to
exponential. Thus, to get meaningful bounds on the mixing rate, we need to consider the specific
application, which in this case is learning mixture models.

The Bayesian approach to specify mixture models can be summarized in three steps,

a. Introduce hidden variables that associate to each data point the mixture distribution it was
generated from.
b. Formulate generative model which describes all the parameter.
c. Derive posterior distribution from which we can infer.
Following figure takes closer look at the generative process.

(w1,...,wg) ~ Dirichlet(a,...,a)

f, i~ N(po, o51a)
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Fig: Generative Process

Walkthrough of the process: We generate a vector of kweights from a symmetric k-dimensional
Dirichlet distribution with single parameter o> 0and another vector of £t means from spherical Gaussian.
Now to generate data points (x,, x, ... x») we first generate nlabels (z,..z:)e{1..k}" which will describe these
data points. And then we generate the data points from the spherical Gaussian distribution using one of the
kmeans which corresponds to one of the labels.

This process brings us to the posterior distribution of data points, which is mostly not in a closed
form. Thus, we use Gibb’s sampler to sampling from this distribution.

Algorithm 1 : Gibbs Sampler

Initialize 2y,...,2, € {1,...,k}
while true do

Choose i u.a.r. from {1,...,n}
Update z; according to Pr(z; =7 | z—i, T1,...,Ty)
end while
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[Algorithm 1] gives outline of a collapsed Gibbs sampler which provides the outcomes
20, 20 0 D according to the probability of labeling z given data points x, denoted as Pr(z|x). In
many contexts (including the learning of mixture models) we are interested in the distribution given by
Pr(zlx). In particular if we are able to relate this to the stationary distribution of the Gibbs sampler, we will
have an effective tool for deriving the mixing time. The authors state and prove the following Lemma, which
does this very same thing.

Lemma : Let P denote the collapsed Gibbs sampler, © denote the conditional probability distribution of the
labels given by Pr(z|x) and assume that P(0) > 0 everywhere. Then P is irreducible, aperiodic, and reversible

with respect to n. In particular, n is the stationary distribution of P.

Proof (sketch) : P(6) denotes the distribution from which we draw the data points. And since it is greater than
0 everywhere, we conclude that each index has a non-negative probability of being chosen. Thus, graph
induced by P is strongly connected, implying P is irreducible. Also the graph has self-loops, which makes P
aperiodic. To establish reversibility, for any two states o, t in state space, we can trivially assume them to
differ in exactly one label. This assumption along with the definition of = distribution helps us prove,
P(o,7t) (o) = P(t,0) n(t) . This establishes the stationarity and uniqueness of the distribution.

1. Mixing Rates
Now with the knowledge of the chain (Gibbs sampler) and it’s stationary distribution ( P(z|x) ) we can
study the mixing properties of the chain.

Definition : Mixing rate of the Gibbs sampler is the minimum number of steps t,,;. to lower the total variation

mix

distance between the distribution of z© and posterior distribution Pr(z|x) below i .

However, the authors make use of the following theorem to bound 1
the conductance of the chain.

which relates mixing time to

mix

Theorem (Sinclair 1988) : Let P be an aperiodic, irreducible and reversible Markov chain
I

i

. £ o .
with conductance ® and mixing time t,,;. Then, T,,; > 75 .

Definition : Given a Markov chain P, its stationary distribution n, and a subset S C Q, the conductance of S is

D(S) = ﬁ > 6fn()c) P(x,y) and the conductance of P is ®" which is the minimum conductance of any set S

xeS, ye

with n(S) < %

This does provide the preliminaries for bounding the mixing time, however the identifiability makes it
difficult to analyze the mixing time of P.

Identifiability: If ois a permutation over {1 ---k}, then z and o(z) =(o(z;), *** , o(zs)) hold the
same information for us. We are interested in the clustering of the points, not the specific number assigned
to each cluster. However, P views z and o(z) as separate states.



Thus, mixing results proved over labelling space may not be true for the space we care about. But
how to capture the desired space and what should be the markov chain? The authors answer this question
by stating an equivalence relation and the corresponding markov chains.

Equivalence Classes of Markov Chains: If we have a state space of Q and an equivalence
relation ~ on Q, then consider a sequence over the equivalence classes ([X;], [X,], --*) defined from the
states of markov chain (X, X,, ---). Then due to [Levin, Peres, Wilmer] lemma we can show when this
sequence will be a markov chain.

LemmalLevin et.al. 2008] : Let (X, X, -+ ) be a markov chain with state space Q and transition matrix P and let

~ be an equivalence relation over Q with equivalence classes Q' = {[x] : x € Q}. Assume P satisfies P(x,[y]) =

P, [y]) for all x ~x', where P(x,[y]) = Y. P(x,y). Then ([X,],[X,]." ) is a Markov chain with state space
v~y

Q" and transition function P#([x], D) =P, ).

Lemma : If P reversible with respect to n, then P is reversible with respect to n*([x[) = m(x) =Y n(x).
X'~x

Thus, given an index set (S), a t-partition or t-clustering of S, is a set of t nonempty, disjoint subsets
whose unionis S. Let Sbe {1 --- n} and define Q,(x) to be set of all t-partitions of S and
Q(x) = U_,* Q(x). So we need to establish the Markov chain over this state space. But before that let us
state the Projected Gibbs Sampler which will follow this Markov chain.

Algorithm 1 : Projected Gibbs Sampler

Initialize a clustering C € Q< (x)

while rrue do
Choose 7 v.a.r. from {1,...,n}
Move i to S € C with probability proportional to (v +
IS\ {iH)A(S, 0
Move ¢ to own set with probability proportional to
(k= IC)) - - q({i})!

end while

Lemma : The state space Q(x) is isomorphic to the set of equivalence classes induced by ~ over {1,---k}", Q.
Furthermore, the Pbspecified in Algorithm 2 is the induced Markov chain of P on Q(x), P Finally Plis

reversible with respect to, n°(C) o 1/(k—|C|)! S];[Cﬂrgl%a)q(é’)

This brings us to conclusion that P* and P’ are the same Markov chain.

. Lower Bounds
We can now revisit the main contribution by the author given by the two theorems (Theorem 1 and
Theorem 2) in more details. As stated in the theorems, the mixing time is analyzed for two cases, first when
the number of Gaussians is misspecified and second when it is correctly specified.



Case 1] Misspecified Number of Clusters

The sequence of points observed correspond to 6 spherical clusters, T, T,--- T of n points each
with diameter 6 whose means are located at the vertices of a triangular prism whose edge lengths are
identically r.

Fig: The sequence of points X,, projected to R’ (left) and mis-specified number of clusters = 3 (right)

Let S;denote the indices of the points in cluster 7} and let our state space be Q =Q(X,,) . Then we
can state the following result for the Gibbs sampler P over Q.

Result: Let 0<5<1/32, a>0, 0<c<ocy,and k=3. Then there is a constant n,= Q(max{a, 62, d})
such that for n>n,the mixing rate of the induced Gibbs sampler P with parameters a, o, o, & kover Q is
bounded below as 1,,;, > (1/24)exp() -

Sketch of the proof: Let 4=5;U---US,. Then we bound the conductance of the singleton set V'
whose only element is the partition C={S|,S,,4}. Because of the symmetric nature of Q, we have
n(V)<1/2.

To bound the conductance of ¥, we will bound the probability that we transition out of V. This can
happen in one of three ways: 1. we can move an index in 4 to one of S,or S, 2. we can move an index in
S,or S, to 4 3. we can move an index between S, and S, .

Using the transition probabilities from projected Gibbs Sampler and A(-,’) we can see that the
likelihood of moving a point i from cluster Sin Cto another cluster T in Cis roughly of the form,

S _ Ixru(T)Iz)
o2 o2

Pr(moveitoT) < exp(lxi

Note that sizes of S& T are within a constant fraction of each other. The authors prove using a

prior-posterior conjugacy lemma (Murphy 2012), that in such case we can have the terms in exponential

approaching constants as the number of points grow. And since all the points (i.e. x;’s) are closer to their
own cluster mean than others (by assumption), the above term is actually an exponential in —72/c2.



Case 2] Correctly specified number of clusters

In this case the observed sequence of points corresponds to 3 spherical clusters T, T,, T3 of n
points each with diameter 6» whose means are located at the vertices of an equilateral triangle of edge
length » and centered about the origin.
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Fig: Point sequence X projected to R’ (left) and typical clustering on them

Let S,denote the indices of the points in cluster 7, and let Q= Q_;(X,;) be our state space, we have
the following result about the mixing time of P over Q. )

Result: For 6<%(\/§—%), a>1, 0<c<o, &k=3, there exists n,=Q(max{a, o2, d}) such that,
n>nyimplies that the mixing rate of the induced Gibbs sampler P with parameters o, o, 6, & k over Q is
bounded below as,

{ | 2 s (&), )
T .. > <min —~ 9602 0 o,
mix = 8 677 20D (). %)

Sketch of the proof: Consider partition V' c Q such that S,& S,are clustered together and their
cluster contains no indices from S;. A typical element of ¥ is shown in the figure above (right). Because of
the symmetric nature of Q we know =n(V) < 1/2. Thus we can use conductance of Vto bound the mixing
time.

Here to analyse ®()) we will consider V as the disjoint union of two sets 4= {C} & B=V\4. Then

by definition of conductance we have, ®(V) < ;‘(—({,‘%+T},) > wx)P(x,y).
X€EB, yeV ¢

Thus, it will be sufficient to consider bounding the two right-hand side terms of the conductance
separately. The approach to bound the first term will be to bound the relative probability mass of 4 under =
against the entire set V. And for the second term, we bound the probability of transition from B to V¢, just
like we saw in Case 1.



Experimental Result:
The authors present an interesting experimental result which helps us visualize the dynamics of the
Markov chain at various time instances.
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Fig: Simulated chain over clusters with parameters 4t =10, »=500,d=10,a=1.5,6=0.5,6,=5

The result shows us the ground truth using dotted line at the top for the generated 500 data points.
And the probability (Pr(zjx)of the Gibbs sampler) shows the behavior of the Gibbs sampler with the
parameters learned from the ground truth. So what we are looking at is essentially how the probability
converges to the ground truth.

Bottleneck in conductance: From the graph we find that initially at around 10Kt time step, we
see a sort of equilibrium in the chain probabilities. However this is due to the bottleneck in the chain state
space, which prevents the chain from crossing to the states from the other side of the bottleneck. The
bottleneck in the conductance is clearly visible from the jump at around 7.5Million ¢z time step.

Although the chain crosses the bottleneck, it is still far from reaching the ground truth. Thus this
result also shows us how the Gibbs sampler chain is torpid.



