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I. Abstract and Intro

The purpose of this paper is two fold.  First, it proves that temperature-based sampling algorithms 

(specifically simulated tempering and swapping), which have successfully been used to sample bimodal 

distributions such as the low-temperature mean-field Ising model, can fail to converge rapidly on the more 

general Potts model.  This is due to the nature of the phase change with three states or greater.  Secondly, it 

presents a variant of the swapping algorithm, the Flat-Swap algorithm, and proves that it is rapidly mixing for 

any bimodal mean-field model.

II. Model

The primary model used in the paper is the 3-state

mean-field Potts model, where mean-field denotes that the

underlying graph is complete.  Each vertex in this graph

represents particles on a lattice with a particular spin,

represented by a color, and each edge between vertices represents mutual influence between two particles on 

their respective spin values.  The mapping of a spin assignment for every particle (a color for each vertex) is 

called a configuration, where 3-state denotes that there are three different spins.  The energy of a particular 

configuration determines that configuration's likelihood, and is defined as a function of the similarity of colors of

all edge-connected pairs of vertices in the graph.  This energy is used with a term encoding the inverse of the 

temperature as an exponent to derive the Gibbs/Boltzmann's distribution which relates the state energy with that 

state's probability.

III. Algorithms

The Metropolis-Hastings algorithm is considered useful when sampling from non-uniform 

distributions.  A graph (the Markov kernel) is derived that connects the state space of the underlying model, 

where every vertex is a state in that state space, and every edge is a possible single-step transition between 

adjacent states and is assigned some non-zero probability proportional to the ratio of the probabilities of being in

either state.  

In the case of the mean-field Potts model, the Markov kernel is built such that every vertex represents a 

configuration of the Potts model, while every edge is a single-step transition between two configurations that 

differ at only one location (in other words, in each vertex of an edge-connected pair in the Markov kernel, only a

single vertex of the underlying Potts model configuration differs in color).   

Despite this  algorithm being a common approach, it has been proven for some models that the existence

of a bad cut in the underlying model can cause it to converge exponentially slowly to an appropriate stationary 

distribution.  The Potts model is known to be one where Metropolis-Hastings converges slowly.  This is due to 

the Potts model's preference for monochromatic configurations at low temperature, which conflicts with the 

chain's need to move through very unlikely configurations (where all colors are represented somewhat equally) 

to cover the state space (to transition from a configuration that is predominantly one color, to another 

configuration that is predominantly another color, configurations of no predominant color need to be transitioned

through, and these are exponentially unlikely to arise).  

Furthermore, algorithms that have been shown to work efficiently in overcoming this bottleneck for two-

state models (i.e. the Ising model), such as Simulated Tempering and Swapping, are proven in this paper (for the 

first time) to not be able to reliably mix in polynomial time for three-state models.  This is due to the nature of 

the phase-transition exhibited by all Potts models – for two-state models the phase transition is second order (and

continuous in the derivative of the energy function), but for for three-state models, the phase-transition is first-

order and discontinuous.
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Temperature Algorithms

Temperature-based algorithms, specifically tempering and swapping, are algorithms which modify the 

temperature (used to derive the Gibbs distribution) of the Potts Model in order to transition among different 

distributions in inverse-temperature space.   Whereas the Metropolis-Hastings algorithm will transition through 

the state space  at a fixed temperature, these algorithms will extend such state spaces across a series of 

temperatures.  

They have been shown to work well with the mean field Ising model, and were considered natural 

choices to try with higher order Potts models.

Tempering

The simulated tempering algorithm introduces a set of M+1 inverse temperature values b, and the state 

space of the tempering chain is then defined to be the union of all M+1 original state spaces derived for each 

inverse temperature, where b0 = 0 is infinite temperature and a uniform stationary distribution, and bm represents

the inverse temperature of the distribution we wish to sample.  The algorithm then interpolates these inverse 

temperatures geometrically (linear in the log) to get all the M-1 remaining values of temperature.  It uses each 

temperature to derive each distribution, which provides the stationary distribution for the tempering chain. 

The chain has two types of moves : fixed-temperature level moves (where a single step transition 

between configurations is made at a fixed temperature), and fixed-configuration temperature moves, which 

links two configurations at neighboring temperatures.  The tempering algorithm calculates the ratio of 

distributions at different temperatures in order to derive the probability of transitioning to a new temperature.  

This involves summing the distribution over exponentially many configurations at a fixed temperature, in order 

to find the normalizing factor.  This is a computational cost that is avoided by using the swapping algorithm.

Swapping

The swapping algorithm is a variant of tempering, with the state space being defined instead as the 

product of M+1 versions of the original Markov chain, where each chain corresponds to one of the M+1 inverse 

temperature values.  A configuration in the swapping chain is then defined as the mapping from each of the M+1

temperatures to a particular configuration, so that there would be a Markov chain configuration for each 

temperature.  The stationary distribution is then the product of the stationary distributions across all inverse 

temperatures.  

The swapping chain also has two moves, a level move and a swap move.  The level move connects two 

swapping chain configurations when they differ by all but a one-step Metropolis-driven transition in a single 

component.  The swap move interchanges neighboring configurations in inverse-temperature space.  The 

normalizing constants required to calculate these transition probabilities cancel out, rendering moves of the 

swapping chain simpler to calculate than for the tempering chain.

The number of temperatures needs to be chosen with care.  It must be large enough so that distributions 

that neighbor each other in inverse-temperature space have sufficiently low variation distance that 

temperature/swap moves are accepted reasonably often, while it must be small enough so that it doesn't blow up 

the running time.  The paper advises for M to be on the order of the number of vertices in the underlying model, 

to ensure that the ratio of neighboring inverse-temperature distributions is bounded above and below by a 

constant.

IV. Proof of Slow Mixing

The paper uses the spectral gap to provide lower bounds for the mixing time of the tempering chain on 

the mean-field Potts model.  In turn, it uses the conductance of the model to bound the spectral gap, 

demonstrating that a bad cut in the state space is sufficient to show torpid mixing.  

In order to bound the conductance and prove that the the 3-state Potts model mixes slowly, the cut used 

is a consequence of the phase transition, and separates high-temperature, high-entropy states where each color is 

relatively equally represented, and low-temperature states where a single color will dominate.  Unlike the Ising 

model, where the change from predominantly chaotic states to predominantly ordered ones is gradual, the Potts 

model exhibits an abrupt change in the size of the largest color class as the temperature fluctuates near some 

critical temperature.  Despite interpolating the state space across many temperatures, this discontinuity is shown 

to represent a bad cut in all temperatures and subsequently the mixing of the tempering chain is shown to be 



slow.  

This is shown by partitioning the state space into 3 different sets, where  

a) all 3 colors are represented equally, (chaotic states)

b) one color is present on as many vertices as the sum of the other two,  (transition states)

c) one color is present on twice as many vertices as the sum of the other two.  (ordered states)

It is demonstrated that there is a critical temperature where (a) and (c) have substantial and relatively 

similar probabilistic weight while (b)'s weight is very small in proportion to the weight of (a).  It is then shown 

that (b) is proportionally smaller than (a) or (c) at every temperature, proving that (b) describes a bad cut across 

inverse-temperature space.

Previous work shows that slow mixing of tempering implies slow mixing of the given swapping 

algorithm. 

V. Examining Performance on Bimodal Distributions

The second contribution of the paper is a variant of the swapping algorithm intended to enable rapid 

mixing on bimodal distributions.  This is a modification of the interpolation between inverse-temperature-space 

distributions so that the interpolation does not preserve bad cuts.  Two theorems, Comparison and 

Decomposition, are used to prove fast mixing.

Comparison theorem is useful to bound mixing times of chains when the mixing time of similar chains 

is known.  This method involves providing a canonical path in the original chain for every transition in the 

similar chain.  When applied, it bounds the spectral gap of the unknown chain (and thus its mixing time) by a 

polynomial multiple of the spectral gap of the known chain, where this multiple is derived from the probability 

of the canonical paths.  

Decomposition is used to break down a complicated Markov chain into more easily analyzed pieces by 

first separating the state space into disjoint partitions and then defining Markov chains on each partition whose 

transition matrix has restrictions proscribing intra-partition (within the same partition) transitions and 

projections proscribing inter-partition (partition-to-partition) transitions.

These theorems are applied to the swapping chain on the bimodal

exponential distribution to prove that it is rapidly mixing.  The trace

function is defined to be a measure of the sign of each configuration in the

swapping chain, so it is represented by a binary bit-string of M+1 values.  

Then the restrictions simulate the swapping chain acting on regions of fixed

trace, while the projections represent the transitions between configurations with different traces.  

The restricted chain is then shown to mix rapidly.  The spectral gap of the entire restricted chain with a 

particular trace is bounded by the minimum spectral gap of each temperature component in that chain.  The state 

space of the partition restricted to any of the M+1 temperatures is unimodal (since the trace restricts it to either 

the positive or negative half).  This then shows that the restriction chain for that temperature is rapidly mixing, 

and by extension, the restricted chain for the entire partition is rapidly mixing.

The projection chain is shown to be rapidly mixing by first drawing comparison with a simpler random 

walk on an M+1 hypercube where each move allows for either the transposition of two neighboring bits or the 

flipping of the lowest bit.  These describe a restriction of the behavior of the projection chain which allow it to 

be more easily decomposed.  

By picking an even simpler chain and showing that it mixes rapidly, comparison is used to show that the 

projection chain is rapidly mixing.  At each step in this simpler chain, a single bit of the trace is chosen and 

updated according to the stationary distribution.  This simpler chain's transitions are then translated into a 

canonical path of moves in the original projection chain.  This path consists of iteratively swapping the chosen 

bit to the lowest position, inverting the bit, and then swapping it back to its original position.  This proves both 

that the transition probabilities for any transitions in the canonical path are bounded by the transitions in the 

simpler chain, and that the number of paths using any particular transition is at most polynomial.  The 

comparison theorem shows that the swapping chain acting on the bimodal exponential distribution is rapidly 

mixing.  

Using the previous results, the mean field model is then examined for a way to modify the swapping 

algorithm so that it is rapidly mixing.  Two special cases of bi-modal mean-field spin models are given to set the 
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groundwork for the flat-swap algorithm.  Instead of using the typical temperature interpolations, the flat-swap 

algorithm uses a multiplicative function based on the particular inverse-temperature.  The choice of function acts

to interpolate to the distribution that is uniform with respect to the total spin distribution, which eliminates the 

bad cut that otherwise occurs with a constant interpolating function.  

Using the results from the chain acting on the bimodal

exponential distribution, the Flat-Swap algorithm is shown to be rapidly

mixing for any bimodal mean-field model.  In effect, the spin

distributions are shown to retain the same shape (including the same

maxima and minima) as the desired distribution, but get “flatter” as

temperature is changed, dampening the change in entropy that would otherwise be a discontinuous jump.
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