
University of Chicago Autumn 2003

CS37101-1 Markov Chain Monte Carlo Methods

Lecture 1: September 30, 2003

Relationship between Counting and Sampling

Eric Vigoda

1 Introduction

This course focuses on Markov chain based algorithms for randomly sampling from proba-
bility distributions defined on a large state space. Typically we are interested in generating
a sample in time polynomial of the logarithm of the size of the state space. In other words,
we want to sample from the distribution after exploring only an exponentially small portion
of it.

We’ll begin with two classical examples to illustrate the type of sampling problem we are
interested in. These two examples will arise several times during the course.

The main topic of this lecture is to show the intimate relationship between random sam-
pling and approximate counting. One consequence is that an efficient algorithm for random
sampling yields an efficient randomized approximation algorithm to an associated counting
problem. Our running examples will clarify the type of sampling and counting problems.

1.1 Ising Model

The following is a description of the (ferromagnetic) Ising model (with no external field).
Let G = (V,E) be the d-dimensional integer lattice with side length L. More formally

V = {1, . . . , L}d, E =

{
{(u1, u2, . . . , ud), (v1, v2, . . . , vd)} |

∑
1≤i≤d

|ui − vi| = 1

}
.

Let Ω = {+1,−1}V , i.e., each vertex of G can be in one of the two states, called spins.

The Hamiltonian of a state σ ∈ Ω is

H(σ) =
1

2

∑
{u,v}∈E

(1− σ(u)σ(v)) .

1

Lecture 1: September 30, 2003 2

The Hamiltonian measures the energy of the state σ. Let β = 1/kT where T ≥ 0 is
the temperature and k is the Boltzmann constant. The model is described by the Gibbs
(or Boltzmann-Gibbs) probability distribution µ on Ω where a state σ ∈ Ω occurs with
probability,

µ(σ) =
exp(−βH(σ))

Z
,

where

Z =
∑
σ∈Ω

exp(−βH(σ))

is the appropriate normalizing factor, known as the partition function. Observe that the
states with lower energy are more probable. Thus, neighboring spins prefer to align their
spins.

Simulating the system requires sampling from the Gibbs distribution. During the course we
will look at various results on simulating the Ising model. We will see in this lecture that
sampling from the Gibbs distribution is closely related to computing the partition function.

1.2 Permanent

Definition 1. For a n× n matrix A, define its permanent as

per(A) =
∑
σ∈Sn

∏
i

ai,σ(i),

where Sn denotes the set of permutations of {0, 1, . . . , n− 1}.

Notice that this quantity is simply the determinant without the alternating sign.

If A is a 0/1 matrix, then the permanent equals the number of perfect matchings in the
bipartite graph G with incidence matrix A. To be precise, the bipartite graph has 2n
vertices where each vertex is associated with a specific row or column of A. The vertex for
row i and the vertex for column j have an edge iff ai,j = 1. A permutation corresponds to
a pairing of row and column vertices. If all of the edges in this pairing exist, and therefore
defines a perfect matching, then the permutation contributes 1 to per(A), and contributes 0
if any edge in the pairing does not exist in G.

We will look at results on estimating the permanent. These results will rely on an efficient
method for generating a perfect matching uniformly at random.

Lecture 1: September 30, 2003 3

2 Chernoff bounds

Throughout the course we will make use of Chernoff inequalities. There are many references
which give a nice introduction to these topics, e.g., see [2, 4, 1].

Theorem 2 (Chernoff). Let X1, . . . , Xm be independent, identically distributed {0, 1}-random
variables where p = E (Xi). For all ε ≤ 3/2,

Pr
(∣∣∣∑Xi − pn

∣∣∣ > εpn
)
≤ 2 exp(−ε2pn/3).

This is a simplified version of slightly stronger bounds, with more complicated expressions
on the right-hand side.

3 Approximation Algorithms

3.1 Definitions

We can view a general counting problem (e.g., computing the permanent or computing the
partition function of the Ising model) as computing a function f : Σ∗ → N, where Σ is a
finite alphabet used to encode problem instances (e.g., the input matrix we’d like to compute
the permanent of).

Our goal is a fully polynomial randomized approximation scheme, known as an FPRAS.
Given an input x ∈ Σ∗, error parameter ε > 0 and confidence parameter 0 < δ < 1, our goal
is to compute OUT such that

Pr ((1− ε)f(x) ≤ OUT ≤ (1 + ε)f(x)) ≥ 1− δ,

in time polynomial in |x|, ε−1 and log(1/δ).

It suffices to achieve the above with δ = 1/4. The following algorithm then boosts the error
probability to arbitrary δ. Run k = 16 log(2/δ) trials with error probability 1/4, obtaining
outputs y1, . . . , yk. Let m be the median of these k values. The value m achieves the desired
error probability. To see this, let

Xi =

{
1 if yi ∈ (1± ε)f(x)
0 otherwise

Lecture 1: September 30, 2003 4

Note, E (
∑
Xi) ≥ 3

4
k. Then,

Pr (m 6∈ (1± ε)f(x)) ≤ Pr
(∑

Xi < k/2
)

≤ Pr
(
|
∑

Xi − E(
∑

Xi)| > k/4
)

≤ 2e−k
2/16k

≤ δ,

where the penultimate inequality follows by Chernoff’s inequality.

For sampling problems, we aim for a fully polynomial almost uniform sampler (FPAUS).
Given an instance x ∈ Σ∗, a sampling problem is looking to output from a distribution
(perhaps the uniform distribution or the Gibbs distribution) over the set of solutions to x.
Let π denote the desired distribution. We will settle for an approximation to π.

For distributions µ, π on Ω, the total variation distance between µ and π (which is one-half
the L1 distance), is given by

dTV (µ, π) =
1

2

∑
x∈Ω

|µ(x)− π(x)| = max
A⊆Ω

µ(A)− π(A).

Our goal is an algorithm which generates solutions from some distribution µ such that

dTV (µ, π) ≤ δ,

in time polynomial in the input size |x| and log(1/δ).

3.2 Equivalences

The notions of counting and sampling are closely related. The following table summarizes
the implications. An arrow indicates that if you can do the tail, then you can do the head.

Exact Counter =⇒ Exact Sampling
⇓ ⇓

Approximate Counter (FPRAS) ⇐⇒ Approximate Sampling (FPAUS)

These implications are for self-reducible problems (see [3]). We won’t define self-reducibility,
instead we will present a specific example which clearly demonstrates the notion. Our
running example will be matchings (not necessarily perfect) of a graph. Let G = (V,E)
be a graph, and let M(G) be the set of matchings of G.

We’ll prove some of the implications: exact counting implies an exact sampler, and an exact
sampler implies an approximate counter.

Lecture 1: September 30, 2003 5

Lemma 3. Given an algorithm which exactly computes the number of matchings of an arbi-
trary graph G = (V,E) in time polynomial in |V |, we can then construct an algorithm which
outputs a (uniformly) random matching of an arbitrary graph G = (V,E) in time polynomial
in |V |.

Proof. Choose an arbitrary e = (u, v) ∈ E. Let G1 = (V,E \ e), and let G2 denote the
induced subgraph on V \ {u, v}. For a matching M of G, either e /∈ M and M is also a
matching of G1, or e ∈M and M \ e is a matching of G2. Since the reverse implication also
holds, we have

|M(G)| = |M(G1)|+ |M(G2)|.

Let R denote a random matching from M(G). Thus,

Pr (e ∈ R) =
|M(G2)|

|M(G1)|+ |M(G2)|
.

Therefore, we can recursively construct R by considering one edge at a time.

We now look at the reverse direction, given an exact sampling algorithm only results in an
approximate counter.

Lemma 4. Given an algorithm which for an arbitrary graph G = (V,E) generates a random
matching in time polynomial in |V |, then we can construct an FPRAS for estimating |M(G)|.

Proof. Arbitrarily order the edges as E = {e1, e2, . . . , em}. Let G0 = G denote the input
graph, and let Gi = (V,Ei−1 \ ei), i = 1, . . . ,m. We can write the number of matchings of G
as a telescoping product:

|M(G)| = |M(G0)|
|M(G1)|

|M(G1)|
|M(G2)|

. . .
|M(Gm−1)|
|M(Gm)|

|M(Gm)|.

Note, the final term is trivial since Gm is the empty graph. Each term in the telescoping
product can be accurately estimated using the exact sampler. Let

pi =
|M(Gi+1)|
|M(Gi)|

.

Then,

|M(G)| =
∏
i

1

pi
.

Since M(Gi+1) ⊆ M(Gi) we have pi ≤ 1. This also gives a simple way to estimate pi, just
generate random matchings from Gi and count the fraction which are also matchings of Gi+1.
The number of samples needed to accurately estimate pi depends on the range of pi.

Lecture 1: September 30, 2003 6

Observe,

|M(Gi) \M(Gi+1)| ≤ |M(Gi+1)|,
and

M(Gi) ∩M(Gi+1) ⊆M(Gi+1).

These two observations imply pi ≥ 1/2. Thus, we will need very few samples to closely
estimate pi.

Draw s random samples from M(Gi). Let qi denote the number of samples in M(Gi+1).

By Chernoff’s inequality,

Pr (|pi − qi| > ε/m) < δ/m,

for

s = O

(
log(2m/δ)

(ε/3m)2

)
.

Letting

OUT =
∏
i

1

qi
,

we have

Pr (OUT /∈ (1± ε)|M(G)|) < δ.

The implication from an approximate sampling algorithm to an approximate counting al-
gorithm is the same approach as above with the various error probabilities incorporated
in.

References

[1] N. Alon and J. H. Spencer. The probabilistic method. Wiley-Interscience Series in Discrete
Mathematics and Optimization. Wiley-Interscience [John Wiley & Sons], New York,
second edition, 2000. With an appendix on the life and work of Paul Erdős.

[2] S. Janson, T. Luczak, and A. Rucinski. Random graphs. Wiley-Interscience Series in
Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000.

[3] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoret. Comput. Sci., 43(2-3):169–188, 1986.

[4] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University Press,
Cambridge, 1995.

