CS 1050 Homework 4 and 5 Solutions

1.a Proof: Let z,y be two integers such that 2* = 3Y. Let us consider the
following cases which together handle all possible pairs (z,y) with z # 0.

Case a. = > 0,y > 0. We have 2 = 0(mod 2). Since z > 0, we have
2% = 0%(mod 2), that is, 2* = 0(mod 2). In other words 2% is an even natural
number. Now, 3 = 1(mod 2), and since y > 0, we have 3 = 1¥(mod 2), that
is, 3V = 1(mod 2). In other words, 3Y is an odd number. Therefore 2% # 3.

Case b. £ > 0,y < 0. In this case, 2” > 1 and 3Y < 1, and, again, we cannot
have equality.

Case c. £ <0,y > 0. Similarly, 2* <1 and 3¥ > 1.

Case d. =z < 0,y < 0. If 2* = 3Y, it follows that 2% = 37Y, where —x >
0,—y > 0. But, by case a, this is not possible.

Since in all of these cases, we cannot have 27 = 3Y, and since these cases cover
all possibilities with x # 0,y # 0, it follows that if 2* = 3Y, then x =y = 0.

b. Proof: Choose two ordered pairs (a, b), (¢’,b') € NxN such that f(a,b) =
f(d',b'). We want to show that (a,b) = (a,0'), that is, a = a’ and b = ¥'. The
relation f(a,b) = f(a’,b') implies 2°3® = 2%3" and this can be rewritten as
2¢=0" = 35 From part a), this implies that a —a’ = 0 and b — ¥’ = 0, or
a=a and b=1"V.

2.a Proof. Let any three even numbers be 2z, 2y and 2z, where z,y, 2z € Z.
Their sum is 2z + 2y + 2z = 2(x + y + z) = 2w where w = x + y + 2, and
since x,¥y,z € Z, w € Z. So, 2w is an even integer. Hence the sum of any
three even integers is an even integer.

b. Counterexample. Consider 1, 3, and 5, which are three odd integers.
Their sum is 9 which is an odd integer. Hence, the statement is false.

c. Counterexample. Consider 2 and 3 which are two primes. Their sum
is 5 which is prime. Hence, the statement is false.

d. Counterexample. Consider 1, 2, 3 and 4, which are four consecutive
integers. Their sum is 10 which is not divisible by 4. Hence, the statement
is false.

e. Proof. Take any 5 consecutive integers. They are of the form n,n +



1,n+2,n+ 3 and n + 4. Their sum is 5n + 10 = 5(n + 2), which is divisible
by 5. Hence, the statement is true.

3aVreZyeZly* =5+

b. Counterexample Let x = 0. Then for the statement to be true there
must exist a y € Z such that y?> = 5. That is, y € Z is the square root of
5. But 5 does not have an integer square root. So, no such y can exist for
x = 0. So, the statement is false.

c. x€ZVyeZ[y*#5+2?.

4dadre€ZVy€eZIz€Z[(2*>4) = (y+ 2 = 1))

b. Proof: Consider z = 3. Clearly 22 > 4. Also, for every integer y, let
z=x—y=3—y. S0o,y+2=3==x. So, for x = 3, for every integer y there
is an integer z = x — vy, such that y + 2z = x. So the statement is true.

c. Ve €Z Iy LNz €Z[(2*>4) and (y + 2 # z)]

5.a Proof. Consider a, b, ,c € Zand m € Z*. a = b (mod m) < a—b = km
for some k € Z. Multiplying the equation of both sides by ¢, we get,
ac — bc = kme, which implies that ac — bc = hm for some h € 7Z. This
implies that a = b (mod m).

b. Counterexample Let a = 3,b =4,c =2 and m = 2. ac =12, bc = 8.
Clearly ac = bc (mod m). However, a #Z b (mod m).

6.a We have that 3> = 9 (mod 10). Squaring both sides, we get 3* =
81 (mod 10). That is, 3* = 1 (mod 10). Raising both sides to the power
of 20, we have 3% = 1 (mod 10). Muliplying by 3* on both sides (see 5.a
on why we can do that), we get 3% = 27 (mod 10). Simplifying, we get
3% = 7 (mod 10). That is, the remainder when 3% is divided by 10 is 7,
which is exaclty the units digit of 3%3.

b. We have 32 = 2 (mod 7). Cubing both sides, we get 3 = 8 (mod 7).
That is, 3° = 1 (mod 7). Raising both sides to the power of 13, we get
3® =1 (mod 7). Multiplying both sides by 3°, we get 3% = 243 (mod 7).
Simplifying, we get 3% = 5 (mod 7), which shows that 5 is the remainder
when 3% is divided by 7.



7. Proof. We have that 9 = 1 (mod 4). That means that 9" = 1 (mod 4)
for any integer n > 0. That is, for every n > 0, 9" = 4k + 1 for some k € Z,
which means for every n > 0, 9" + 3 = 4k + 4 = 4(k + 1), for some k € Z.
This shows that 9" + 3 is divisible for all positive integers n.

8.a The truth table is given below.
From this table we can see that the truth values for p — ¢ and ((—p) V q)

lplalp—=4q] (=p)Va ]
0]0] 1

1
011 1 1
110 0 0
111 1 1

agree for all values of p and ¢. So, we have p — ¢ < ((—p) V q).
b. The truth table is given below.

plalr]a—=r]p=qlp=r]lp=(=7]]llp=9—=@—=r)]]
0lol0] 1 1 1 1 1
0l0|1]| 1 1 1 1 1
0[1]0] o0 1 1 1 1
0l1[1] 1 1 1 1 1
(00| 1 0 0 1 1
1(0]1] 1 0 1 1 1
1[1]0] 0 1 0 0 0
1(11] 1 1 1 1 1

In the truth table the values of [p — (¢ — r)] and [(p — ¢) — (p — r)| agree
for all values of p and ¢ so we have that [p — (¢ = )] & [(p — ¢) = (p — 7)]



c. The truth table is given below.

plalripeqdlaer|lpeger]belgen)]]
0lojo] 1 1 1 1
0lo0|1] 1 0 0 0
ol1l0] 0 0 1 1
0l1[1] o 1 0 0
1(0/0] o0 1 1 1
1(0[1] o0 0 0 0
1[1]0] 1 0 0 0
(11 1 1 1 1

In the truth table the values of [(p <> ¢) <> r] and [p <> (¢ <> r)] agree for
all values of p and ¢q. So we have [(p <> q) <> 7] < [p < (¢ & 1)l

9.a The truth table is given below.

lplalr|p—=qla—=r]lp—=9—=r][lpP—=(g—=7)]]
ojolo| 1 1 0 1
ojo[1| 1 1 1 1
o[1lo0| 1 0 0 1
o[1[1] 1 1 1 1
1/0]0] o0 1 1 1
T(of[1] 0 1 1 1
1/1/o| 1 0 0 0
1(1]1] 1 1 1 1

In the truth table the values of [(p — ¢) — r| and [p — (¢ — r)] disagree in
the first and third rows, so the statement [(p — ¢) = 7] & [p — (¢ — r)] is
false.

b. Let p be the statement "z is an even positve integer", let ¢ be the
statement "z is an integer" and let r be the statement that "z is greater
than 1". Consider the statements [(p — ¢q) — r] and [p = (¢ — r)] for

4



x = 1. pis false, ¢ is true and 7 is false. So, p — ¢ is true and ¢ — r is true.
We get that [(p — ¢q) — 7] is false and [p — (¢ — 7)] is true. So, for the
value of x = 1, the two statements are inconsistent.

10.a Four more examples of twin primes are (11, 13), (17, 19), (41, 43) and
(59, 61).

b. Unfortunately, this statement cannot be proved. 3, 5 and 7 are a set of
three consecutive odd primes. However, this is the only set of triple primes.
It can be shown by contradiction as follows. Suppose that m, m 4+ 2 and
m + 3 are three consecutive odd prime odd numbers and m # 3. Since m is
prime then it cannot be divided by 3. So, either m = 37 + 1 for some i € Z*
or 3j + 2 for some j € Z". In the first case, m + 2 = 3¢ + 3 which makes
m+ 2 divisible by 3, which is a contradiction to the assumption that m +2 is
prime, and in the second case m+1 = 3j + 3 which makes m + 1 divisible by
3, which is a contradiction to the assumption that m + 1 is a prime. Hence,
apart from 3, 5, 7 there are no other triple primes.

1l.ladce RANeRVYREZT [n >N — f(n) <c-g(n)].
b. Vce RYNeRIneZ" [n>N 4 f(n) <c-g(n)]. In english, it can

be stated as: Forall real numbers ¢ and N, there exists a positive integer n
such that n > N does not imply f(n) < c-g(n).



