CS 1050 Homework 9 Solutions

1. Consider c = 3, then we have,

$$c \cdot g(n) = 3 \cdot 2^n > 2^{n+1}$$
 for all $n \ge 1$.

$$\Leftrightarrow f(n) < c \cdot g(n) \text{ for all } n \ge 1.$$

$$\Leftrightarrow f(n) = O(g(n))$$

2.a We have,

$$\frac{f(n)}{g(n)} = \frac{(n+1)^2}{n^2}$$

$$=\frac{n^2+2n+1}{n^2}=1+\frac{2}{n}+\frac{1}{n^2}$$

$$\Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} 1 + \frac{2}{n} + \frac{1}{n^2}$$

$$\Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{2}{n} + \lim_{n \to \infty} \frac{1}{n^2}$$

Now, since $\lim_{n\to\infty}\frac{2}{n}=0$ and $\lim_{n\to\infty}\frac{1}{n^2}=0$, we get

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$$

$$\Leftrightarrow f(n) = O(g(n))$$

b. Consider c = 4, and we have,

$$c \cdot g(n) = 4n^2 = n^2 + 3n^2$$

Since we know that $1 \le n \le n^2$ for all $n \ge 1$, we have,

$$c \cdot g(n) \ge n^2 + 2n + 1 = (n+1)^2$$
 for all $n \ge 1$

$$\Leftrightarrow f(n) \le c \cdot g(n) \text{ for all } n \ge 1$$

$$\Leftrightarrow f(n) = O(g(n)).$$

3. We will prove this without using the limit. Clearly,

$$n \ge (200)^2 + 50$$
 for all $n \ge (200)^2 + 50$.

$$\Leftrightarrow n^3 \ge (200n)^2 + 50n^2 \text{ for all } n \ge (200)^2 + 50.$$

 $\Leftrightarrow n^3 \ge (200n)^2 + 50 \text{ for all } n \ge (200)^2 + 50 \text{ (using } 50n^2 \ge 50).$
 $\Leftrightarrow g(n) \ge f(n) \text{ for all } n \ge (200)^2 + 50.$
 $\Leftrightarrow f(n) = O(g(n)).$

4. We have,

$$g(n) - 3f(n) = n^2 + 5n - 6 = (n - 1)(n + 6) \ge 0 \text{ for all } n \ge 1$$

$$\Leftrightarrow g(n) \ge 3f(n) \text{ for all } n \ge 1$$

$$\Leftrightarrow f(n) \le \frac{1}{3}g(n) \text{ for all } n \ge 1$$

$$\Leftrightarrow f(n) = O(g(n))$$

5. Proof: Consider $N = 2A^2$. Now for any $n \ge N = 2A^2$,

$$n! = A^2!(A^2 + 1) \dots 2A^2 \dots n$$

Now $A^2! \ge 1$ (since A is a positive integer) and each term on the RHS after $A^2!$ is greater than A^2 (there $n - A^2$ such terms). Therefore,

$$n! > (A^2)^{n-A^2} = A^{2(n-A^2)}$$

Now since $n \geq 2A^2$, we have that $n - \frac{n}{2} \geq A^2$ and so $n - A^2 \geq \frac{n}{2}$. Therefore,

$$n! > A^{2(\frac{n}{2})}$$

$$\Leftrightarrow n! > A^n$$

So, $N = 2A^2$ suffices.

6a. We need to prove that f is not O(g). We prove it by contradiction. Suppose that f = O(g). That means that there exists constants c and n_0 such that,

$$c \cdot g(n) \ge f(n)$$
 for all $n \ge n_0$

Now pick n_1 to be any even number greater than n_0 and c, i.e. $n_1 > \max\{n_0, c\}$ and n_1 is even. Clearly such an even number can be picked since c and n_0 are constants. We have,

$$f(n_1) = n_1^2 > c \ n_1 = c \cdot q(n_1)$$

which is a contradiction to the fact that $c \cdot g(n) \geq f(n)$ for all $n \geq n_0$ (since

 $n_1 > n_0$ and $n_1 > c$) Therefore f(n) cannot be O(g(n)).