Mid Term 1 Solutions

- 1. We need to show that the sum of any three consecutive odd numbers is divisible by 3. Let the smallest odd number in a series of three consecutive odd numbers be 2n + 1. The next two odd numbers are 2n + 1 + 2 = 2n + 3 and 2n + 1 + 2 + 2 = 2n + 5. Their sum is (2n + 1) + (2n + 3) + (2n + 5) = 6n + 9 = 3(2n + 3), which is divisible by 3. Hence, proved.
- **2.** $f: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$, f(x, y, z) = (x + y + z, x). To prove that f is onto, we select an arbitrary $(u, v) \in \mathbb{R} \times \mathbb{R}$. We need to show that there exists at least one $(x, y, z) \in \mathbb{R}$, such that f(x, y, z) = (u, v). For this, let x = v, y = 0, z = u v. Since $u, v \in \mathbb{R}$, $x, y, z \in \mathbb{R}$. We get f(x, y, z) = (v + 0 + u v, v) = (u, v), which is what we needed. Hence, proved.
- **3.** We are given that $A \subseteq B \cap C^c$. Therefore, $A \subseteq B \cap C^c \Rightarrow \forall x \in A, x \in B \cap C^c \Rightarrow \forall x \in A, x \in B \text{ and } x \in C^c \Rightarrow \forall x \in A, x \in C^c \text{ (Statement 1). Consider any } y \in C$. Suppose $y \in A$. Then $y \in A$ and $y \in C \Leftrightarrow y \in A$ and $y \notin C^c$, which is a contradiction to the above Statement 1. Therefore $y \notin A$, that is, $y \in A^c$. This means that $\forall y \in C, y \in A^c$, which means that $C \subseteq A^c$.
- **4.** To prove that $\forall x \in \mathbb{Z}^+ \exists y \in \mathbb{R}, \quad y < x < 2y$. Let $x \in \mathbb{Z}^+$. We will set $y = x \frac{1}{3}$. Now, clearly $y \in \mathbb{R}$. Also since $x \frac{1}{3} < x$, we have y < x. Also, since $x \in \mathbb{Z}^+$, we have that $x \ge 1$. This implies that $2x \ge x + 1$ (adding x on both sides). So, $2x \frac{2}{3} \ge x + 1 \frac{2}{3}$. So, $2(x \frac{1}{3}) \ge x + \frac{1}{3} > x$. Therefore, 2y > x. So, y < x < 2y. Hence, proved.
- **5.a** We have to write out the negation of $\forall x \in \mathbb{Z} \ \exists y \in \mathbb{R}, \ y < x < 2y$. Now $\neg(\forall x \in \mathbb{Z} \ \exists y \in \mathbb{R}, \ y < x < 2y) = \exists x \in \mathbb{Z}, \neg(\exists y \in \mathbb{R}, \ y < x < 2y)$. Also, $\exists x \in \mathbb{Z} \neg(\exists y \in \mathbb{R}, \ y < x < 2y) = \exists x \in \mathbb{R} \ \forall y \in \mathbb{R}, \neg(y < x < 2y) = \exists x \in \mathbb{Z} \ \forall y \in \mathbb{R}, either \ x \leq y \ or \ x \geq 2y$, which is the negation of the original statement.
- **5.b** We need to prove $\exists x \in \mathbb{Z}, \forall y \in \mathbb{R}, x \leq y \text{ or } x \geq 2y$ to be true in order to prove the conjecture to be false. For this we select x = 0. For any $y \in \mathbb{R}$, either $y \geq 0$, which means $y \geq x$, or y < 0 which implies that 2y < 0 that is, $2y \leq x$. Therefore, with x = 0, for all $y \in \mathbb{R}$, either $x \leq y$ or $x \geq 2y$. Therefore $\exists x \in \mathbb{Z}, \forall y \in \mathbb{R}, x \leq y \text{ or } x \geq 2y$. Hence, proved.