## CS 1050 Midterm 2 Solutions

**1a.** Definition:  $a \equiv b \pmod{m} \Leftrightarrow \exists k \in \mathbb{Z} [a - b = mk]$ . In other words, the difference of a and b is a multiple of m.

Negation:  $a \not\equiv b \pmod{m} \Leftrightarrow \exists k, r \in \mathbb{Z}[(0 < r < m) \land (a - b = km + r)]$ . In other words, the difference of a and b is not a multiple of m.

**b.** Definition:  $f: \mathbb{R} \to \mathbb{Z}$  is onto  $\Leftrightarrow \forall y \in \mathbb{Z} \exists x \in \mathbb{R} \ s.t. \ f(x) = y$ . In other words every element in  $\mathbb{Z}$  has a preimage in  $\mathbb{R}$ .

Negation:  $f: \mathbb{R} \to \mathbb{Z}$  is not onto  $\Leftrightarrow \exists y \in \mathbb{Z} \forall x \in \mathbb{R} \ s.t. \ f(x) \neq y$ . In other words there is an element in  $\mathbb{Z}$  which has no preimage in  $\mathbb{R}$ .

**c.** Definition:  $A \subset B \cup C \Leftrightarrow (|B \cup C| > |A|) \land (\forall x \in A \ [(x \in B) \lor (x \in C)])$ . In other words, every element in A is either in B or in C and  $B \cup C$  has strictly more elements than A.

Negation:  $A \not\subset B \cup C \Leftrightarrow (|B \cup C| \leq |A|) \vee (\exists x \in A \ [(x \notin B) \land (x \notin C)]$ . In other words, either  $B \cup C$  has at most as many elements as A or there is an element in A that is neither in B nor in C.

**2a.**  $s_1 = x_1 = 1$ ,  $s_2 = x_1 + x_2 = 1 + 3 = 4$ ,  $s_3 = x_1 + x_2 + x_3 = 1 + 3 + 5 = 9$ .

**b.** Guess  $s_n = n^2$ .

**c.** To prove that  $s_n = n^2$  for all  $n \ge 1$ . We give a proof by induction on n.

Base Case:  $s_1 = x_1 = 1 = 1^2$ . So the statement is true for n = 1.

Induction Hypothesis: Assume the statement to be true for some  $k \geq 1$ . That is,  $s_k = k^2$ .

Induction Step: We have  $s_{k+1} = \sum_{i=1}^{i=k+1} x_i = s_k + x_{k+1}$ . So,  $s_{k+1} = k^2 + 2(k+1) - 1$ . (from I.H. and since  $x_{k+1} = 2(k+1) - 1$ .). Therefore,  $s_{k+1} = k^2 + 2k + 1 = (k+1)^2$ . Hence we are through by induction and  $s_n = n^2$  for all  $n \ge 1$ .

**3a.** f is not onto. Proof by contradiction: suppose f is onto. Then consider  $(1,0) \in \mathbb{Z} \times \mathbb{Z}$ . Since f is onto there exists  $(x,y) \in \mathbb{Z} \times \mathbb{Z}$  such that,

$$f(x,y) = (1,0)$$
  

$$\Leftrightarrow x + y = 1 \text{ and } x - y = 0$$

$$\Leftrightarrow x = y \text{ and } x + y = 1$$
  
 $\Leftrightarrow x = y = \frac{1}{2}$ 

which is impossible since  $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ . Therefore (1, 0) has no preimage in  $\mathbb{Z} \times \mathbb{Z}$ , which is a contradiction. So, f is not onto.

**b.** f is one-one. Proof by contradiction: suppose f is not one-one. So, there exist some  $(x_1, y_1), (x_2, y_2) \in \mathbb{Z} \times \mathbb{Z}, (x_1, y_1) \neq (x_2, y_2)$  such that,

$$f(x_1, y_1) = f(x_2, y_2)$$

$$\Leftrightarrow x_1 + y_1 = x_2 + y_2 \text{ and } x_1 - y_1 = x_2 - y_2$$

$$\Rightarrow 2x_1 = 2x_2 \text{ and } 2y_1 = 2y_2 \text{ (adding and subtracting the equations)}$$

$$\Rightarrow x_1 = x_2 \text{ and } y_1 = y_2 \Rightarrow (x_1, y_1) = (x_2, y_2),$$

which is a contradiction to the fact that  $(x_1, y_1)$  and  $(x_2, y_2)$  are distinct. Therefore, f is one-one.

**4.** We need to prove  $a_n = 3^n + (-1)^n$  for all  $n \ge 0$ . We will prove it by strong induction on n.

Base Case: There are two base cases here.  $a_0 = 2 = 3^0 + (-1)^0$  and  $a_1 = 2 = 3^1 + (-1)^1$ , therefore the statement is true for n = 0 and n = 1.

Induction Hypothesis: Assume that the statement is true for all m,  $0 \le m \le k$ , for some  $k \ge 1$ . That is,  $a_m = 3^m + (-1)^m$ .

Induction Step: We are given,  $a_{k+1} = 2a_k + 3a_{k-1}$  from the recurrence relation.

 $\Rightarrow a_{k+1} = 2(3^k + (-1)^k) + 3(3^{k-1} + (-1)^{k-1})$  from our induction hypothesis.

$$\Rightarrow a_{k+1} = 2 \cdot 3^k + 3^k + 2 \cdot (-1)^k + 3 \cdot (-1)^{k-1}$$

$$\Rightarrow a_{k+1} = 3 \cdot 3^k - 2 \cdot (-1)^{k+1} + 3 \cdot (-1)^{k+1} \quad \text{since } (-1)^{k-1} = (-1)^{k+1}$$

$$\Rightarrow a_{k+1} = 3^{k+1} + (-1)^{k+1}$$

which is what we want. So we are through, by induction. Therefore,  $a_n = 3^n + (-1)^n$  for all  $n \ge 0$ .

**5.** We need to prove that for every  $a \in \mathbb{Z}^+$ ,  $a^3 - a$  is a multiple of 3.

Proof: We see that  $a^3 - a = a(a^2 - 1) = (a - 1)a(a + 1)$ . Now, we see that

a-1, a, a+1 are three consecutive non-negative integers (since  $a \ge 1$ ). One of them must be a multiple of 3, which makes (a-1)a(a+1) a multiple of 3 as well. We can see that using case analysis as follows,

Case 1: n = 3k,  $k \ge 1$ . We have (a-1)a(a+1) = (3k-1)3k(3k+1) which is a multiple of 3.

Case 2: n = 3k + 1,  $k \ge 0$ . We have (a - 1)a(a + 1) = 3k(3k + 1)(3k - 1) which is a multiple of 3.

Case 3: n = 3k+2,  $k \ge 0$ . We have (a-1)a(a+1) = (3k+1)(3k+2)(3k+3) = 3(3k+1)(3k+2)(k+1) which is a multiple of 3.

We see that in each case  $a^3 - a$  is a multiple of 3. So,  $a^3 - a$  is a multiple of 3 for all  $a \in \mathbb{Z}^+$ .