We continue by proving the Stronger Form of the FKG Inequality.

The FKG Inequality (cont.)

Recall the FKG inequality, and the stronger version.

Theorem 1 (FKG) If A and B are increasing events, then

$$P_n(A \cap B) \ge P_n(A)P_n(B)$$
.

Theorem 2 (FKG, Stronger Version) Let μ be a probability measure on Ω that satisfies the FKG condition, and let f and g be increasing functions on Ω . Then

$$\sum_{a \in \Omega} f(a)g(a)\mu(a) \ge \sum_{a \in \Omega} f(a)\mu(a) \sum_{b \in \Omega} g(b)\mu(b).$$

We've already seen how theorem 2 implies theorem 1 by taking $f = 1_A$ and $g = 1_B$, the indicator functions of the sets A and B, and observing that P_p satisfies the FKG condition. Therefore we will focus on proving theorem 2. To do this, we prove a preliminary result about a certain product measure. In this lemma, we consider $\Omega = \mathcal{P}(X)$ (the power set of X), partially ordered by inclusion.

Lemma 1 Let μ_1 and μ_2 be probability measures satisfying

$$\mu_1(a \cup b)\mu_2(a \cap b) \ge \mu_1(a)\mu_2(b)$$
 (1)

for all $a, b \in \Omega$.

Then there exists a measure ν on $\Omega \times \Omega$ such that

- 1. $\sum_{a \in \Omega} \nu(a, b) = \mu_2(b)$ for all $b \in \Omega$,
- 2. $\sum_{b \in \Omega} \nu(a, b) = \mu_1(a)$ for all $a \in \Omega$,
- 3. $\nu(a,b) = 0$ unless $a \geq b$.

Markov Chain

Let n = |X|.

We define a Markov chain $\mathcal{MC}(\mu)$ on Ω governed by the following transitions (where $a, b \in \Omega$)

$$T_{\mu}(a,b) = \left\{ egin{array}{ll} rac{1}{2n} \min(1,rac{\mu(b)}{\mu(a)}) & ext{if } |b\odot a| = 1 \ 0 & ext{if } |b\odot a| > 1 \ 1 - \sum_{b
eq a} T_{\mu}(a,b) & ext{if } b = a \end{array}
ight.$$

where $a \odot b$ is the bitwise symmetric difference of the vectors a and b. (Such a Markov chain is commonly referred to as the Metropolis chain.) We implement this Markov chain by starting at $a \in \Omega$ and we repeat

$$\left[\begin{array}{l} \text{Pick } x \in_u X, \text{ and } r \in_u [0,1]. \\ \text{If } r \leq \frac{1}{2n} \min(1,\frac{\mu(b)}{\mu(a)}) \text{ and } x \in a, \text{ remove } x. \\ \text{If } r > 1 - \frac{1}{2n} \min(1,\frac{\mu(b)}{\mu(a)}) \text{ add } x \text{ to } a. \\ \text{Otherwise, do nothing.} \end{array} \right.$$

Note that $\mathcal{MC}(\mu)$ is ergodic and reversible, so the unique stationary distribution, π , satisfies detailed balance.

Coupled Markov Chain

Define a coupled chain, \hat{T}_{μ_1,μ_2} on $\Omega \times \Omega$ in the following manner: Starting at the initial state $(a_1,a_2) = (X,\phi)$, repeat

$$\left[\begin{array}{l} \text{Pick } x \in_{u} X, \text{ and } r \in_{u} [0,1]. \\ \text{Update } a_{1} \text{ according to } T_{\mu_{1}}. \\ \text{Update } a_{2} \text{ according to } T_{\mu_{2}}. \end{array} \right.$$

Because of this coupling we have transitions defined by $(a_1, a_2) \stackrel{\hat{T}_{\mu_1, \mu_2}}{\longrightarrow} (b_1, b_2)$ with probability

```
\begin{cases} \min(T_{\mu_1}, T_{\mu_2}) & \text{if} \quad \exists x \in X \ni b_1 = a_1 \cup \{x\}, \ b_2 = a_2 \cup \{x\}, \ \text{or} \\ \text{if} \quad \exists x \in X \ni b_1 = a_1 \backslash \{x\}, \ b_2 = a_2 \backslash \{x\} \\ T_{\mu_2} - T_{\mu_1} & \text{if} \quad a_1 = b_1, \ |b_2 \odot a_2| = 1 \\ T_{\mu_1} - T_{\mu_2} & \text{if} \quad |a_1 \odot b_1| = 1, \ b_2 = a_2 \\ 0 & \text{if} \quad |a_1 \odot b_1| > 1 \text{ or} \ |a_2 \odot b_2| > 1 \\ 1 - \sum_{(b_1, b_2) \neq (a_1, a_2)} \hat{T}_{\mu_1, \mu_2}((a_1, a_2), (b_1, b_2)) & \text{if} \quad (a_1, a_2) = (b_1, b_2) \end{cases}
```

Then, \hat{T}_{μ_1,μ_2} has a unique stationary distribution, call it ν . It is easy to see that conditions 1 and 2 of the theorem are satisfied merely from the definition of the coupled chain.

In order to show the third condition, we need to show monotonicity, i.e. that if $\hat{T}_{\mu_1,\mu_2}((a_1,a_2),(b_1,b_2)) > 0$ and $a_1 \geq a_2$, then $b_1 \geq b_2$ (where the partial order means that $a \geq b$ if all of the open bonds in b are also open in a).

Assume that $a_1 \geq a_2$ (i.e. $a_1 \supseteq a_2$). Then we can write $a_1 = a_2 \cup C$, where $C \subseteq X$ is the additional bonds open in a_1 , and $a_2 \cap C = \phi$. We may also assume that $a_1 \neq a_2$ (otherwise monotonicity follows trivially) so that $|C| \geq 1$.

Let $x \in X$. One bad case that might happen is that $x \notin a_2$ (so $x \notin a_1$), but $P(\text{add } x \text{ to } a_2) > P(\text{add } x \text{ to } a_1)$. This can't happen. Why? With $a = a_1$, $b = a_2 \cup \{x\}$, and the FKG condition (1) on μ_1 and μ_2 , we have that $\mu_1(a_1 \cup \{x\})\mu_2(a_2) \ge \mu_1(a_1)\mu_2(a_2 \cup \{x\})$ or that $\frac{\mu_1(a_1 \cup \{x\})}{\mu_1(a_1)} \ge \frac{\mu_2(a_2 \cup \{x\})}{\mu_2(a_2)}$. This means if we add x to a_2 , then we will also add x to a_1 .

The other bad case that might happen is that $x \in a_2$ (so $x \in a_1$), but $P(\text{remove } x \text{ from } a_1) > P(\text{remove } x \text{ from } a_2)$. However, similar to the previous case, with $a = a_1 \setminus \{x\}$, $b = a_2$, and condition (1) on the measures, we have $\mu_1(a_1)\mu_2(a_2 \setminus \{x\}) \ge \mu_1(a_1 \setminus \{x\})\mu_2(a_2)$ or that $\frac{\mu_2(a_2 \setminus \{x\})}{\mu_2(a_2)} \ge \frac{\mu_1(a_1 \setminus \{x\})}{\mu_1(a_1)}$. Therefore, removing x from a_1 means that we also remove it from a_2 .

This implies monotonicity, and hence, condition 3 of the measure ν . \square

There are two corollaries to this lemma.

Corollary 1 If f is increasing and μ_1 , μ_2 satisfy

$$\mu_1(a \cup b)\mu_2(a \cap b) \ge \mu_1(a)\mu_2(b)$$

for all $a, b \in \Omega$, then

$$\sum_{a \in \Omega} f(a)\mu_1(a) \ge \sum_{a \in \Omega} f(a)\mu_2(a).$$

Proof: Let ν be the measure as in theorem 1. Then

$$\begin{split} \sum_{a \in \Omega} f(a) \mu_1(a) &= \sum_{a,b \in \Omega} f(a) \nu(a,b) \\ &= \sum_{a \geq b} f(a) \nu(a,b) \\ &\geq \sum_{a \geq b} f(b) \nu(a,b) \\ &= \sum_{a,b \in \Omega} f(b) \nu(a,b) \\ &= \sum_{b \in \Omega} f(b) \mu_2(b) \end{split}$$

The second corollary is the FKG inequality (theorem 2).

Corollary 2 (FKG, Stronger Version) Let μ be a probability measure on Ω that satisfies the FKG condition, and let f and g be increasing functions on Ω . Then

$$\sum_{a \in \Omega} f(a)g(a)\mu(a) \geq \sum_{a \in \Omega} f(a)\mu(a) \sum_{b \in \Omega} g(b)\mu(b).$$

Proof: Let $\mu_1(a) = \frac{g(a)\mu(a)}{\sum_{a\in\Omega}g(a)\mu(a)}$ and let $\mu_2 = \mu$. Then, we claim that μ_1 and μ_2 satisfy the condition given in corollary 1.

$$\mu_{1}(a \cup b)\mu_{2}(a \cap b) = \frac{g(a \cup b)\mu(a \cup b)}{\sum_{a} g(a)\mu(a)}\mu(a \cap b)$$

$$\geq \frac{g(a)\mu(a \cup b)}{\sum_{a} g(a)\mu(a)}\mu(a \cap b)$$

$$\geq \frac{g(a)}{\sum_{a} g(a)\mu(a)}\mu(a)\mu(b)$$

$$= \mu_{1}(a)\mu_{2}(b)$$

Now apply corollary 1 to μ_1 , μ_2 , and f. \square