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We continue by proving the Stronger Form of the FKG Inequality.

The FKG Inequality (cont.)
Recall the FKG inequality, and the stronger version.

Theorem 1 (FKG) If A and B are increasing events, then
P,(ANB) > By(A)F,(B).

Theorem 2 (FKG, Stronger Version) Let p be a probability measure on Q) that satisfies the
FKG condition, and let f and g be increasing functions on Q. Then

> fla)g(a)u(a) > > fa)u(a) D g(b)u(b).

a€N a€q beQ

We’ve already seen how theorem 2 implies theorem 1 by taking f = 14 and g = 1p, the indicator
functions of the sets A and B, and observing that P, satisfies the FKG condition. Therefore we
will focus on proving theorem 2. To do this, we prove a preliminary result about a certain product
measure. In this lemma, we consider Q = P(X) (the power set of X), partially ordered by inclusion.

Lemma 1 Let y1 and po be probability measures satisfying

p1(aUb)us(anb) > pi(a)uz(b) (1)

for all a,b € €.
Then there exists a measure v on 2 X Q such that

1. Y cav(a,b) = pa(b) for all b€ Q,
2. Ypeavl(a,b) = pi(a) for all a € Q,

3. v(a,b) =0 unless a > b.

Markov Chain
Let n = | X|.
We define a Markov chain MC(u) on 2 governed by the following transitions (where a,b € Q)

& min(1, 28) ifboa =1
Ty(a,b) =1 0 if |b@al > 1

1- Y0 Tula,b) ifb=a

where a © b is the bitwise symmetric difference of the vectors a and b.
(Such a Markov chain is commonly referred to as the Metropolis chain.)
We implement this Markov chain by starting at a € 2 and we repeat

Pick z €, X, and r €, [0, 1].

If r < 2= min(1, %) and z € a, remove .
. b

If r > 1— 5 min(l, %) add z to a.

Otherwise, do nothing.



Math 8223 A — Combinatorial Methods for Statistical Physics Models
Lecturer: Dana Randall
January 12, 1999 Scribe: Russell Martin

Note that MC(u) is ergodic and reversible, so the unique stationary distribution, , satisfies detailed
balance.
Coupled Markov Chain

Define a coupled chain, Tm, ue on 2 %  in the following manner:
Starting at the initial state (a1, a2) = (X, ¢), repeat

Pick z €, X, and r €, [0,1].
Update a; according to T}, .
Update ay according to T),,.

1,
Because of this coupling we have transitions defined by (a1, as) =5° (b1,by) with probability

[ min(T),,,T},) if IxeX>5b =a1U{z}, bp =a2U{zx}, or
if Jz€ X >b =a\{z}, b =a2\{z}
T,uz_TM if a1 =bq, |b2®a2| =1
ﬁ TMI—TM if |a1®b1| =1, b = ay
0 if |a1®b1‘>101‘ |a2®b2|>1
[ 1= 226 00)#(a1 ,02) Lha e (@1, 02), (b1, b2)) i (a1,a2) = (b1, b2)

Then, Tm,uz has a unique stationary distribution, call it v. It is easy to see that conditions 1
and 2 of the theorem are satisfied merely from the definition of the coupled chain.

In order to show the third condition, we need to show monotonicity, i.e. that if T,“ 2 ((a1,a2), (b1, b2)) >
0 and a1 > ag, then by > by (where the partial order means that a > b if all of the open bonds in b
are also open in a).

Assume that a; > a2 (i.e. a1 D ag). Then we can write a; = as U C, where C C X is the
additional bonds open in aj, and a; N C = ¢. We may also assume that a; # ag (otherwise
monotonicity follows trivially) so that |C| > 1.

Let x € X. One bad case that might happen is that z & as (so z & a;), but P(add z to as) >

P(add z to a1). This can’t happen. Why? With a = a1, b = as U {z}, and the FKG condition (1)
(a1 Ufz})  pa(a2{z})
ui(ar) = pa(a) -

on p1 and g, we have that (a1 U{z})uz(as) > p1(a1)pe(asU{z}) or that £
This means if we add z to a9, then we will also add z to a;.

The other bad case that might happen is that z € ag (so = € a;), but P(remove z from a1) >
P(remove z from ay). However, similar to the previous case, with a = a;\{z}, b = a2, and condition
(1) on the measures, we have u1(a1)p2(az\{z}) > pu1(a1\{z})u2(az) or that “2};;?;2?}) > m;(ﬁl(ﬁz})'
Therefore, removing x from a; means that we also remove it from as.

This implies monotonicity, and hence, condition 3 of the measure v. O
There are two corollaries to this lemma.
Corollary 1 If f is increasing and 1, po satisfy
p1(a Ub)ua(anb) > pi(a)us(b)
for all a,b € Q, then
Y fla)ui(a) > Y~ f(a)ua(a).

a€N a€Q)
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Proof: Let v be the measure as in theorem 1. Then

Y fl@wm(a) = Y fla)v(a,b)

acN a,beQ

= Y fla)v(a,b)

a>b

> Y f(b)v(a,b)

a>b

= Y fw(eb)

a,beQ

= > f(O)ua(b)

beQ

The second corollary is the FKG inequality (theorem 2).

Corollary 2 (FKG, Stronger Version) Let u be a probability measure on  that satisfies the
FKG condition, and let f and g be increasing functions on Q. Then

> fla)gla)u(a) = D fla)u(a) Y g(b)u(b).

a€fl a€f beN

Proof: Let pi(a) = % and let go = p. Then, we claim that p; and po satisfy the

condition given in corollary 1.

g(aUb)pu(a Ub)

pi(aUbjus(and) = S (@i p(a N b)
g@uah)
2 %, g
> %Maw)
= (@)

Now apply corollary 1 to p1, pg, and f. O



