Math 8223 A — Combinatorial Methods for Statistical Physics Models
Lecturer: Dana Randall
February 4,9, and 11, 1999 Scribe: David Vener

We begin a discussion of perfect matchings and present Fisher, Kasteleyn, and Temperley’s
method for counting perfect matchings in a planar graph.

1 Introduction

Definition 1 In a graph, G = (V,E), a matching M C E is a set of edges such that no two
edges in M share an endpoint (i.e. every vertex has degree <1).

Definition 2 A perfect matching is a matching where every vertez is incident to exactly one edge
in the matching.

Algorithmically, the problem of finding a perfect matching can be solved efficiently. However, we
will be interested in counting the number of perfect matching in a particular graph.

Example Let G be a bipartite graph (G = (V,U,E),E C V x U) with |V| = |U| = n. Here is an
example with n = 5.
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Figure 1: A bipartite graph
Define the adjacency matrix A = (a;;) by

_{ 1 if(i,j) € E

%=1 0 otherwise.
That is for the example graph,
01000
100 00
A=]10 01 10
01001
00010

Any permutation with all nonzero entries corresponds to a perfect matching. For example, {(1,2),(2,1),(3,3),
(4,5), (5,4)}
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Definition 3 Let A be an n X n matriz, and let S(n) be the set of permutations of {1,2,..,n}. The
determinant of A, denoted detA, is defined by

n
detA = Z sgn(m) H Gim(i)-
w€E S(n) i=1
Definition 4 The permanent of A, denoted perA, is defined by
n
perA = Z H Qg (i) -
we S(n)i=1

Claim 1 If A is the adjacency matriz of a bipartite graph, then perA is the number of perfect
matchings.

This can be seen easily from the definition of A: since all of the a;; are 1 or 0,

1"-[ o _J 1 ifaggp=1forall1< i< n
Z_la”(l) ~ | 0 otherwise.

Conversely, the permutations with all 1’s are exactly the perfect matchings. Therefore, per A counts
each of the perfect matchings once and all other permutations no times.

The determinant is easy to compute in O(n?) time, whereas calculating the permanent is as hard
as any NP Complete problem, as shown by Valiant in 1979.

Claim 2 If there is no perfect matching, then det(A) = 0.

Since there are no perfect matchings,

n
H Gixs) = 0,Vm € S(n).

=1
Therefore, detA = 0 by definition.

Remark The converse is false. For example, for K, ,, detA = 0, yet there are obviously several
perfect matchings possible.

We will investigate a method for calculating the permanent for planar graphs.

2 Motivation

Combinatorics: In the Cartesian lattice, Z2, each perfect matching corresponds to a domino
tiling in the dual (Cartesian) lattice, as seen in Figure 2.

Statistical Mechanics: The Dimer Model assigns uniform weight to each perfect matching and
asks how many tilings there are?

Let M be the set of matchings, and let m € M. The Monomer-Dimer model assigns a weight,
wt(m) = M7l to each matching m. The Gibbs measure assigns probability

B wt(m)
o) = o wt(m)’
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Figure 2: A perfect matching and the corresponding domino tiling

to each m € M. The denominator in this fraction is defined as the partition function, Z.

For A > 1, the Monomer-Dimer model favors perfect matchings since it favors large |m|.
Therefore, we need to know the number of perfect matchings to calculate Z.

Chemistry: The Kekulé structure is a representation of chemical compounds (usually with the
hydrogens removed). Chemists have found that how difficult a compound is to synthesize seems to
be directly related to the number of perfect matchings that can be made using the bonds in the
Kekulé structures. For example, benzene, anthracene, and phenanthrene have 2,4, and 5 perfect
matchings, respectively. Accordingly, benzene is the most difficult of the the three compounds to
artificially reproduce, and phenanthrene is the easiest.

benzene anthracene phenanthrene |
(two p.m.s) (4 p.m.s) (5 p.m.s)

Figure 3: Kekulé structures

A second application to chemistry relates bond strength in certain carbon compounds to the prob-
ability that the bond is contained in a perfect matching.

3 Kasteleyn’s Method

We will now see Kasteleyn’s algorithm for counting perfect matching in planar graphs. Recall that
Valiant showed that counting perfect matchings in general is likely to be intractable, so though the
following method works for planar graphs, it is not likely to be generalized for counting perfect
matching in general graphs. However, there are generalizations of Kasteleyn’s method to graphs of
fixed genus.
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Let G = (V, E) with |[V| = 2n. Orient G to get G. Let B= (bij) be the skew symmetric adjacency
matrix defined by
1 if(,5) € B
bij=14 —1 if(j,i)e E

0 otherwise.

We need a few definitions before we can continue.

Definition 5 Let B be a 2n x 2n skew symmetric adjacency matriz (i.e. B = —B), and let

P= {{ilajl}a {iZan}, eey {Zna.jn}}
be a partition over pairs of the 2n vertices. Let

1 2 3 4 -+ 2n

bp=sgn| . . . . . Y T Y
7 g (7,1 71 %2 J2 -+ In > 21,J1Y22,72 inJn

The Pfaffian of B, denoted Pf(B), is defined by

Remarks bp is well defined since

1. changing the order within a pair, {i,jx}, does not change bp since both the sign of the
permutation and the sign of b;, j, are changed.

2. switching the order of two pairs, say {i, jx} and {im, jm}, requires an even number of trans-
positions, so the sign of the permutation does not change; therefore, bp remains fixed.

Definition 6 An even cycle is a cycle with an even number of edges.

Definition 7 An evenly oriented cycle is an even cycle with an even number of edges going in the
direction of a cycle in either direction. Similarly, and oddly oriented cycle is an even cycle with an
odd number of edges going in the direction of the cycle in either direction.

Note that the union of two perfect matchings is a collection of alternating even cycles (including
some trivial cycles, if both perfect matchings contain the same edge).

Lemma 1 Let & be an orientation of G. For any two perfect matchings, P; and Ps, let EC(P1,Ps)
be the number of evenly oriented cycles in Py U Py. Then

b731 : b732 = (_1)EC(P1’P2)'
Proof of Lemma 1 We start with two observations which simplify the proof of the Lemma.
Observation 1: The claim in the Lemma is independent of the orientation of G. Suppose we
switch the orientation of an edge, e € G. If e ¢ P; U Py, changing the orientation of e has no
effect. Also, if e € P; N Pa, changing the orientation of e changes the sign of both bp, and bp,.
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Finally, e could be in one of the perfect matchings but not the other. Without loss of generality, let
e € P1\Ps. Then, since e is part of an even cycle, reversing e changes the cycle’s orientation, bp,
changes sign and the value of k changes by +1. Therefore, if the lemma holds for any orientation
of G, it must hold for all of them.

Observation 2: The numbering of the vertices also has no effect on the claim. Reordering the
vertices simply permutes rows and columns of B, so bp changes sign for all partitions P or they all
stay fixed, so the product of any two of them remains unchanged. So if the lemma holds for one
numbering of the vertices, it must also hold for all possible numberings.

Now consider the union of two perfect matchings, P; U P,, in an arbitrary graph with |V| = 2n.
Order the cycles in the union. Label the vertices with the numbers {1,2,3,4,...,2n} and orient
the edges in the following manner. Take the lowest numbered cycle whose vertices have not been
numbered. Choose a vertex on that cycle, and number it with the lowest remaining number from
the set of labels, say k. Then label k+1 so that (k,k+1) is an edge in P;. If the cycle is trivial,
then just orient the edge from k to k+1. Otherwise, we must label the rest of vertices in the cycle.
Do this by going around the cycle in the direction of k to k+1, labeling the vertices in the order
we get to them until all of the vertices in the cycle have a label. Orient the edges in the cycle so
that they go around the cycle in the same direction as k to k+1. Move on to the next cycle and
continue until all of the vertices have been labeled and all of the edges have been oriented. (See
Figure 3 for an example of the labeling and orientation.)

2. 4 : "o 12
) L’N\*
K 5 7
1 3 %H_ q i3
& 14

Figure 4: The union of two perfect matchings in P; (straight edges) and Py (curved edges)

Using this labeling and orientation, we see that bp, is trivially equal to 1 from the definition. Now
consider bp,. From the orientation that we chose, the contribution of the b; ; terms is 1. So the
only contributions of -1 come from the permutations of the cycles. The permutations do not change
for the trivial cycles since we have not changed the order of the vertices. For the nontrivial cycles
the lowest label moves from the beginning of the cycle to the end, which, since there is an even
number of vertices in the cycle, this change requires an odd number of transpositions. So for each
non-trivial cycle a factor of -1 appears in the permutation in bp,. Since, here, all of the even cycles
are evenly oriented, this proves the lemma.

Now we will use this lemma to prove a result in Linear Algebra that is essential to Kasteleyn’s
method.
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Theorem 1 Let B be a 2n x 2n skew symmetric matriz. Then det(B) = Pf(B)?.

Proof: Consider permutations that contribute to det(B).

1 bingsy = £1
i=1

First we show that permutations that contain any odd cycles do not contribute to the determinant.
We will show this by paring such permutations by a bijection. Take a permutation,m, with at
least one odd cycle and pair it with another permutation, 7/, by reversing the “first” odd cycle.
Reversing an odd cycle does not change the parity of the permutation, but each of the b;;s in the
cycle do change sign. Since there are an odd number of the b;;s in an odd cycle, the net result is
that the contributions of m and 7/ to det(B) cancel each other. Thus, only the permutations with
only even cycles contribute to the determinant.

Define C be the set of all cycle covers of G, and define Cg C C such that any ¢ € Cg has only even
cycles. Define EC(c) to be the number of non-trivial even cycles in ¢, and define EOC(c) to be
the number of evenly oriented cycles in c. Then define O(c) be the set of possible orientations ¢
of ¢ € C(i.e the 2BC(¢) ways of directing each cycle in c. Finally, define m, to be the permutation
determined by the orientation o € O(C).

det(B) = Z sgn(m) H Z Z sgn(m, H i (4)

w€ S(n) i=1 ceC 0€0(c) =1

_ Z Z sgn o H b’Lﬂ'o(Z Z 2EC EOC( )
c€Cr 0€0(c) ceCg

= > 2PCO by b, (for PLUP; =)
ceCp

S D

ceCgp P1UP2=c

= ZbPl 'pr2 = Pf(B)2
P1 P2

a

Kasteleyn observed that any planar graph can be oriented so that every “nice” cycle (meaning
a cycle whose removal (i.e. deleting the vertices and edges) leaves a perfect matching) is oddly
oriented. From our Lemma above, we see that this means bp has the same sign, for all perfect
matchings P, since the product of any two of them is always 1 regardless of which perfect matchings
we choose. Therefore, for this orientation, we find that the Pfaffian counts exactly the number of
perfect matchings. Furthermore, since det(B) = Pf(B)?, if we had an easy method of finding such
an orientation of G, we would have an easy method for calculating the number of perfect matchings;
simply calculate det(B) and take the square root.

Finding an odd orientation:

First observe that it is sufficient to find an odd orientation of each of the faces of G (including
odd faces bounded by an odd number of edges, where here “oddly oriented” means an odd number
edges oriented in the clockwise direction. Now consider the following Lemma.
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Lemma 2 Let Zi be a planar graph whose faces are all oddly oriented. Then each cycle in C’ will
be oriented with opposite parity as the number of vertices it encloses.

Proof of Lemma 2 Proof by induction.

Consider the base case, i.e. a simple face that encloses no vertices. Since we have oriented each
simple face oddly, the lemma, obviously holds.

Now consider an arbitrary cycle, F; that contains k vertices and assume that the lemma holds.
Consider the cycle formed by taking the symmetric difference of F; and a simple face, F, that
coincides with F; at p edges. The new cycle will contain k + p - 1 vertices since the edges where
F1 and F» agree have been removed. We now have several cases and subcases.

Consider the case where k is even and p is odd. From the inductive hypothesis, we know that F is
oddly oriented. We also know that the symimetric difference contains an even number of vertices.
Now we have two subcases. First let an even number of the p edges shared by F; and F; be oriented
in the clockwise direction with respect to ;. Since Fi is oddly oriented removing these edges in
the clockwise direction leaves an odd number of edges in the clockwise direction that contribute
to the symmetric difference. Since p is odd and the number of edges in the clockwise direction
with respect to F; is even, we have an odd number of the p edges in the clockwise direction with
respect to Fo. Therefore, F5 contributes an even number of edges in the clockwise direction to the
symmetric difference, and the total number of edges in the symmetric difference oriented in the
clockwise direction is odd. Similarly, if an odd number of the p edges are oriented in the clockwise
direction with respect to i, the symmetric difference is oddly oriented since F; contributes an
even number of clockwise edges and F» contributes an odd number.

Now consider the case with k even and p even. The analysis follows exactly as in the last case,
except here we find that k + p - 1 is odd. So if an even number of the p edges that F; and F5 share
are oriented in the clockwise direction with respect to F1, we find that both F; and F» contribute
an odd number of clockwise edges to the symmetric difference, so the symmetric difference is evenly
oriented. Similarly, if an odd number of the p edges are oriented clockwise with respect to Fi, then
both cycles contribute an odd number of clockwise edges to the symmetric difference, and the
symmetric difference is evenly oriented.

The argument for the final two cases follows exactly from these arguments, so these are left to the
reader. With these arguments, the proof is complete.

The union of two perfect matchings contains only trivial and nice cycles. All nice cycles enclose an
even number of vertices, so if all of the faces of G are oddly oriented, all nice cycles are also oddly
oriented from Lemma 2.

Example

Consider the Cartesian Lattice. Orient all vertical edges “upward” and alternate the orientation of
the horizontal edges by giving all of the edges on the same row the same orientation and alternating
the orientation of the rows. Obviously, every face is oddly oriented since the horizontal edges either
both go with or against any cycle, while one of the vertical edges goes with the cycle and the other
does not. Therefore, we can use this orientation to calculate the number of perfect matchings in a
graph on the Cartesian lattice.
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We now describe an algorithm which will determine an orientation of G that will have only oddly
oriented faces. First choose a vertex and find a spanning tree from that vertex, orienting the edges
arbitrarily. For example, we could orient all the edges in the tree away from the root. This tree
determines a spanning tree in the dual graph, (i.e. the graph where each of the faces of G becomes
a vertex, and each vertex in G becomes a face in the dual. Then do a depth first search of the
spanning tree in the dual orienting each edge in G so that it forms an oddly oriented cycle as we
cross it.

So now we have an algorithm for counting the number of perfect matchings in a planar graph.
Algorithm (F,K,T)

1. Orient G so that all faces (except possibly the outer one) are oddly oriented.

2. Let B be the skew symmetric adjacency matrix of G.

3. The number of perfect matchings is the square root of det(B).

Conclusion This algorithm can count the number of perfect matchings for planar graphs in
matrix multiplication time. This method cannot be generalized for general graphs, but in future
lectures we will see other methods for counting perfect matchings on lattice graphs that are even
more efficient.



