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Percolation in 7Z>

Recall that the critical probability of bond percolation on the d-dimensional cartesian lattice is
defined by
pe(Z*) = inf{p : P[0 ¢ o0] > 0},

where P,[0 <> oo] is the probability that the origin is in an infinite open cluster. We have seen that
0 < pe(Z4) < 1

for any d > 2. For d = 2 we have pc(ZQ) = % This means that we do not have percolation in 7.
for p < %, and we have percolation for p > % In this lecture we study what happens at the critical
probability.

One of the key ingredients in the study of bond percolation in Z?2 is self-duality. Let LR(l, k)
denote the event that there is a left-to-right path of open bonds in a fixed I x k region of Z?. A
first application of self-duality is:

N

Lemma 1 Pi[LR(l,l - 1)] = L

Proof : We either have a left-to-right path of open bonds in the box itself, or a top-to-bottom
path of closed bonds in the dual box (which is of size (I — 1) x ). Since for p = % these two
complementary events have equal probability, the claim follows. O

For even [, let B(l) denote the I x [ region of Z? centered at the origin. Showing that percolation
does not happen for p = % is equivalent to showing that, with probability 1, there exists a closed
circuit around the origin. Our strategy will be to show that, with probability uniformly bounded
away from zero, there exists a closed circuit in any annulus of the form A(l) = B(3l) — B(l). More
precisely, we will prove:

Theorem 2 (Russo-Seymour-Welsh) If T = Py[LR(l,1)] then
12
P,[A(l) contains an open circuit] > (T(l —vV1- 7)4)

For p = % we have 7 > i (by Lemma 1, P% [LR(l,l -1)] = %, and the bond that extends any

left-to-right path in the I x (I — 1) box is open with probability 1). Thus, since a circuit has the
same probability of being open or closed when p = %, the RSW theorem gives:

\/5)48

. .. 1
P% [A(l) contains a closed circuit] > yit] <1 -

This implies that for p = % we have a closed circuit in at least one of the disjoint annulae A(1),

1=2,2-3,2-3% ... with probability 1. Hence, we do not have percolation on Z* for p = %
The key step in the proof of the RSW theorem is:

Lemma 3 P,[LR(31,1)] > (1—-v1—-71)}
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Proof of the RSW theorem : Let

11 = P,[LR(51,1)]
19 = Pp[LR(2l,1)]
13 = P,[LR(3l,1)]
14 = Py[A(l) contains an open circuit]

3
2
2

We can succesively lower bound 7;, ¢ = 2, 3,4, in terms of 7 and 7y as follows.
First,
T > TET. (1)

Indeed, a 2] x | box can be decomposed into two %l x [ boxes that have an overlap of size [ X [:
3

The 2[ x [ box certainly has a left-to-right path of open bonds if both %l x [ boxes have left-to-right
open paths and their overlap has a top-to-bottom open path. Thus, inequality (1) follows from the
FKG inequality for increasing events.

In a similar way

T3 > YT (2)

this time we decompose a 3l x [ box into two 2/ x [ boxes with an [ x [ overlap:
2
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Finally,
T4 2 T?A,L; (3)

since A(l) will certainly contain an open circuit if the two 3! x [ and the two [ x 3/ boxes that cover
it contain left-to-right (resp. top-to-bottom) paths of open bonds:

Combining (1-3) we get
> ()t > (1) = ()

and the theorem follows from Lemma 3. O

To prove Lemma, 3 we will need:

Lemma 4 (The square root trick.) If Ay and Ay are increasing events with equal probability then

PplA1] > 1= /1 - Py[A1 U Ay).

by FKG
> PR,

Proof : 1 — P,[A; U Ay] = Py[A; N4, [A1] - Py[A3] = (1 — Py[A1])2 O

Proof of Lemma 3 : Without loss of generality, we may assume that the %l X | box is positioned
such that its upper-right corner is at (I, ). Let B be the box [—4, 4] x [=4, 4], and B’ the box

[Oal] x [_%a %]
We need to introduce some notations. Let 7' be the set of left-to-right paths in B. If # € T,
then

yx is the point where 7 crosses for the last time the y axis;

7, is the part of 7w from gy, to the right border of B;

!

! is the reflection of m, around this border (i.e., around the line z = %);

vy
T~ (T7) is the set of paths m € T that have y, <0 (resp. y, > 0);
L~ (L) is the event that a path in T~ (resp. in T™") is open;

Ay is the event that path 7 is open;

L, is the event that path 7 is the “lowest” open path of T
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M- (M) is the event that there is an open path from the top of B’ to m, (resp. 7l);

NT (N) is the event that there exists a left-to-right open path in B’ starting above (resp. below)
the z-axis.

Since a configuration in
Ntn | (M; nA4y)
€T~

guarantees the existence of a left-to-right path of open bonds in B U B’, we have

P, [LR(%Z,Z)] > P,

Ntn | (M;nA4y)
weT™

As both NT and the union event are increasing, by the FKG inequality we get

Py INTNn (J (M7 NAg)

TeT—

> B[NT]- Py | |J (M7 NAr)

TeT—

Note that P,[N~] = P,[N™], so, by the square root trick,

BIN*]>1—/1-B[N-UN+=1-vI-7.

Hence, to complete the proof it suffices to show that

Bl U WMynA)| >0-Vi=7)
Tel—
Now,
B | U M;nan| =5 | U <M;nLﬂ)] = 3 BIM;|Ly) - BylLs]
TeT— TeT™ neT~

Claim : For every m € T~, P)[M |Ls] > Pp[M].
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Let J, denote the set of bonds of B’ “trapped” between the left border of B’ and 7. Note that
M, does not depend on whether or not the edges in J; are open. Moreover, note that M, and J;
are increasing events (this is not true about L;). So,

Pp[M; N J] by gKGPp[M;]Pp[JW]

Bp[M |Lx] = Pp[M | Jx] = ABA = P[]

= PP[MTF_]’

proving the claim.
For every m € T, P,[M,] = P,[M;] because 7. is the reflection of m,. So, using the square
root trick and the fact that P,[M U M| > 7, we get

Py[M;]>1—\/1—Pp[Ms UMF]>1— V1T
Therefore,
> PBp[M, |Ly] - Pp[Ls] > (1—vV1—7)- ( > Pp[LW]> >(1—-vV1-1) BT ]
weT— TeT—

The proof is completed by applying the square root trick once again for P,[T ] = Pp[T]. O

Continuing the study of bond percolation at the critical probability, we next establish lower-
and upper-bounds on the probability that the open cluster containing the origin extends past B(n).

Theorem 5 (Power law inequalities.) There exist constants A and o such that
1
in 2 < Pi[0 > 0B(n)] < An™ ¢,
2

where 0B(n) denotes the border of B(n).

Proof : For any k € [0,2n — 1] let A(k) denote the event that there is an open path from (n, k)
to the border of the (2n + 1) x (2n + 1) box centered at (n, k) (which is nothing but a translation
of B(n)).

(2n,2n-1)

‘—§/ (nK)
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Note that there are two disjoint paths of this kind when the box [0,2n] x [0,2n — 1] has a left-
to-right path of open bonds passing through (n, k). Since a left-to-right open path in the box
[0,2n] x [0,2n — 1] has to cross the line z = n at least once, we get that

Py[LR(2n+1,2n] < an_l Py [A(K) o A(K)].
k=0

But P [LR(2n +1,2n] = 1 by Lemma 1, and Py [A(k) o A(K)] < Py [A(K)]? by the BK inequality.
Since P% [A(k)] = P% [0 +» 0B(n)], it follows that

< 2nPL[0 > 0B(n)]?,
and this gives the left-hand side inequality.

To prove the right-hand side inequality we will rely again on duality. Note that if there is an
open path from the origin to the boundary of B(n), then there is no closed circuit in each of the
(3,3) centered annulae of external radiae 3,32,...,31%6a"l=1 of the dual lattice. But we know from
the RSW theorem that each such annulus contains a closed circuit with some probability £ > 0, so

nlOgS ( 1- 5)

P% [O o BB(n)] < (1 . 6) lloggn|—1 < (1 o f)log?’ n—2 _ W



