Math 8213A — Rapidly Mixing Markov Chains Lecturer: Dana Randall
November 27, 1996 Scribe: Cristina G. Fernandes

Introduction

On the work of Jerrum, Valiant and Vazirani about the relation between approximate counting and
approximate uniform generation.

Approximate counting and approximate uniform generation

Definition : R C {0,1}* x {0,1}* is a p-relation if deciding whether (z,y) € R can be done in
time polynomial in |z| + |y|-
Example : SAT

Input: X = (21 V2o VZ3)(Z1 VeV x5)(T2 V T6)-

Let us denote a truth assignment by . For instance, y = 011010 means z; = F,xo = V, 23 =
Vixgy =F,z5 =T,x6 = F.

Let R be the set of all pairs (X,y), where y is a satisfying assignment for X. Then R is a
p-relation, since we can verify in polynomial time if y is in fact a satisfying assignment for X.

If we construct a binary tree as in Figure 1, the leaves contain all 2" possible y’s. Only some
of them are satisfying assignments.

.’L‘1=0

Figure 1: Binary tree representing the possibilities for y’s

#SAT: How many of the leaves are satisfying assignments?

Observe that #SAT(X) = #SAT(X : z1 =0) + #SAT(X : z; = 1).

Definition : A p-relation is self reducible if we can express the set of solutions in terms of a set of
smaller instances of the same problem and we can find the smaller instances in polynomial time.

In the example above, (z4V zs5)(Z2V x) is the smaller instance for z; = 1, and (z2V Z3)(Z2V z6)
is the smaller instance for x; = 0.

When this happens, the next theorem tells us that approximate counting is the same as ap-
proximate uniform generation.

Theorem (Jerrum, Valiant and Vazirani) : If R is a self reducible p-relation, then there is
a FPRAS iff there is a FPAUG.

Before sketching the proof, let us see how this applies to approximate counting perfect match-
ings.

Let G be a (general) graph. Pick an edge e of G.

PM(G) = PM(GT)U{M U {e} : M ePM(GT)}, where G~ is G after deleting edge e, and G
is G after deleting e = (u,v) and all edges incident to w or v. This is true since, given a perfect
matching M in G, either M includes e or not. If M includes e, then it corresponds to a perfect
matching in GT. If M does not include e, then it corresponds to a perfect matching in G~.

Math 8213A — Rapidly Mixing Markov Chains Lecturer: Dana Randall
November 27, 1996 Scribe: Cristina G. Fernandes

Thus PM in general graphs define a self reducible p-relation. Observe however that this p-
relation does not necessarily work for restricted classes of graphs. For example, for lattice graphs,
GT and G~ might not be lattice graphs. But by selecting e carefully and modifying previous
arguments to work for “approximate” lattice graphs (lattice graphs except maybe for the boundary),
one can make PM in “approximate” lattice graphs to be self reducible.

Sketch of the proof of Jerrum, Valiant and Vazirani’s theorem

Let S* = {y : (z,y) € R} and ST = {y : (z,y) € R and u is a prefix of y}. Assume |y| = m if
(z,y) € R.
For instance, for SAT, we have SX = S U S{¥.

FPRAS:
Given €, > 0, and z € {0, 1}*, output g(z) such that
|57

Pr|—< < 18%|(1 1-—
Pl <gla) ISP+ 9| > 16,

in time polynomial in |z|,e~!, log d—.

FPAUG:

Given z € {0,1}*, and a > 0, output y, or “try again”, so that the whole process runs in time
polynomial in |z| and loga~?!, and

1. if (z,y) € R then

1 1+«
- <P tput < .
ST) = Frlovtput ol < T

2. if (z,y) € R then Pr[output y| = 0.
3. if |S¥| > 0, then Pr[“try again”] < 1/2. (Expected number of “try again”s is 2. Any constant
would also work.)

The no error case: exact counters and exact generators

Let us assume we have a perfect counter, and we want to generate y uniformly.

Let N = {y = y1,---,Ym : (z,y) € R}| and Ny = |[{y = yo2,...,Ym : (z,0y) € R}| (use the
perfect counter to compute N and Np).

To generate y uniformly, branch left in the tree with probability Ny/N and branch right with
probability N1/N, and recurse: if you first branched left, compute Ny, and branch left again with
probability Noo/Ny. Otherwise, branch right (with probability Ny;/Np).

Then the probability of being at a (satisfying) leaf y = 010... is

No Noi Nowo 1

N Ny Ny~ N’
Thus in fact we end up with a perfect uniform generator.

Now, let us assume we have a perfect uniform generator. We will describe how to get an
approximate counter.

Generate enough samples to estimate Ny /N and N; /N (the proportions of satisfying y’s starting
with a 0 or 1, respectively) with error within ¢/2m. Let (31 be the larger between Ny/N and N;/N
(the smaller one can have a large deviation). So we have an estimate for 3;. Let us say N;/N is
larger (i.e., f1 = N1/N). Estimate (35: the larger between Nyo/N; and N;1 /Ny, and so on, until a
leaf (denoted () has being estimated.

Math 8213A — Rapidly Mixing Markov Chains Lecturer: Dana Randall
November 27, 1996 Scribe: Cristina G. Fernandes

The f;’s are a telescoping series whose product is 1/N. The product of the inverse of their
estimates is within € from N:

N m
< J—
T+e H L 6; 14 5)m =) 1;[estimate for Bi) ~ i Bi

1+ %)m < (1+¢€)N.

So we obtain an approximate counter. In fact, even if we have started with an approximate
generator, we would have to generate more samples (to compensate for the errors) to get our
estimates with error within €/2m, but still we would end up with an approximate counter.

From an approximate counter to an approximate uniform generator

What if we have errors in our counter? How can we get an approximate uniform generator?

The method above applied to an approximate counter results in a generator which, let us say,
outputs y with probability p, ~ 1/|S5%|.

If we have b such that b < min{p, : (z,y) € R}, then we could output y with probability b/p,
(if py # 0), otherwise try again. This would have the effect of “uniformizing” the distribution: any
y such that (z,y) € R would be output with the same probability p, - b/p, = b.

To apply this idea, however, we would have to know the p,’s and b. We can use our approximate
counter to obtain estimates for the p,’s and for b. Observe that 1—|S*|b is the probability of rejection
(i.e., Pr[“try again”]) which we want to be bounded by some constant smaller than one (so that
the expected number of “try again”s is constant). So choose some constant ¢ > 0, and use the
approximate counter to get estimates p,’s for the p,’s such that p, is 1/|S*| within at most €, with
probability at least 1 — a.

Generate a number ¢ of estimates p,’s and let b be the minimum of all these estimates. Choose
t large enough so that a subsequent estimate p, is smaller than b with probability smaller than a.

Now, here is the algorithm to approximate uniform generation:

Generate a sample y and get an estimate p, for p,.
If p, > b, then output y with probability b/ Dy-

If p, < I;, then output y with probability p,.
Otherwise, try again.

There are a few important things to be noticed. First, most of the y’s are output with the same
probability b. Second, y’s which are not output with probability b happen with probability smaller
than «. Third, the rejection probability 1 — b|S*| is small (<).

About the running time, since we are using the approximate counter only with a constant ¢ and
§ = O(a), the algorithm is polynomial in |z| and loga !, as required.

