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Abstract

We settle a problem of Havel by showing that there exists an ab-
solute constant d such that if G is a planar graph in which every two
distinct triangles are at distance at least d, then G is 3-colorable.

1 Introduction

In this paper we are concerned with 3-coloring planar graphs. All graphs in
this paper are finite and simple; that is, have no loops or multiple edges. The
following is a classical theorem of Grötzsch [3].

Theorem 1. Every triangle-free planar graph is 3-colorable.

There is a long history of generalizations that extend the theorem to
classes of graphs that include triangles. We will survey them in a future
version of this paper. Let G be a graph, and let X, Y ⊆ V (G). We say that
the sets X, Y are at distance d in G if d is the maximum integer such that
every path with one end in X and the other end in Y has length at least
d. We say that two subgraphs are at distance d if their vertex-sets are at
distance d. The purpose of this paper is to describe a solution of a problem
of Havel [4, 5]:
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Theorem 2. There exists an absolute constant d such that if G is a planar

graph and every two distinct triangles in G are at distance at least d, then G
is 3-colorable.

Our proof relies heavily on the following theorem, which we will prove
in [2]. If f is a face of a planar graph, then we denote by |f | the sum of the
lengths of the boundary walks of f .

Theorem 3. There exists an absolute constantK with the following property.

Let G be a planar graph with no separating cycles of length at most four, let

C be a subgraph of G such that C is either the null graph or an induced facial

cycle of G of length at most five, and assume that there exists a 3-coloring

of C that does not extend to a 3-coloring of G, but extends to every proper

subgraph of G that includes C. Then
∑

|f | ≤ Kt, where the summation is

over all faces f of G of length at least five and t is the number of triangles

in G.

While the idea behind our proof of Theorem 3 is fairly simple, the details are
quite laborious.

2 Extending a coloring to a cylindrical grid

In this section we prove a lemma about extending a precoloring to a “cylin-
drical grid”.

Let G be a graph drawn (without crossings) in an orientable surface Σ,
and assume that we have chosen an orientation of Σ, which we shall refer
to as the clockwise orientation. Now let C be a cycle bounding a face f in
G, let v1, v2, . . . , vk be the vertices of C listed in the clockwise order of their
appearance on C, and let φ : V (C) → {1, 2, 3} be a 3-coloring of C. We can
view φ as a mapping of V (C) to the vertices of a triangle, and speak of the
winding number of φ on C, defined as the number of indices i ∈ {1, 2, . . . , k}
such that φ(vi) = 1 and φ(vi+1) = 2 minus the number of indices i such that
φ(vi) = 2 and φ(vi+1) = 1, where vk+1 means v1. If the graph G is understood
from the context and it is not a cycle, then we denote the winding number of
φ on C by wφ(C). Let us emphasize that the orientation of C is determined
by the face it bounds. Thus if G = C, then wφ(C) is ambiguous, because it
does not specify the face that determines the orientation of G. In that case
there are two faces bounded by C. They give rise to opposite orientations of
C, and hence the corresponding winding numbers sum up to zero.
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The following two propositions are easy to prove.

Proposition 4. Let G be a graph drawn in an orientable surface in such a

way that every face is bounded by a cycle, and let φ : V (G) → {1, 2, 3} be a

3-coloring. Then the sum of the winding numbers of all the face boundaries

of G is zero.

Proposition 5. The winding number of every 3-coloring on a cycle of length

four is zero.

Let r ≥ 3 and s ≥ 1 be integers. By the r × s cylindrical grid we mean
the Cartesian product of a cycle of length r and a path on s vertices. More
precisely, the r×s cylindrical gridH is obtained from a union of disjoint cycles

D1, D2, . . . , Ds of length r by adding edges so that the ith vertex of Dj is

adjacent to the ith vertex of Dj+1 for all i = 1, 2, . . . , r and j = 1, 2, . . . , s−1.
The cycles D1, D2, . . . , Ds will be called the hoops of H , and the cycles D1

and Ds will be called the cuffs of H . We will regard H as drawn in the
sphere with a specified orientation so that the notions of the paragraph prior
to Proposition 4 can be applied. We will also need to apply the notion of
a winding number to the cycles Di for i = 2, 3, . . . , s − 1. In that case the
winding number will be interpreted in a subgraph of H specified below, in
which Di will be a face boundary.

Lemma 6. Let r ≥ 3 be an integer, let s = ⌈(r + 3)/2⌉, let G be the r × s
cylindrical grid, let C1 and C2 be its cuffs, let v0 ∈ V (C2), and let φ be a

3-coloring of C1 satisfying |wφ(C1)| ≤ 1. Then φ can be extended to a 3-
coloring ψ of G such that the restriction of ψ to V (C2)− {v0} uses only two

colors.

Proof. Let D1, D2, . . . , Ds be the hoops of G so that C1 = D1 and C2 = Ds.
For p = 1, 2, . . . , s let Gp be the subgraph of G induced by V (D1 ∪D2 ∪ · · ·∪
Dp), and let ψ be an extension of φ to a 3-coloring of Gp. Let P be a subpath
of Dp of even length with ends u, u′ such that the restriction of ψ to V (P )
uses at most two colors α, β ∈ {1, 2, 3} such that ψ(u) = α ≡ β − 1(mod 3).
It follows that ψ(u) = ψ(u′). In other words, if the ends of P are colored 1,
say, then the other color that ψ uses on P is 2. In those circumstances we
say that V (P ) is a segment of Dp (with respect to ψ), and we say that α is
its flag. By a segmentation of Dp we mean a partition of V (Dp) into disjoint
segments. We say that the integer p is progressive if Dp has a segmentation
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(X1, X2, . . . , Xk) with k ≤ r − 2p + 2. Since the partition of V (Dp) into
singletons is a segmentation, we see that the integer 1 is progressive. Thus
we may assume that p is the maximum progressive integer in {1, 2, . . . , s−2},
and let ψ be the corresponding extension of φ.

For i = 1, 2, . . . , s − 1 and v ∈ V (Di) we define f(v) to be the unique
neighbor of v in Di+1. We claim that p = s− 2. To prove this claim suppose
for a contradiction that p < s−2. Let (X1, X2, . . . , Xk) be a segmentation of
Dp with k ≤ r−2p+2. It follows that k = r−2p+2, for otherwise k ≤ r−2p,
because k and r have the same parity (since each |Xi| is odd), and on giving
the vertex f(v) color ψ(v) + 1 (mod 3) we find that p + 1 is progressive,
contrary to the maximality of p. Thus k = r−2p+2 ≥ r−2⌈(r+3)/2⌉+8 ≥ 4.
Let Ck denote the cycle with vertex-set {1, 2, . . . , k}, in order, and let λ be the
3-coloring of Ck defined by saying that λ(i) is the flag of Xi. This is clearly
a proper 3-coloring of Ck and it has the same winding number as ψ on Dp

for an appropriately chosen direction of Ck, when Dp is regarded as a face of
Gp. But wψ(Dp) +wφ(C1) = 0 by Propositions 4 and 5 applied to the graph
Gp. Since k ≥ 4 and |wφ(C1)| ≤ 1 it follows that there exist consecutive
segments, say X1, X2, X3, such that the flags of X1 and X3 are equal. From
the symmetry we may assume thatX1 andX3 have flag 1. Let us assume first
that X2 has flag 2. Let ψ(f(v)) ≡ ψ(v)+1 (mod 3) for v ∈ V (Dp), except for
v ∈ X2 with ψ(v) = 3; for those vertices we define ψ(f(v)) = 2. This extends
ψ to Gp+1. Then f(X1∪X2∪X3) is a segment of Dp+1 with respect to ψ, and
hence (f(X1 ∪X2 ∪X3), f(X4), f(X5), . . . , f(Xk)) is a segmentation of Dp+1

with at most k−2 = r−2(p+1)+2 blocks. Consequently p+1 is progressive,
contrary to the choice of p. If X2 has flag 3, then we proceed analogously,
using ψ(f(v)) = 1 for v ∈ X2 with ψ(v) = 3 and ψ(f(v)) ≡ ψ(v) − 1 (mod
3) for all other v ∈ V (Dp). This proves our claim that p = s− 2.

Thus Ds−2 has a segmentation into at most three blocks (at most two
is r is even). If r is even, then the result follows easily, and so we assume
that r is odd. We describe how to extend ψ to Ds−1 and Ds. Let v1 be the
unique vertex of Ds−2 with f(f(v1)) = v0. We may assume without loss of
generality that Xi has flag i for i = 1, 2, 3, and that v1 ∈ X3. Let X ′

3 and X ′′

3

be the vertex-sets of the two paths of the graph induced in Ds−2 by X3−{v1},
numbered so that X ′

3 has a neighbor in X2 and X ′′

3 has a neighbor in X1.
One of the sets X ′

3, X
′′

3 may be empty. Let (A,B) be a 2-coloring of Ds−2\v1

such that the ends of X1 belong to A. Let a = 1 and b = 3 if |X ′

3|, |X
′′

3 | are
both even, and let let a = 3 and b = 1 if |X ′

3|, |X
′′

3 | are both odd. We define
ψ(f(v)) = 2 for all v ∈ A, ψ(f(v)) = 3 for all v ∈ B −X ′′

3 , ψ(f(v)) = 1 for
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all v ∈ B ∩X ′′

3 , ψ(f(v1)) = a, ψ(f(f(v1))) = b, ψ(f(f(v))) = a for all v ∈ A,
and ψ(f(f(v))) = 2 for all v ∈ B. Then ψ is a desired coloring of G.

Lemma 7. Let r ≥ 3 be an integer, let G be the r× (r+ 5) cylindrical grid,

let C1 and C2 be the two cuffs of G, and let φ be a 3-coloring of C1 ∪C2 such

that |wφ(C1)| ≤ 1 and wφ(C1) + wφ(C2) = 0. Then there exists a 3-coloring

ψ of G such that ψ(v) = φ(v) for every v ∈ V (C1 ∪ C2).

Proof. Let D1, D2, . . . , Dr+5 be the hoops of G. Let s = ⌈(r+3)/2⌉, let u ∈
V (Ds) be arbitrary, and let v ∈ V (Ds+2) be the nearest vertex to u. By two
applications of Lemma 6 we deduce that ψ can be extended to a 3-coloring ψ
of G\V (Ds+1) such that the restriction of ψ to Ds\u uses only two colors, and
likewise the restriction of ψ to Ds+2\v uses only two colors. We regard Ds as
a face of the subgraph of G induced by V (D1 ∪D2 ∪ · · ·∪Ds), and we regard
Ds+2 as a face of the subgraph of G induced by V (Ds+2 ∪Ds+3 ∪ · · ·∪Dr+5).
The condition wφ(C1)+wφ(C2) = 0 and Propositions 4 and 5 imply that the
winding number of ψ on Ds and the winding number of ψ on Ds+2 add up
to zero. It follows that the coloring ψ can be extended to a 3-coloring of all
of G, as desired.

3 Proof of Theorem 2

Let C be a cycle in a graph G, and let S ⊆ V (G). We say that the cycle
C is S-tight if C has length four and the vertices of C can be numbered
v1, v2, v3, v4 in order such that for some integer t ≥ 0 the vertices v1, v2 are
at distance exactly t from S, and the vertices v3, v4 are at distance exactly
t+ 1 from S.

Lemma 8. Let d ≥ 1 be an integer, let G be a graph, and let S be a family of

distinct subsets of V (G) such that every two distinct sets of S are at distance

at least 2d. Let C be a cycle in G of length four that is at distance at most

d− 1 from S0 ∈ S, and assume that for each pair u, v of diagonally opposite

vertices of C, some pair of distinct sets in S are at distance at most 2d− 1
in the graph obtained from G by identifying u and v. Then C is S0-tight.

Proof. Let the vertices of C be v1, v2, v3, v4 in order. By hypothesis there
exist sets S1, S2, S3, S4 ∈ S, where Si is at distance di from vi, such that
S1 6= S3, S2 6= S4, d1 +d3 ≤ 2d−1, and d2 +d4 ≤ 2d−1. From the symmetry
we may assume that d1 ≤ d−1 and d2 ≤ d−1. That implies that S1, S2 and
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at least one of the pairs S0, S1 and S0, S2 are at distance at most 2d− 1, and
hence S0 = S1 = S2. But S4 6= S2 = S1, and hence d1 + d4 + 1 ≥ 2d, because
S1 and S4 are at distance at least 2d. This and the inequality d2+d4 ≤ 2d−1
imply that d1 ≥ d2. But there is symmetry between d1 and d2, and hence an
analogous argument shows that d1 ≤ d2. Thus for t := d1 = d2 the vertices
v1, v2 are both at distance t from S0 = S1 = S2. If v4 was at distance t or less
from S0, then S0 and S4 would be at distance at most t+d4 = d2+d4 ≤ 2d−1,
a contradiction. The same holds for v3 by symmetry, and hence v3 and v4

are at distance t+ 1 from S0, as desired.

Let G be a graph, let S ⊆ V (G) and let C be a cycle or a path in G. We
say that C is equidistant from S if for some integer t ≥ 0 every vertex of C
is at distance exactly t from S. We will also say that C is equidistant from
S at distance t.

Lemma 9. Let G be a plane graph, let s, i0 ≥ 1 be integers, and let S ⊆ V (G)
induce a connected subgraph of G. Assume that for every integer i satisfying

i0 ≤ i ≤ i0 + 2s + 7 log2 s + 7 every face of G at distance exactly i from S
is bounded by an S-tight cycle. Assume also that there exists an equidistant

cycle C0 at distance i0 from S of length at most s. Then G has a subgraph

isomorphic to an r × (r + 5) cylindrical grid for some integer r satisfying

3 ≤ r ≤ s.

Proof. Let C0 be as stated. We may assume, by replacing C0 by a shorter
cycle, that C0 is induced. We may choose the maximum integer j ≥ 0 such
that there exists an induced equidistant cycle C at distance t from S of length
r, where i0 ≤ t ≤ i0 + s(1 + 1/2 + · · ·+ 1/2j−1) + 7j (or t = i0 if j = 0), and
r ≤ s/2j +1+1/2+ · · ·+1/2j−1. Let p be the maximum integer such that G
has a subgraph H isomorphic to the r× p cylinder with one cuff C and such
that each Di is equidistant from S at distance t+ i− 1 for all i = 1, 2, . . . , p,
where D1 = C,D2, . . . , Dp are the hoops of H . Such integers j and p exist,
because the r × 1 cylindrical grid C0 satisfies the requirements.

We claim that H satisfies the conclusion of the theorem. To prove that
it suffices to show that p ≥ s/2j + 1 + 1/2 + · · · + 1/2j−1 + 5, and so we
may assume for a contradiction that p ≤ s/2j + 7. If Dp is not induced,
then V (Dp) includes the vertex-set of an induced equidistant cycle of length
at most |V (Dp)|/2 + 1 ≤ r/2 + 1 ≤ s/2j+1 + 1 + 1/2 + · · · + 2j at distance
t + p − 1 ≤ i0 + s(1 + 1/2 + · · · + 1/2j) + 7(j + 1) from S, contrary to the
maximality of j. Thus Dp is induced.
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Let ∆ be the open disk bounded by Dp; using the fact that S induces
a connected subgraph of G and the symmetry between ∆ and the other
component of R2 −Dp we may assume that ∆ includes the set S. Thus the
closure of ∆ includes H . Now let uv be an edge of Dp, and let f be the face
of G incident with uv that is not a subset of ∆. Then f is at distance t+p−1
from S. From the upper bound on r and the fact that r ≥ 3 we deduce that
j ≤ log2 s. It follows that t+p−1 ≤ i0 +2s+7 log2 s+7, and hence the face
f is bounded by an S-tight cycle. Thus the vertices on the boundary on f
may be denoted by u, v, v′, u′ in order. Since f is not a subset of ∆ it follows
that u′, v′ are at distance t+ p from S. Now let w be the other neighbor of v
on C, and let us repeat the same argument to the edge vw, obtaining a face
boundary v, w, w′, v′′.

We claim that v′ = v′′. Indeed, if not, then there exists a face f ′ incident
with v, not incident with either of the edges uv, vw, and not contained in
∆. Since the face f ′ is S-tight, a neighbor of v in the face boundary of f ′ is
at distance t + p− 1 from S, and hence belongs to Dp, contrary to the fact
that Dp is induced. This proves our claim that v′ = v′′.

Thus for every v ∈ V (Dp) there exists a unique vertex v′ as above. Let
Dp+1 be the subgraph of G consisting of all vertices v′ for v ∈ V (Dp) and
all edges u′v′ for all edges uv ∈ E(Dp). We claim that v′1 6= v′2 for distinct
vertices v1, v2 ∈ V (Dp). Indeed, if v′1 = v′2 for distinct v1, v2 ∈ V (Dp), then
we may select v1, v2 and a subpath P of Dp joining them such that P is as
short as possible. Then |E(P )| ≤ |E(Dp)|/2, and the vertices v′ for v ∈ V (P )
form an equidistant cycle of length |E(P )| at distance t+ p from S, leading
to a contradiction in the same way as the earlier proof that Dp is induced.
This proves our claim that v′1 6= v′2 for distinct vertices v1, v2 ∈ V (Dp). It
follows that Dp+1 is a cycle.

Now adding Dp+1 to H produces an r× (p+ 1) cylindrical grid, contrary
to the maximality of p. This proves that p ≥ s/2j+1+1/2+ · · ·+1/2j−1+5,
and hence H satisfies the conclusion of the theorem.

We will need the following lemma of Aksionov [1].

Lemma 10. Let G be a planar graph with at most one triangle, and let C be

either the null graph or a facial cycle of G of length at most five. Assume that

if C has length five and G has a triangle T , then C and T are edge-disjoint.

Then every 3-coloring of C extends to a 3-coloring of G.

In order to prove Theorem 2 we prove the following more general theorem.
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Theorem 2 follows by letting C0 be the null graph.

Theorem 11. There exists an absolute constant d with the following prop-

erty. Let G be a plane graph, and let C0 be either the null graph or an induced

facial cycle of G of length at most five such that every two distinct triangles

in G are at distance at least 2d, and if C0 has length exactly five, then it is

edge-disjoint from every triangle of G. Then every 3-coloring of C0 extends

to a 3-coloring of G.

Proof. Let K be an integer such that the integer K − 4 satisfies the con-
clusion of Theorem 3, and let d = (2K + 7⌊log2(K + 8)⌋ + 28)(K + 1) + 1.
We will prove by induction on |V (G)| that d satisfies the conclusion of the
theorem. Let G be as stated, let φ0 be a 3-coloring of C0, and assume for a
contradiction that φ0 does not extend to a 3-coloring of G. We may assume,
by taking a subgraph of G, that φ0 extends to every proper subgraph of G
that includes C0. If G has at most one triangle, then the theorem follows
from Lemma 10. In particular, the theorem holds if G has fewer than 2d
vertices. We may therefore assume that G has at least two triangles, and
that the theorem holds for all graphs with strictly fewer than |V (G)| vertices.
We claim that

(1) if G has a separating cycle C of length at most five, then C has length

exactly five and E(C) includes an edge of a triangle of G.

To prove (1) let C be a separating cycle in G of length at most five, and let
∆ be the open disk bounded by C. From the symmetry we may assume that
∆ is disjoint from C0. Let G′ be the subgraph of G consisting of C and all
vertices and edges drawn in ∆. We wish to apply the induction hypothesis
to G′ and C. By the minimality of G the coloring φ0 extends to a 3-coloring
φ of G\(V (G′)−V (C)). It follows that the restriction of φ to V (C) does not
extend to a 3-coloring of G′. Clearly every two triangles in G′ are at distance
at least 2d. By the induction hypothesis applied to G′ and C we deduce C
has length exactly five, and that it shares an edge with a triangle in G, as
desired. This proves (1).

Let S denote the set of vertex-sets of all triangles in G. Then S 6= ∅,
because G has at least two triangles.

(2) If C is a cycle in G of length four at distance at most d− 1 from a set

S ∈ S with |V (C)∩V (C0)| ≤ 1 and C shares no edge with a triangle of
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G, then either C is S-tight, or V (C) ∩ S = ∅ and at least two vertices

of C are adjacent to a vertex in S.

To prove (2) let the vertices of C be numbered u1, u2, u3, u4 in order. By (1)
the cycle C is facial. Let G13 be the graph obtained from G by identifying
u1 and u3 and deleting all resulting loops and parallel edges, and let G24 be
defined analogously. The graph G13 may have a new triangle that does not
appear in G, one that resulted from the identification of u1 and u3. If that
happens we say that G13 is triangular, and we apply the same terminology
to G24.

We claim that if G24 is not triangular, then some pair of distinct sets in S
are at distance at most 2d−1 in G24. Since |V (C)∩V (C0)| ≤ 1 the cycle C0

is a cycle in G24, and φ0 does not extend to a 3-coloring of G24. Furthermore,
since C shares no edge with a triangle of G, it follows from (1) that if C0

has length five, then it shares no edge with a triangle of G24. It follows by
induction applied to G24 and C0 that in G24 some pair of distinct sets of S
are at distance at most 2d− 1, as claimed. Since the claim applies to G13 by
symmetry, it follows from Lemma 8 that if neither G13 nor G24 is triangular,
then the cycle C is S-tight, as desired.

We may therefore assume from the symmetry that G13 is triangular. Thus
G has a separating cycle C ′ of length five that shares two edges with C. Let
the vertices of C ′ be u1, u5, u6, u3, u2 in order. By (1) the cycle C ′ includes
an edge of a triangle T of G. It follows that V (T ) = S, and hence C is
at distance zero or one from S. Since C shares no edge with a triangle of
G, we deduce that G24 is not triangular. Thus by the claim of the previous
paragraph some pair of distinct sets S ′, S ′′ ∈ S are at distance at most 2d−1
in G24. It follows that one of S ′, S ′′ is at distance at most 2d − 1 from S
in G, and hence is equal to S. From the symmetry we may assume that
S ′′ = S. Since S and S ′ are at distance at most 2d − 1 in G24 but not in
G, we conclude that u1, u3 6∈ S, and hence the edge T and C share is the
edge u5u6. Thus u1 and u3 are adjacent to vertices in S, as desired. This
proves (2).

By (1) we may apply Theorem 3 to G and C0. The choice of K implies
that

(3)
∑

|f | ≤ K|S|, where the summation is over all faces f of G of length

at least five and the face bounded by C0.
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By an angle in G we mean a pair (v, f), where v ∈ V (G) and f is a face of
G incident with v. Let S ∈ S. We say that an angle (v, f) is S-contaminated

if v is at distance at most d− 1 from S and f either has length at least five,
or is bounded by C0. Since every S-contaminated angle contributes at least
one toward the sum in (3), we deduce that there exists S ∈ S such that

(4) there are at most K angles that are S-contaminated.

From now on we fix this set S. We say that an integer i ∈ {0, 1, . . . , d−1} is
S-contaminated if some angle (v, f) is S-contaminated, where v is at distance
exactly i from S. It follows from (4) and the choice of d that there exists an
integer i0 such that

(5) 2 ≤ i0 ≤ i0 + 2K + 7⌊log2(K + 8)⌋ + 26 ≤ d − 1 and no integer in

{i0 − 1, i0, . . . , i0 + 2K + 7⌊log2(K + 8)⌋ + 26} is S-contaminated.

(6) If v ∈ V (G) is at distance i from S, where i0 ≤ i ≤ i0+2K+7 log2(K+
8) + 25, then every face incident with v is S-tight and is not bounded

by C0.

To prove (6) let v be as stated, and let f be a face incident with v. By (5)
the face f is bounded by a cycle C of length four, and |V (C) ∩ V (C0)| ≤ 1,
because otherwise some vertex of V (C)∩ V (C0) gives a contradiction to (5).
Furthermore, C is incident with no edge of a triangle, because every triangle
either has vertex-set S or is at distance at least 2d from S. Since i ≥ 2 it
follows from (2) that C is S-tight, as desired. This proves (6).

We now claim that

(7) there exists an equidistant cycle at distance i0 from S.

We prove (7) by showing that the subgraph J of G induced by vertices at
distance exactly i0 from S has minimum degree at least two. To this end,
let v ∈ V (J). By (6) the vertex v is incident with an S-tight face f bounded
by a cycle C of length four, and C includes a neighbor u of v that is also in
J . Thus J has minimum degree at least one. Now let v′ be the neighbor of
v in C\u, and let f ′ be the other face incident with the edge vv′. Since v′ is
not at distance i0 from S by the definition of S-tight, the other neighbor of
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v in the boundary of f ′, say w, is at distance exactly i0 from S, because f ′

is S-tight. Thus v has degree at least two in J , as desired. This proves (7).

Our next claim bounds the length of equidistant cycles.

(8) For every i = 1, 2, . . . , d− 1, every equidistant cycle at distance i from

S has length at most K + 8.

To prove (8) let C be an equidistant cycle at distance i from S. For every
edge e ∈ E(C) we will construct an open set ∆e ⊆ R2 such that

(a) ∆e ∩ ∆e′ = ∅ for distinct e, e′ ∈ E(C), and
(b) each ∆e either includes a face of G of length at least five at distance

at most d − 1 from S, or it includes a face incident with an edge of C0, or
the boundary of ∆e includes an edge joining two elements of S.

The construction is as follows. Let ∆0 be the component of R2 − C
containing S, and let e = u1u2 be an edge of C. For j = 1, 2 there is a
path Pj from uj to S of length i, and none of length less than i. We may
assume that P1 and P2 are coterminal; that is, if they intersect, then their
intersection is a path one end of which is a common end of P1 and P2. If P1

is disjoint from P2, then let f be the edge of G joining the two ends of P1, P2

that belong to S; if P1, P2 intersect, then let f = ∅. Let ∆ be the component
of R2 − P1 − P2 − f that is contained in ∆0. We may assume that P1 and
P2 are chosen so that ∆ is minimal, and we define ∆e := ∆.

We now prove that the sets ∆e satisfy (a). To that end let e, P1, P2 be
as in the previous paragraph, let e′ ∈ E(C) − {e}, and let P ′

1, P
′

2 be the
corresponding paths for e′. If ∆e ∩ ∆e′ 6= ∅, then ∆e includes an edge of
P ′

1 ∪ P
′

2. From the symmetry we may assume that a subpath Q of P ′

1 joins a
vertex x ∈ V (P1) to a vertex y ∈ V (P1 ∪ P2), and otherwise lies in ∆e. We
may also assume that y is closer to S than x. If y ∈ V (P1), then we replace
the subpath of P1 from x to y by Q, and if y ∈ V (P2), then we replace the
subpath of P1 from x to S by the union of Q and the subpath of P2 from y
to S. In either case we obtain contradiction to the minimality of ∆e. This
proves that the sets ∆e satisfy (a).

To prove that the sets ∆e satisfy (b) let e, P1, P2 as in the paragraph
before last. If P1 and P2 are disjoint, then the closure of ∆e includes an edge
of the triangle with vertex-set S, as desired. Thus we may assume that P1

and P2 intersect. Let z ∈ V (P1 ∩ P2) be the vertex farthest away from S.
Then there exists a face f of G incident with z and contained in ∆e. The
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face f has length at least four, because its boundary includes at most one
vertex of S and it is at distance at most d−1 from S. If f has length at least
five, then (b) holds, and so we may assume that f has length four. But z is
the only vertex incident with f at the same or smaller distance from S than
z, and hence (2) implies that at least two vertices of C0 are incident with f .
Since f has length four and C0 has length at most five, it follows from (1)
that f is incident with an edge of C0. Thus the sets ∆e satisfy (b).

It follows from (b) that to each edge of C we can assign either an edge
of the triangle with vertex-set S, or a face of G of length at least five at
distance at most d − 1 from S, or a face of G incident with an edge of C0,
and this assignment is injective by (a). Since C0 has length at most five, by
(4) at most K + 5 faces can be assigned as above, and obviously at most
three edges of the triangle can be assigned. This complets the proof of (8).

By (6), (7), (8) and Lemma 9 the graph G has a subgraph H isomorphic
to an r× (r+ 5) cylindrical grid for some r ≤ K + 8 such that H and C0 are
disjoint. Let D1, D2, . . . , Dr+5 be the hoops of H . Let ∆1 be the component
of R2 − D2 containing D1, and let ∆r+5 be the component of R2 − Dr+4

containing Dr+5. Let G1 be obtained from G by deleting all vertices and
edges drawn in the interior of ∆r+5, and then adding edges into the face
bounded by Dr+4 in such a way that all faces contained in ∆r+5 are bounded
by cycles of length four, except possibly one, and if there is an exceptional
face, then it is bounded by a cycle of length five. We shall refer to this as “the
near-quadrangulation property”. Let Gr+5 be defined analogously. Since G
has no separating cycles of length four, it follows that if C0 is not null, then
it is a subgraph of exactly one of G1, Gr+5. From the symmetry we may
assume that C0 is a subgraph of G1.

By induction φ0 extends to a 3-coloring ψ1 of G1. Similarly, the graph
Gr+5 has a 3-coloring ψ2. It follows from the near quadrangulation property
that |wψ1

(D1)| ≤ 1 and |wψ2
(Dr+5)| ≤ 1, where the winding numbers refer to

the drawing of H . Furthermore, if r is even, then wψ1
(D1) = wψ2

(Dr+5) = 0,
because there is no exceptional face bounded by a pentagon, and if r is odd,
then |wψ1

(D1)| = |wψ2
(Dr+5)| = 1. In the latter case, we may assume, by

permuting two colors in ψ2 if necessary, that wψ1
(D1) + wψ2

(Dr+5) = 0. By
applying Lemma 7 to H and the coloring of D1∪Dr+5 obtained by restricting
ψ1 to D1 and restricting ψ2 to Dr+5 we obtain a 3-coloring of G that extends
φ0, a contradiction.
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