14 - Subset Lattices

William T. Trotter trotter@math.gatech.edu

Subset Lattices

Definition For an integer $n \ge 1$, the poset consisting of all subsets of $\{1, 2, ..., n\}$ ordered by inclusion is called the subset lattice. We will denote it as 2^n . Here is a diagram for 2^4 .

Subset Lattices - Cubes

Remark Using the alternate notation for subsets as bit strings, subset lattices are also called cubes. Here is the 4-cube.

Basic Properties of Subset Lattices

Fact The size of 2ⁿ is 2ⁿ.

Fact The unique maximal element in 2^n is the set $\{1, 2, ..., n\}$ and the unique minimal element is the empty set \emptyset .

Fact The height of 2^n is n + 1. In fact, all maximal chains are maximum.

Inductive Nature of Subset Lattices

Basic Fact The subset lattice 2^{n+1} can be viewed as 2×2^n .

Hamiltonian Property for Subset Lattices

Theorem For $n \ge 2$, the n-cube subset 2^n is Hamiltonian.

Hamiltonian Property for Subset Lattices

Theorem For $n \ge 2$, the n-cube subset 2^n is Hamiltonian.

The Width of Subset Lattices

Fact If A is a set with |A| = k, then the number of maximal chains in 2^n containing A is k! (n-k)!

Fact The width of 2^n is at least as large as any binomial coefficient C(n, k), where $0 \le k \le n$.

Fact The largest binomial coefficient of the form C(n, k) is when $k = \lfloor n/2 \rfloor$. When n is even, there is just one value of k for which C(n, k) is maximum. When n is odd, there are two. For example, the width of $2^{13} \ge C(13, 6) = C(13, 7)$ while the width of $2^{14} \ge C(14, 7)$.

The Width of Subset Lattices (2)

Theorem Fact (Sperner, '28) The width of the subset lattice 2^n is the binomial coefficient $C(n, \lfloor n/2 \rfloor)$.

Note We will give two proofs of this result in class. The first proof is the more classical of the two and rests on the following elementary fact.

Fact If A is a subset of $\{1, 2, ..., n\}$ and |A| = k, then the number of maximal chains containing A is k! (n - k)! To see this, consider bit strings. There are k! ways to add the bits in A and then another (n - k)! ways to add the bits in the complement of A.

The Width of Subset Lattices (3)

Proof of Spener's theorem Let $\{A_1, A_2, ..., A_t\}$ be a maximum antichain in 2^n . For each i, let $k_i = |A_i|$. Then

$$\sum_{1 \le i \le t} k_i! (n - k_i)! \le n!$$

$$\sum_{1 \le i \le 1} [k_i! (n - k_i)!]/n! \le 1.$$

$$\sum_{1 \le i \le t} 1/C(n, k_i) \le 1$$

$$+/C(n, \lfloor n/2 \rfloor) \leq 1$$

$$t \leq C(n, \lfloor n/2 \rfloor)$$

Ranked Posets - Start of Second Proof

Definition A poset is ranked if all maximal chains are maximum. Here is a ranked poset of height 4.

Ranked Posets (2)

Definition Here is a ranked poset of height 5.

Middle Level of Ranked Poset

Observation Here is the middle level for a ranked poset of height 4.

Middle Level of Ranked Poset (2)

Observation Here is the middle level for a ranked poset of height 5.

Symmetric Chain Partition

Definition A chain in a ranked poset is symmetric when it (1) goes the same distance above and below the middle levels and (2) doesn't skip levels.

Observation Here is a symmetric chain partition for a ranked poset of height 4.

Symmetric Chain Partition (2)

Observation Here is a symmetric chain partition for a ranked poset of height 5.

Symmetric Chain Partition (3)

Lemma The Cartesian product of two chains has a symmetric chain partition.

Symmetric Chain Partition (4)

Theorem For every $n \ge 1$, the subset lattice 2^n has a symmetric chain partition.

Proof On the next two slides, we illustrate the inductive construction. In each case, we start with a symmetric chain partition of 2^n and show how to modify two copies to obtain a symmetric chain partition of 2^{n+1} .

Note that when n is even, we have some 1-element chains in the partition. Each pair becomes a 2-element chain in the next step. But when n is odd, each pair of chains produces another pair.

Symmetric Chain Partition (5)

Example Using two copies of a symmetric chain partition of 2^2 to form a symmetric chain partition of 2^3 . Note that the 1-element chains 2 and 23 become a 2-element chain.

Symmetric Chain Partition (6)

Example Using two copies of a symmetric chain partition of 2^3 to form a symmetric chain partition of 2^4 .

