
November 14, 2017

18 – Spanning Tree Algorithms

William T. Trotter
trotter@math.gatech.edu

A Networking Problem

Problem The vertices represent 8 regional data centers which need
to be connected with high-speed data lines. Feasibility studies show
that the links illustrated above are possible, and the cost in millions of
dollars is shown next to the link. Which links should be constructed to
enable full communication (with relays allowed) and keep the total cost
minimal?

Links Will Form a Spanning Tree

Cost (T) = 47 + 23 + 75 + 74 + 55 + 74 + 79

= 427

Minimum Weight Spanning Trees

Problem Given a connected graph with non-negative weights
on the edges, find a spanning tree T for which the sum of
the weights on the edges in T is as small as possible.

Why Not Try All Possibilities?

1. Suppose the graph has n vertices. Then the number of
possible spanning trees can be as large as nn-2.

2. When n = 75, this means that the number of spanning trees
can be as large as

7576562804644601479086318651590413464814067833088403
3924704328101802427997135680470819352194666862487792
96875

Kruskal’s Algorithm (Avoid Cycles)

1. Sort the edges by weight.

2. Build a spanning forest (that eventually becomes a tree) by
proceeding in a “greedy” manner, adding the edge of minimum
weight which when added to those already chosen does not
form a cycle.

Kruskal – Step 1

Remark Start with an edge having minimum weight.

Kruskal – Step 2

Remark Among the remaining edges, choose one of
minimum weight.

Kruskal – Step 3

Remark Among the remaining edges, choose one of
minimum weight which avoids cycles.

Kruskal – Step 4

Remark Among the remaining edges, choose one of
minimum weight which avoids cycles.

Kruskal – Step 5

Remark Among the remaining edges, choose one of
minimum weight which avoids cycles.

Kruskal – Step 6

Remark Among the remaining edges, choose one of
minimum weight which avoids cycles.

Why Avoiding Cycles Matters

Remark Up to this point, we have simply taken
the edges in order of their weight. But now we
will have to reject an edge since it forms a cycle
when added to those already chosen.

Forms a Cycle

Note We cannot take the blue edge having weight 55, as this
would form a cycle.

Kruskal – Step 7 DONE!!

Weight (T) = 23 + 29 + 31 + 32 + 47 + 54 + 66 = 282

Prim’s Algorithm (Build Tree)

1. Build a tree one vertex at a time.

2. Start with a trivial one point tree T.

3. Then add the edge of minimum weight among those with one
endpoint in T and the other not in T.

Prim – Step 1

Remark In this example, we take vertex 1 as the “root” and
start with the trivial tree consisting of just the root. We
illustrate the first step after the initialization step.

Prim – Step 2

Remark Choose the minimum weight edge which expands
T by a single vertex.

Prim – Step 3

Remark Choose the minimum weight edge which expands
T by a single vertex.

Prim – Step 4

Remark Choose the minimum weight edge which expands T
by a single vertex.

Prim – Step 5

Remark Choose the minimum weight edge which expands T
by a single vertex.

Prim – Step 6

Remark Choose the minimum weight edge which expands
T by a single vertex.

Prim – Step 7 Done!!

Weight (T) = 23 + 29 + 31 + 32 + 47 + 54 + 66 = 282

The Mathematics Behind the Algorithms

Remark With the next several slides, we will explain why
Kruskal (avoid cycles) and Prim (build tree) work as
intended. Students may find it interesting that the
underlying principles are drawn from linear algebra, but
now with a finite field rather than with the more familiar
fields of real numbers and complex numbers. In fact,
these principles apply to a wide range of discrete
optimization problems.

The Exchange Principle (1)

Remark We start by considering a spanning tree
T in a graph G.

The Exchange Principle (2)

Observation Consider any edge e not in the tree T. Then
there is a unique path P in T from one endpoint of e to the
other.

The Exchange Principle (3)

Remark Consider any edge f from T which belongs
to the path P.

The Exchange Principle (4)

Important Fact Then T’ = T – f + e is again a tree.

A New Kind of Vector Space

Mathematical Framework Let G be a connected graph, and let
E be the edge set of G. We consider subsets of E and call a
subset S independent if it contains no cycles. Note that the
maximal independent sets are the spanning trees of G.

Note In combinatorial mathematics, a family of independent
sets satisfying an exchange property is called a matroid, and
these structures are studied extensively, just like graphs and
posets.

Constrained Spanning Trees

Modified Problem Find the minimum weight spanning tree
with some choices made by management. These choices may
or may not be good ones??!!

Constrained Spanning Trees

Remark Neither of our two algorithms has a provision
for “starting with a handicap.

Fundamental Lemma

Lemma Let G be a graph with non-negative weights on the
edges, let F be a spanning forest of G and let C be a
component of F. Also, among all edges with one endpoint in C
and the other not in C, let edge e be one of minimum weight.
Then among all the spanning trees of G that contain F, there
is one of minimum weight that contains the edge e.

Applying the Exchange Principle

Proof Suppose the lemma is false and let T be a spanning tree
of minimum weight among all that contain the spanning forest F.
Then we know that e is not an edge in T. Let e = xy with x a
vertex in the component C. there are none of minimum weight
containing the edge e. Then consider the unique path x = x0,
x1, …, xt = y in T.

Applying the Exchange Principle (2)

Proof (continued) Let i be the least integer so that xi is in
the component C (together with x) while xi+1 is not in C.
Then let f = xixi+1. Since S is optimal, and S – f + e is a
spanning tree, we know that w(f) ≤ w(e). But by the rule used in
the selection of e, we know w(e) ≤ w(f). So w(e) = w(f). Thus
T – f + e has the same weight as T and contains e. The
contradiction completes the proof.

The Correctness of Kruskal’s algorithm

Proof We proceed by induction on the number of edges
specified by management, except now we consider management as
both benevolent and enlightened. At step i when i edges have
already been selected, management considers the set of
admissible edges (those avoiding cycles) and takes one of
minimum weight. In turn, manager declares the component C to
contain one of the end points of C.

Note Additional details provided in class.

The Correctness of Prim’s algorithm

Proof We proceed by induction on the number of edges
specified by management, except now we consider management
as both benevolent and enlightened. Now we simply take the
component C as the set of edges determined by all preceding
choices, with the initial case being C as just the root vertex of
the graph.

Note Additional details provided in class.

Data Structure and Computational Issues

1. Implementing Kruskal’s Algorithm seems to require sorting
the edges by weight as a preliminary step. Are there
alternatives?

2. Implementing Prim’s algorithm seems to require keeping
track of the edge of minimum weight with one endpoint in a
component, but the components are changing. How does one
do this?

