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Finding Shortest Paths

Problem Given a connected digraph  G  with non-negative 
weights on the edges and a root vertex  r, find for each 
vertex  x, a directed path  P(x) from  r to  x so that the sum 
of the weights on the edges in  P(x)  is as small as possible.



Dijkstra’s Algorithm

1. At each step, and each vertex x, keep track of a “distance”  
d(x) and a directed path  P(x) from root to vertex  x of length  
d(x).

2. Scan first from the root and take initial paths  P(r,x) = (r, x) 
with  d(x) = w(rx)  when  rx is an edge,  and  d(x) = ∞   when  
rx is not an edge.

3. Vertices are either “permanent” or “temporary”.  At first, the 
root  r is the only permanent vertex.  For each permanent 
vertex x, the current value of  d(x)  is the length of a shortest 
path from  r to  x.



Dijkstra’s Algorithm - The Inductive Step

1. Of all temporary vertices, choose one, say  x,  whose 
“distance” to the root is minimum.  Mark it permanent.

2. For each temporary vertex  y distinct from  x, set       

d(y) = min{d(y), d(x)+w(xy)}

3. If this assignment lowers the value of d(y), set  P(y) to be 
the path obtained by appending  y to the end of  P(x)



Initialization

Remark Initially, the paths are just the edges (if they exist) 
joining each vertex to the root.  If there is no edge, take the 
length of the edge to be infinite.  The sequence of permanent 
vertices is the trivial sequence (1).

1. d(1) = 0;    P(1) = (1) 
2. d(2) = ∞;    P(2)  = (1,2)
3. d(3) = 47;   P(3)  = (1,3)  
4. d(4) = ∞;    P(4)  = (1,4)
5. d(5) = 70;   P(5)  = (1,5)
6. d(6) = 24;   P(6)  = (1,6)  
7. d(7) = ∞;    P(7)  = (1,7)
8. d(8) = ∞;    P(8)  = (1,8)



Step 1

1. d(1) = 0;    P(1) = (1) 
2. d(2) = ∞;    P(2)  = (1,2)
3. d(3) = 47;   P(3)  = (1,3)  
4. d(4) = ∞;    P(4)  = (1,4)    New d(4) = 144;  P(4) = (1,6,4)
5. d(5) = 70;   P(5)  = (1,5)
6. d(6) = 24;   P(6)  = (1,6)  
7. d(7) = ∞;    P(7)  = (1,7)
8. d(8) = ∞;    P(8)  = (1,8)

Among the temporary vertices, choose one closest to the root.  
This is vertex  6.  Make vertex 6 permanent.  Scan edges from 6 
and see edge (6,3) of weight 25 and edge (6,4) of weight 120.  This 
results in improvements for vertex 4 but not for 3.



Step 2

1. d(1) = 0;    P(1) = (1) 
2. d(2) = ∞;    P(2)  = (1,2)    New  d(2) = 102;  P(2) = (1,3,2)
3. d(3) = 47;   P(3)  = (1,3) 
4. d(4) = 144; P(4)  = (1,6,4)  New  d(4) = 135; P(4) = (1,3,4)
5. d(5) = 70;   P(5)  = (1,5)
6. d(6) = 24;   P(6)  = (1,6)  
7. d(7) = ∞;    P(7)  = (1,7)   New d(7) = 113;  P(7) = (1,3,7)
8. d(8) = ∞;    P(8)  = (1,8)

Among the temporary vertices, choose one closest to the root.  
This is vertex  3.  Make vertex 3 permanent.  Scan edges from 3 
and see edge (3,2) of weight 55, edge (3,4) of weight 88, edge 
(3,5) of weight 23  and edge (3,7) of weight 66.   These edges 
result in improvements for vertices 2, 4 and 7 but not 5 (where 
there is a tie).



Step 3

1. d(1) = 0;      P(1) = (1) 
2. d(2)  = 102;  P(2) = (1,3,2)   New d(2) = 101; P(2) = (1,5,2)
3. d(3) = 47;    P(3)  = (1,3) 
4. d(4) = 135;  P(4) = (1,3,4)
5. d(5) = 70;    P(5)  = (1,5)
6. d(6) = 24;    P(6)  = (1,6)  
7. d(7) = 113;  P(7) = (1,3,7)   New d(7) = 112;  P(7) = (1,5,7)
8. d(8) = ∞;     P(8)  = (1,8)

Among the temporary vertices, choose one closest to the root.  
This is vertex  5.  Make vertex 5 permanent.  Scan edges from 5 
and see edge (5,2) of weight 32 and edge (5,7) of weight 42.   
These edges result in improvements for vertices 2 and 7.



Step 4

1. d(1) = 0;      P(1) = (1) 
2. d(2)  = 101; P(2) = (1,5,2)
3. d(3) = 47;    P(3)  = (1,3) 
4. d(4) = 135;  P(4) = (1,3,4)   New  d(4) = 132;  P(4) = (1,5,2,4)
5. d(5) = 70;    P(5)  = (1,5)
6. d(6) = 24;    P(6)  = (1,6)  
7. d(7) = 112;  P(7) = (1,5,7)
8. d(8) = ∞;     P(8)  = (1,8)   New d(8) = 180;  P(8) = (1,5,2,8)

Among the temporary vertices, choose one closest to the root.  
This is vertex  2.  Make vertex 2 permanent.  Scan edges from 
2 and see edge (2,4) of weight 31, edge (2,7) of weight 74 and 
edge (2,8) of weight 79.   These edges result in improvements 
for vertices 4 and 8, but not vertex 7.



Step 5

1. d(1) = 0;      P(1) = (1) 
2. d(2)  = 101; P(2) = (1,5,2)
3. d(3) = 47;    P(3)  = (1,3) 
4. d(4) = 132;  P(4) = (1,5,2,4)
5. d(5) = 70;    P(5)  = (1,5)
6. d(6) = 24;    P(6)  = (1,6)  
7. d(7) = 112;  P(7) = (1,5,7)
8. d(8) = 180;  P(8) = (1,5,2,8)  New d(8) = 178; P(8) = (1,5,7,8)

Among the temporary vertices, choose one closest to the root.  
This is vertex  7.  Make vertex 7 permanent.  Scan edges from 7 
and see edge (7,8) of weight 66.   This edge results in an 
improvement for vertex 8.



Step 6

1. d(1) = 0;      P(1) = (1) 
2. d(2)  = 101; P(2) = (1,5,2)
3. d(3) = 47;    P(3)  = (1,3) 
4. d(4) = 132;  P(4) = (1,5,2,4)
5. d(5) = 70;    P(5)  = (1,5)
6. d(6) = 24;    P(6)  = (1,6)  
7. d(7) = 112;  P(7) = (1,5,7)
8. d(8) = 178; P(8) = (1,5,7,8)  New d(8) = 161; P(8) = (1,5,2,4,8)

Among the temporary vertices, choose one closest to the root.  
This is vertex  4.  Make vertex 4 permanent.  Scan edges from 4 
and see edge (4,8) of weight 29.   This edge results in an 
improvement for vertex 8.



Step 7

1. d(1) = 0;       P(1) = (1) 
2. d(2)  = 101;  P(2) = (1,5,2)
3. d(3) = 47;     P(3)  = (1,3) 
4. d(4) = 132;   P(4) = (1,5,2,4)
5. d(5) = 70;     P(5)  = (1,5)
6. d(6) = 24;     P(6)  = (1,6)  
7. d(7) = 112;   P(7) = (1,5,7)
8. d(8) = 161;   P(8) = (1,5,2,4,8)

The last temporary vertex becomes permanent.  There are no 
edges to scan.  DONE!!



The Correctness of the Algorithm (1)

Proof A very important first observation is that Dijkstra’s
Algorithm determines a permutation  

σ  = (x1,x2,x3,x4,…,xn)

of the vertex set of the digraph according to the order in which 
the vertices are marked permanent.  Of course, x1 is the root  r.   
For each vertex  xi, the algorithm has determined a path  P(xi)  
from  r to  xi having length  d(xi).  At this stage, it is not clear 
that  d(xi)  is really the shortest distance from  r to  xi.   
However, we do know that these values are increasing, i.e.,

d(x1) ≤  d(x2) ≤  d(x3) ≤  d(x4) ≤ … ≤  d(xn)



The Correctness of the Algorithm (2)

1. We show that for each vertex  x, the length d(x) of the path  
P(x)  is the shortest distance from  r to  x.  The argument 
proceeds by induction on the minimum number  k of edges in 
a shortest path from  r to  x.  Note that the claim holds for  
k = 1,  since we scan the edge  (r,x)  at Step 1.   

2. Now assume that for some positive integer  k,  Dijkstra’s
Algorithm find a shortest path from  r  to  x  whenever the 
minimum number of edges in such a path is at most  k.  Then 
let  x be a vertex for which the minimum number of edges in 
a shortest path from  r to  x is  k+1.   Let  P  be such a path 
and let  y b the point immediately before  x on  P.



The Correctness of the Algorithm (3)

Let  Q  be the initial segment of  P  beginning at  r and ending at  y.  
Then  Q  is a shortest path from  r to  y, so the minimum number of 
edges in a shortest path from  r to  y is at most  k.  Therefore 
Dijkstra’s algorithm finds a shortest path P(y)  from  r to  y.  Note 
that  P(y) need not be the same as Q.  However,  Q and P(y) both 
length  d(y).



The Correctness of the Algorithm (4)

The length of  path  P  is  d(y) + w(x,y) ≥  d(y)  since  all weights are 
non-negative.  If  x is marked permanent before  y, then the 
algorithm has already found a path P(x)  from  r to  x of length  d(x) ≤ 
d(y).  This implies that  d(x) = d(y) and w(x,y) = 0.  So the algorithm 
has found a shortest length path from  r to  x, albeit one where the 
last edge is “free”, i.e., has weight zero.



The Correctness of the Algorithm (5)

Now suppose that  y  is marked permanent before  x.  When we scan 
from  y, we will see the edge  (x,y)  having weight  w(x,y).  Therefore, 
d(x) ≤ d(y) + w(x,y), i.e., the algorithm will find a shortest path from  
r  to  x.  This observation completes the proof.



Data Structure and Computational Issues

1. Dijkstra’s Algorithm has modest space requirements since 
we only maintain information about the candidate optimal 
path.

2. If the graph has  n  vertices, each iteration marks a new 
vertex as permanent, so there are only  n  iterations.  Also, 
each scan involves  O(n)  calculations.  So the running time is  
O(n2). In fact, the running time is essentially the same as 
the time it takes to read the data.


