
November 14, 2017

21 – Flows with Unit Capacities

William T. Trotter
trotter@math.gatech.edu

A Key Detail on Network Flow Problems

Fact A network flow problem posed with integer capacities on
edges always has a maximum flow in which the flow on every edge
is an integer. The proof of this fact is an immediate
consequence of the fact that the Ford-Fulkerson labelling
algorithm uses only addition, subtraction and minimum as its
three operations.

Remark It is an important general problem to determine when
optimization posed with integer constraints have integer valued
solutions. Network flows are just one example.

Flow Problems with Unit Capacities

Exercise Carry out the Ford-Fulkerson labelling algorithm on
the network flow. Remember that at each step, the flow on
an edge will always be either 0 or 1, i.e., edges will always be
in one of two states: empty or full.

Flow Problems with Unit Capacities (2)

Remark Here the presence of an edge signals capacity
1, and the flow is indicated with two colors. This flow
has value 2.

Flow Problems with Unit Capacities (3)

Remark Here the presence of an edge signals capacity
1, and the flow, which has value 3 is indicated with
three colors.

Disjoint Paths

Problem Find the maximum number of pairwise disjoint paths
from x to y.

Disjoint Paths (2)

Remark There are two different notions of “disjoint”. We
could simply require that two different paths share no edges.
Or we could make the stronger requirement that they have no
vertices in common other than x and y. Network flows will
find the maximum number of disjoint paths in either case.

Disjoint Paths From x to y

Gadgets We modify the original graph by first replacing each
edge ab by two directed edges, one from a to b and the
other back from a to b. Second, we split each vertex a into
two vertices a’ and a’’ with an edge from a’ to a’’. An edge
which used to go from a to b is moved to become an edge
from a’’ to b’. Now all edges are of two forms:

Interior edges from a’ to a’’.

Exterior edges from a’’ to b’ where a and b are distinct.

Applications For the specified vertices x and y, delete x’
and y’’. Give all exterior edges capacity 1. If we want vertex
disjoint paths, give interior edges capacity 1. If we want edge
disjoint paths, give interior edges capacity n where n is the
number of vertices in the graph.

Computational Gadget

Computational Detail

Observation Consider any pair zw of vertices for which there
is a unit of flow on both (z’’, w’) and (w’’, z’). For all such pairs,
we reduce the flow on these edges as well as on (z’, z’’) and (w’,
w’’) by 1. This changes do not decrease the value of the flow.

Fact This step eliminates the apparent use of the edge zw in
both directions.

Graph Theory Consequences

Theorem (Menger’s Theorem – Edge Version) Let x and y be
distinct vertices in a connected graph G. Then the maximum
number of edge disjoint paths from x to y is equal to the
minimum number of edges whose removal from G leaves x and
y in different components.

Theorem (Menger’s Theorem – Vertex Version) Let x and y
be distinct non-adjacent vertices in a connected graph G. Then
the maximum number of vertex disjoint paths from x to y is
equal to the minimum number of vertices whose removal from G
leaves x and y in different components.

Matchings in Graphs

Definition A matching in a graph is a set of edges no two of
which share an end point. Typically the problem is to find a
maximum size matching. The matching shown is maximal. Is it
maximum? The same kind of algorithm used to solve network
flows will find a maximum matching in a graph.

Augmenting Paths in Graphs

Definition Consider a maximal matching M. A sequence
(y0,x1,y1,x2,y2, …, xkyk,xk+1) is called an augmenting path for M
when y1 and xk+1 are not endpoints of any of the edges in M
while xi is matched with yi for each i = 1, 2, …, k.

Fact 1 Augmenting paths, if they exist, are easy to find.

Fact 2 If there is an augmenting path, then the matching M can
be replaced by a matching have one more edge than M.

Fact 3 If there are no augmenting paths, the matching M is
maximum.

Matchings in Bipartite Graphs

Remark We are particularly interested in finding a maximum
matching in a bipartite graph. Again, the matching shown is
maximal. Is it maximum?

Maximum Matchings in Bipartite Graphs

Observation There is a natural way to form a network flow
problem from a bipartite graph. Simply add a source and a sink
as shown, orient all edges left to right and give them capacity 1.
Turn on Ford-Fulkerson and go get a cup of coffee.

Maximum Matchings in Bipartite Graphs (2)

Observation It isn’t really necessary to draw the source and sink
as their configuration is understood. Now the matching shown is
maximum. To see this, turn on Ford-Fulkerson and enjoy a donut
with your coffee.

More on Matchings in Bipartite Graphs

Setup A company has 9 open positions and 7 applicants. The
graph has an edge from applicant x to position i when x is
capable of performing i. A matching is then an employment
plan, and it is natural to try to fill as many open positions as
possible. Note that some applicants may not be capable of doing
any job and there may be some jobs that no applicant can do.

The Concept of Defect

Definitions Let G = (X, Y, E) be a bipartite graph. For each
subset S of X, let N(S) denote the set of all elements y in
Y for which there is some x in X adjacent to y. We call N(S)
the set of neighbors of S. The defect of G, denoted d(G), is:

d(G) = max { |S| - N(S): S  X }

Hall’s Theorem (Defect Form)

Theorem (Hall) Let G = (X, Y, E) be a bipartite graph. Then the
maximum size of a matching in G is |X| - d(G).

Corollary There is a matching of size |X| if and only if d(G) = 0,
i.e., |N(S)| ≥ |S| for every subset S of X.

Regular Balanced Bipartite Graphs

Corollary Let G = (X, Y, E) be a balanced regular bipartite graph.
Then there is a matching of size |X| in G.

Regular Balanced Bipartite Graphs

Corollary Let G = (X, Y, E) be a balanced regular bipartite graph.
If the degree is r, then the edge set of G can be partitioned
into r matchings.

Computational Details

Observations There are special purpose algorithms
for finding maximum matchings in graphs which run
slightly faster than our network flow approach. This is
particularly the case in the bipartite graph situation.

