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A Key Detail on Network Flow Problems

Fact A network flow problem posed with integer capacities on 
edges always has a maximum flow in which the flow on every edge 
is an integer.  The proof of this fact is an immediate 
consequence of the fact that the Ford-Fulkerson labelling 
algorithm uses only addition, subtraction and minimum as its 
three operations. 

Remark It is an important general problem to determine when 
optimization posed with integer constraints have integer valued 
solutions.  Network flows are just one example. 



Flow Problems with Unit Capacities

Exercise  Carry out the Ford-Fulkerson labelling algorithm on 
the network flow.   Remember that at each step, the flow on 
an edge will always be either  0  or  1, i.e., edges will always be 
in one of two states:  empty or full.



Flow Problems with Unit Capacities (2)

Remark  Here the presence of an edge signals capacity  
1, and the flow is indicated with two colors.  This flow 
has value  2.



Flow Problems with Unit Capacities (3)

Remark  Here the presence of an edge signals capacity  
1, and the flow, which has value  3  is indicated with 
three colors. 



Disjoint Paths

Problem  Find the maximum number of pairwise disjoint paths 
from  x  to  y. 



Disjoint Paths (2)

Remark  There are two different notions of “disjoint”.  We 
could simply require that two different paths share no edges.  
Or we could make the stronger requirement that they have no 
vertices in common other than  x  and  y.   Network flows will 
find the maximum number of disjoint paths in either case.



Disjoint Paths From  x  to  y

Gadgets  We modify the original graph by first replacing each 
edge   ab  by two directed edges, one from a  to  b  and the 
other back from  a  to  b.  Second, we split each vertex  a  into 
two vertices  a’  and  a’’  with an edge from  a’  to  a’’.  An edge 
which used to go from  a  to  b  is moved to become an edge 
from  a’’  to  b’.  Now all edges  are of two forms:

Interior edges  from  a’  to  a’’.

Exterior edges  from  a’’  to  b’  where  a and  b  are distinct.

Applications For the specified vertices  x  and  y, delete x’  
and  y’’.  Give all exterior edges capacity  1.   If we want vertex 
disjoint paths, give interior edges capacity  1.  If we want edge 
disjoint paths, give interior edges capacity  n  where  n  is the 
number of vertices in the graph. 



Computational Gadget



Computational Detail

Observation  Consider any pair  zw of vertices for which there 
is a unit of flow on both  (z’’, w’)  and  (w’’, z’).    For all such pairs, 
we reduce the flow on these edges as well as on  (z’, z’’)  and  (w’, 
w’’)  by  1.  This changes do not decrease the value of the flow.

Fact This step eliminates the apparent use of the edge  zw in 
both directions. 



Graph Theory Consequences

Theorem (Menger’s Theorem – Edge Version)  Let  x  and  y  be 
distinct vertices in a connected graph  G.  Then the maximum 
number of edge disjoint paths from  x  to  y  is equal to the 
minimum number of edges whose removal from  G  leaves  x  and  
y  in different components.

Theorem (Menger’s Theorem – Vertex Version)  Let  x  and  y  
be distinct non-adjacent vertices in a connected graph  G.  Then 
the maximum number of vertex disjoint paths from  x  to  y  is 
equal to the minimum number of vertices whose removal from  G  
leaves  x  and  y  in different components.



Matchings in Graphs

Definition  A matching in a graph is a set of edges no two of 
which share an end point. Typically the problem is to find a 
maximum size matching.   The matching shown is maximal.  Is it 
maximum?  The same kind of algorithm used to solve network 
flows will find a maximum matching in a graph.



Augmenting Paths in Graphs

Definition  Consider a maximal matching  M.   A sequence  
(y0,x1,y1,x2,y2, …, xkyk,xk+1)  is called an augmenting path for M  
when  y1 and  xk+1 are not endpoints of any of the edges in  M  
while  xi is  matched with  yi for each  i = 1, 2, …, k.

Fact 1  Augmenting paths, if they exist, are easy to find.

Fact 2 If there is an augmenting path, then the matching M can 
be replaced by a matching have one more edge than  M.

Fact 3 If there are no augmenting paths, the matching  M  is 
maximum.



Matchings in Bipartite Graphs

Remark  We are particularly interested in finding a maximum 
matching in a bipartite graph.  Again, the matching shown is 
maximal.  Is it maximum?  



Maximum Matchings in Bipartite Graphs

Observation There is a natural way to form a network flow 
problem from a bipartite graph.  Simply add a source and a sink 
as shown, orient all edges left to right and give them capacity  1. 
Turn on Ford-Fulkerson and go get a cup of coffee.



Maximum Matchings in Bipartite Graphs (2)

Observation It isn’t really necessary to draw the source and sink 
as their configuration is understood.   Now the matching shown is 
maximum.  To see this, turn on Ford-Fulkerson and enjoy a donut 
with your coffee. 



More on Matchings in Bipartite Graphs

Setup A company has  9  open positions and  7  applicants.  The 
graph has an edge from applicant  x  to position  i when  x  is 
capable of performing   i.  A matching is then an employment 
plan, and it is natural to try to fill as many open positions as 
possible.  Note that some applicants may not be capable of doing 
any job and there may be some jobs that no applicant can do.



The Concept of Defect

Definitions  Let  G = (X, Y, E)  be a bipartite graph.  For each 
subset  S  of  X, let  N(S)  denote the set of all elements  y  in  
Y  for which there is some  x  in  X  adjacent to  y.  We call  N(S) 
the set of neighbors of  S. The defect of  G, denoted  d(G),  is:

d(G) = max { |S| - N(S):  S  X }



Hall’s Theorem (Defect Form)

Theorem (Hall) Let  G = (X, Y, E)  be a bipartite graph.  Then the 
maximum size of a matching in  G  is  |X| - d(G).

Corollary There is a matching of size  |X|  if and only if  d(G) = 0, 
i.e.,  |N(S)| ≥ |S|  for every subset  S  of  X.



Regular Balanced Bipartite Graphs

Corollary Let  G = (X, Y, E)  be a balanced regular bipartite graph.  
Then there is a matching of size  |X| in  G.



Regular Balanced Bipartite Graphs

Corollary Let  G = (X, Y, E)  be a balanced regular bipartite graph.  
If the degree is  r,  then the edge set of  G  can be partitioned 
into  r  matchings.



Computational Details

Observations  There are special purpose algorithms 
for finding maximum matchings in graphs which run 
slightly faster than our network flow approach.  This is 
particularly the case in the bipartite graph situation.


