22 - Solving the Dilworth Problem

William T. Trotter trotter@math.gatech.edu

Height of a Poset

Definition The **height** of a poset P is the maximum size of a chain in P.

Proposition To partition a poset P of height h into antichains, at least h antichains are required.

Dilworth's Theorem - Dual Form

Theorem A poset of height h can be partitioned into h antichains.

Proof As illustrated in the figure, we recursively strip off the minimal elements.

Width of a Poset

Definition The width of a poset P is the maximum size of an antichain in P.

Proposition To partition a poset P of width w into chains, at least w chains are required.

Dilworth's Theorem

Theorem (1950) A poset of width w can be partitioned into w chains.

Algorithms for Dilworth's Theorem

Reminder The proof we presented earlier in our class only showed that the partition of P into w chains exists. However, it (apparently) did not give an effective procedure for finding an antichain of size w or a partition of P into w chains. So our goal will be to use network flows and bipartite matchings in particular to solve the Dilworth problem.

Posets to Bipartite Graphs

Remark For each x in P, the bipartite graph contains two points labeled x' and x'' respectively. The edges in the graph have the form x'y'' where x < y in P.

Posets to Bipartite Graphs

Remark A matching in G determines a chain partition of P with x immediately below y in a chain when x'y" is one of the matching edges. This matching corresponds to the chain partition: $C_1 = \{e < c < f\}$ $C_2 = \{d < a\}$ and $C_3 = \{b\}$. If the matching is maximum, then the chain partition is a Dilworth partition of P, i.e, it uses w chains where w = width(P).

Finding a Maximum Antichain

Remark When the Ford-Fulkerson labelling algorithm halts, for each chain C_i in the partition, there is a point x_i in C_i so that x_i' is labeled and x_i'' is not. These points form an antichain. In chain $C_1 = \{e < c < f\}$, take f. In chain $C_2 = \{d < a\}$, take f and f and f and f are lement antichain. DONE!!!