Math 3012 - Applied Combinatorics Lecture 18

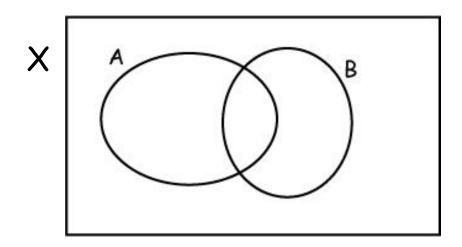
William T. Trotter trotter@math.gatech.edu

Reminder

Test 3 Tuesday, November 24, 2015. Details on material for which you will be responsible were sent by email after class the preceding Thursday. Again, I ask all of you to study hard. Experience shows that the closing portion of this course has most content. The concepts and techniques will have lasting value.

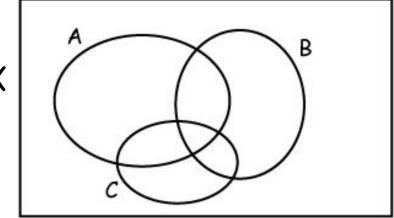
Inclusion/Exclusion - Prelude

Question In the "Venn Diagram" shown below, the universe X contains 23 elements. There are 8 in the set A and 11 in B. If there are 5 in $A \cap B$, then how many elements of X belong to neither A nor B?



Inclusion/Exclusion - Prelude (2)

Question In the "Venn Diagram" shown below, the universe X contains 2307 elements. We want to determine the number of elements of X that don't belong to any of A, B and C. If we know the number of elements in the following sets, can we do this? A, B, C, $A \cap B$, C, $A \cap C$, $A \cap B \cap C$.



Inclusion/Exclusion (1)

Notation Let X be a set of objects and suppose that for every element i in $\{1, 2, ..., n\}$, we have a property P_i so that for all x in X, the statement "x satisfies property P_i " is either true or false ... but never ambiguous. Then for a subset S of $\{1, 2, ..., n\}$, let N(S) be the subset of X consisting of all x in X which satisfy property P_i for all i in S. Note that $N(\emptyset) = X$.

Notation Let N_0 be the subset of X consisting of those objects which satisfy none of the properties.

Inclusion/Exclusion (2)

Theorem Let X be a set of objects and let P_i be a property for X for each i = 1, 2, ..., n. Then:

$$N_0 = \sum_{S \subseteq \{1,2,...,n\}} (-1)^{|S|} N(S)$$

Example When n = 2,

$$N_0 = N(\emptyset) - N(1) - N(2) + N(1)$$
.

Inclusion/Exclusion (3)

Theorem Let X be a set of objects and let P_i be a property for X for each i = 1, 2, ..., n. Then:

$$N_0 = \sum_{s \subseteq \{1,2,...,n\}} (-1)^{|s|} N(s)$$
Example When $n = 3$,
 $N_0 = N(\emptyset)$
 $- N(1) - N(2) - N(3)$
 $+ N(12) + N(13) + N(23)$
 $- N(123)$.

Inclusion/Exclusion (4)

```
Example When n = 4,

N_0 = N(\emptyset)

- N(1) - N(2) - N(3) - N(4)

+ N(12) + N(13) + N(14) + N(23) + N(24) + N(34)

- N(123) - N(124) - N(134) - N(234)

+ N(1234).
```

Inclusion/Exclusion (5)

Observation In general, there are 2ⁿ terms in the inclusion/exclusion formula. How can this possibly be of use?

Derangements

Definition A permutation σ of $\{1, 2, ..., n\}$ is called a derangement if $\sigma(i) \neq i$ for all i = 1, 2, ..., n.

Example 38754126 and 21436587 are derangements but 57314682 and 75318642 are not.

Exercise Write all derangements of {1,2,3,4,5}.

Notation Let d_n denote the number of derangements of $\{1, 2, ..., n\}$.

Derangements (2)

Inclusion/Exclusion Formula for Derangements

$$d_{n} = \sum_{S \subseteq \{1,2,...,n\}} (-1)^{|S|} N(S)$$

$$= \sum_{0 \le k \le n} (-1)^{k} C(n,k) (n - k)!$$

Explanation When S is a subset of $\{1, 2, ..., n\}$ and |S| = k, |N(S)| = (n - k)! To see this, note that if σ satisfies P_i and i belongs to S, then $\sigma(i) = i$. So the positions corresponding to elements of S are determined, and the other n - k positions are an arbitrary permutation of the remaining elements.

Surjections (1)

Notation For an integer n, let [n] denote {1, 2, ..., n}. Also, let S(n, m) denote the number of surjections from [n] to [m].

Exercise Determine S(5,3) by hand.

Surjections (2)

Inclusion/Exclusion Formula for Surjections

$$d_n = \sum_{S \subseteq \{1,2,...,n\}} (-1)^{|S|} N(S)$$

$$= \sum_{0 \le k \le m} (-1)^k C(m, k) (m - k)^n$$

Explanation When S is a subset of $\{1, 2, ..., m\}$ and |S| = k, $|N(S)| = (m - k)^n$. To see this, note that if f satisfies P_i and i belongs to S, then i is not in the range of f. In other words, f is an function whose domain is [n] and whose range is a set of size m - k.

The Euler φ -function

Notation For an integer $n \ge 2$, let $\varphi(n)$ denote the number of elements in [n] which are relatively prime to n.

Example $\varphi(12) = 4$ since 1, 5, 7 and 11 are relatively prime to 12.

Exercise Compute $\varphi(144)$.

Exercise Compute $\varphi(324481700624)$.

The Euler ϕ -function

Inclusion/Exclusion Formula for Euler φ -Function

Suppose the prime factors of n are: $p_1, p_2, ..., p_k$.

Then

$$\varphi(n) = n (1 - 1/p_1)(1 - 1/p_2) ...(1-1/p_k)$$

Explanation When m has the common prime factors p_3 , p_7 and p_8 with n, then the number of such m is $n/p_3p_7p_8$.

The Euler φ -function

```
Example Compute \varphi(324481700624)
Maple reports that
324481700624 = 24(109)(727)(255923)
Therefore
\varphi(324481700624) = 324481700624(1-1/2)(1-1/109)
                      (1 - 1/727)(1 - 1/255923)
                  = 2^{3}(108)(726)(255922)
                  = 160530657408.
```