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Reminder

Test 3 Tuesday, November 24, 2015.  Details on 
material for which you will be responsible were 
sent by email after class the preceding Thursday.  
Again, I ask all of you to study hard.  Experience 
shows that the closing portion of this course has 
most content. The concepts and techniques will 
have lasting value.



Review of Recurrence Equations (1)

Problem  Let  r(n)  denote the number 
of regions determined by  n  lines that 
intersect in general position. 

Solution
r(1) = 2
r(n + 1) = r(n) + n+1   when  n ≥ 0.



Review of Recurrence Equations (2)

Problem  Let  s(n)  denote the number of 
regions determined by  n  circles that 
intersect in general position.

Solution
s(1) = 2
s(n+1) = s(n) + 2n   when  n ≥ 0.



Review of Recurrence Equations (3)

Problem  Let  t(n)  denote the number of ways to tile a  
2 x n  grid with dominoes of size   1 x 2  and  2 x 1. 

Solution
t(1) = 1
t(2) = 2
t(n+2) = t(n+1) + t(n)   when  n ≥ 0.



Review of Recurrence Equations (4)

Problem  Let  u(n)  denote the number of ternary 
sequences that do not contain  01  in consecutive 
positions.

Solution
u(1) = 3
u(2) = 8
u(n+2) = 3u(n+1) – u(n) 



Review of Recurrence Equations (5)

Summary The recurrence equations in the last four 
examples are:

r(n+1) – r(n) = n+1

s(n+1) – s(n) = 2n

t(n+2) – t(n+1) – t(n) = 0

u(n+2) - 3u(n+1) + u(n) = 0



Developing a General Framework (1)

Observation  We consider  the family  V of all functions 
which map the set  Z of all integers (positive, negative 
and zero) to the set  C of complex numbers.  This is a 
more general framework than we first studied, but as will 
become clear, we need this additional structure to make 
the form of general solutions relatively easy to obtain.

Note Each of the four examples presented above have 
involved functions with range and domain being the set  N
of positive integers, so  V is a more general setup.



Developing a General Framework (2)

Fact The family  V is an infinite dimensional vector 
space over the field  C of complex numbers,  with  
(f + g)(n) = f(n) + g(n)   and  (α f)(n) = α(f(n)). 

Note  Students should spot the “operator overloading” in 
these two equations, even when one of the two operators 
(multiplication) is indicated simply by adjacent symbols, 
one a scalar and the other a vector.

Note The “zero” of  V is the constant function which 
maps all integers to the “zero” in  C.



Developing a General Framework (3)

Observation We will first focus on homogeneous linear 
recurrence equations.  These have the following form:

a0f(n+d) + a1f(n+d-1) + a2f(n+d-2) + …
+ ad-1f(n+1) + adf(n) = 0

Note The coefficients  a0, a1, a2, …, ad are complex 
numbers.  Without loss of generality  a0 ≠ 0.  For the time 
being, we will also assume that  ad ≠ 0.



Developing a General Framework (4)

Example  A homogeneous equation:

(2+3i)g(n+3) – (8-7i)g(n+2) + 42g(n+1)  - (5i)g(n) = 0

Example  A non-homogeneous equation:

(2+3i)g(n+3) – (8-7i)g(n+2) + 42g(n+1)  - (5i)g(n) = 
(2-i)(3+i)n + 12n3

Remark In order to fully understand the homogeneous 
case, we will need to discuss the non-homogeneous case 
concurrently.



Developing a General Framework (5)

Alternate Notation We define the advancement 
operator  A  on the vector space  V  by the rule  A f(n) = 
f(n+1).   Note that  A2 f(n) = f(n+2),  A3 f(n) = f(n+3), etc.  
So our linear homogeneous equation

a0f(n+d) + a1f(n+d-1) + a2f(n+d-2) + …
+ ad-1f(n+1) + adf(n) = 0

can then be rewritten as:

(a0Ad + a1Ad-1 + a2Ad-2 + …+ ad-1A + ad) f(n) = 0.

Remark The “polynomial form” is significant!



Developing a General Framework (6)

Theorem The set  S  of all solutions to a homogeneous 
linear recurrence equation of the form: 

(a0Ad + a1Ad-1 + a2Ad-2 + …+ ad-1A + ad) fn = 0

is a  d-dimensional subspace of  V provided both  a0 and  
ad are non-zero

Conclusion The solution space can be specified entirely 
just by providing a basis for the subspace  S.



The Case  d = 1

Theorem  Let  a0 and  a1 be non-zero complex numbers, 
and set  r = (-a1/a0). Then the solution space  S  of the 
advancement operator equation (a0A + a1)f(n) = 0 is a      
1-dimensional subspace of  V  and the  function  rn is a 
basis, i.e., every solution is of the form  f(n) = c1 rn where  
c1 is a constant. 

Proof Let  f  be any solution to (a0A + a1)f(n) = 0, and let 
c1 = f(0).  We show that  f(n)  =c1 rn for all integers  n.  
We first show that  f(n) = c1 rn when  n ≥ 0.  We do this 
by induction on  n.  



The Case  d = 1  (Part 2)

Base Case The base case is  n = 0, where the left hand 
side is  f(0) = c1, and the right hand side is  c1 r0.  But 
since  r ≠ 0, the right hand side is  c1 •1 = c1.  So the 
statement holds when  n = 0.

The Inductive Step Now assume that  f(k) = c1 rk for 
some   k ≥ 0.   Since (a0A + a1)f(n) = 0  for all integers  n, 
we know that: 

(a0A + a1)f(k) = 0  
(a0f(k+1) + a1f(k) = 0

f(k+1) = (-a1/a0)c1rk

f(k+1) = r c1 rk

f(k+1) = c1rk+1



The Case  d = 1  (Part 3)

Negative Integers  It remains only to show that          
f(n)  =c1 rn for all integers  n ≤ 0.   This is equivalent to 
showing that  f(-n) = c1 r-n for all  n ≥ 0.   This is done by 
induction and the argument is a trivial modification of 
what we have just done.  

Conclusion We have verified the assertion that the 
solution space to the homogeneous equation

(a0Ad + a1Ad-1 + a2Ad-2 + …+ ad-1A + ad) f(n) = 0

with  a0 and  ad non-zero is  a  d-dimensional subspace of  
V when  d = 1.



Towards the General Case (1)

Exercise  Note that

A2 + 2A - 35 = (A + 7)(A – 5)

Example  The functions  (-7)n and  5n are solutions to 
the equation:
(A2 + 2A - 35) f(n) = 0.

Observation If  r ≠ 0  and  r  is a root of the 
advancement operator polynomial, then  rn is a solution.



Towards the General Case (2)

Exercise  Show that

A2 + (-12 + i)A + 41  - i = (A – 5 - 2i) (A – 7 + 3i) 

Example  The functions  (5 + 2i)n and  (7 - 3i)n are 
solutions to the equation:
(A2 + (-12 + i)A + 41  - i) f(n) = 0.

Observation If  r ≠ 0  and  r is a root of the 
advancement operator polynomial, then  rn is a solution.



Towards the General Case (3)

Example Note that  A2 – 10A + 25 = (A – 5)2.

Also note that the functions  5n and  n5n are 
solutions to the equation:

(A – 5)2 f(n) = 0.

Observation  If  r ≠ 0  and  r  is a root of multiplicity  
2, then   rn and   n rn are solutions.



Towards the General Case (4)

Example The functions  (5 - 2i)n and  n(5 - 2i)n are 
solutions to the equation:

(A – 5 + 2i)2 f(n) = 0.

Observation  If  r ≠ 0  and  r  is a root of multiplicity  
2, then   rn and   n rn are solutions.



Towards the General Case (5)

Lemma If  p(A)  is a polynomial in the advancement 
operator  A,   r ≠ 0  and  r  is a root of multiplicity  m, 
then each of the following functions is a solution of 
the equation:   p(A) f(n) = 0

rn n rn n2 rn n3 rn n4 rn …    nm-1 rn

Proof We will outline the proof in Thursday’s lecture.



Towards the General Case (6)

Example The general solution to  

((A - 3)4(A - 7 + 2i)3(A + 5 -8i)2) f(n) = 0  

is:

f(n) = c13n + c2n3n + c3n23n + c4n33n

+ c5(7 - 2i)n + c6n(7 - 2i)n + c7n2(7 - 2i)n

+  c8(-5 + 8i)n + c9n(-5 + 8i)n



Towards the General Case (7)

Example The solution space to:   

((A - 3)4(A - 7 + 2i)3(A + 5 -8i)2) f(n) = 0  

is  a  9-dimensional subspace of  V  and the following 
functions are a basis:

3n n3n n23n n33n

(7 - 2i)n n(7 - 2i)n n2(7 - 2i)n

(-5 + 8i)n n(-5 + 8i)n



Analogies with Partial Fractions

Example Given a proper rational function   p(x)/q(x)  
whose denominator polynomial  q(x)  can be factored 
as  

q(x)  = (x – 3)3 x2(x2 + 2x + 9)

there are constants  c1, c2, c3, c4, c5, c6 and c7 so 
that

p(x)/q(x)  = c1/(x – 3) + c2/(x - 3)2 + c3/(x – 3)3

+ c4/x + c5/x2

+ c6/(x2 + 2x + 9) + c7x/(x2 + 2x + 9)   



Analogies with Differential Equations

Example Let  D  be the differential operator, i.e., 
D f  is the derivative of  f.  Then the solution to the 
equation:

(D – 3)3 D2(D2 + 16) f = 0

has the form:

f(x)  = c1 e3x + c2 x e3x + c3 x2 e3x

+ c4 + c5 x
+ c6 e4i + c7 e-4i

where  c6 and  c7 are complex conjugates.



The Non-Homogeneous Case

Theorem Let  p(A) f = g  be a non-homogeneous 
equation.   If  h0 is  any solution to this equation, 
then the general solution is  h0 + f  where  f  is a 
solution to the associated homogeneous equation              
p(A) f = 0.

Note The proof of this theorem is relatively 
straightforward.

Terminology The function  h0 is referred to as a 
particular solution to  p(A) f = g.



The Non-Homogeneous Case (2)

Example For the non-homogeneous equation         
(A – 3) f(n) = 8 (5)n,  the function   h0 = 4•5n

is a particular solution.  Accordingly, the general 
solution has the form:

f(n) = c13n + 4•5n


