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Vector Space of Functions

Observation  We consider  the family  V of all functions 
which map the set  Z of all integers (positive, negative 
and zero) to the set  C of complex numbers.  This is a 
more general framework than we first studied, but as will 
become clear, we need this additional structure to make 
the form of general solutions relatively easy to obtain.

Remark The family  V is an infinite dimensional vector 
space over the field  C of complex numbers,  with  
(f + g)(n) = f(n) + g(n)   and  (α f)(n) = α(f(n)). 



Linear Recurrence Equations

Observation We will first focus on homogeneous linear 
recurrence equations.  These have the following form:

a0f(n+d) + a1f(n+d-1) + a2f(n+d-2) + …
+ ad-1f(n+1) + adf(n) = 0

Note The coefficients  a0, a1, a2, …, ad are complex 
numbers.  Without loss of generality  a0 ≠ 0.



The Advancement Operator

Alternate Notation Our linear homogeneous equation

a0f(n+d) + a1f(n+d-1) + a2f(n+d-2) + …
+ ad-1f(n+1) + adf(n) = 0

can then be rewritten as:

(a0Ad + a1Ad-1 + a2Ad-2 + …+ ad-1A + ad) f(n) = 0.

Remark The “polynomial form” of this advancement 
operator equation is significant!



The General Theorem

Theorem The solution space  S  of the 
advancement operator equation:

(a0Ad + a1Ad-1 + a2Ad-2 + …+ ad-1A + ad) f(n) = 0

is a  d-dimensional subspace of  V, provided both  a0

and  ad are non-zero.  Furthermore, a basis for  S 
can be formed by taking functions of the form  nirn

where  r ≠ 0  is a root of the associated polynomial 
and  0 ≤ i < m, with  m  the multiplicity of  r.



Applying the Theorem

Example The general solution to  

((A - 3)4(A - 7 + 2i)3(A + 5 -8i)2(A – 1)5) f(n) = 0  

is:

f(n) = c13n + c2n3n + c3n23n + c4n33n

+ c5(7 - 2i)n + c6n(7 - 2i)n + c7n2(7 - 2i)n

+  c8(-5 + 8i)n + c9n(-5 + 8i)n

+  c10 + c11n + c12 n2 + c13 n3 + c14n4



Using Initial Conditions

Example  Find the solution to  (A2 – 7A +10) f(n) = 0  
with  f(0) =  9 and  f(1) = 27.

Solution The general solution  is  f(n) = c1 2n + c2 5n.  
So our constraints become:

c1 +   c2 = 9
2c1 + 5c2 = 27

This forces  c1 = 6  and  c2 = 3, so the answer is

f(n) = 6•2n +  3•5n



Using Initial Conditions (2)

Example For the non-homogeneous equation         
(A – 3) f(n) = 8 (5)n,  the function   h0 = 4•5n

is a particular solution.  Accordingly, the general 
solution has the form:

f(n) = c13n + 4•5n

Exercise Find the solution to (A – 3) f(n) = 8 (5)n

subject to the requirement that  f(3) = 118.
This requires  118 = 9c1 + 100, so  c1 = 2  and the 
answer is  f(n) = 2•3n + 4•5n



When  0  is a root

Observation Consider the equation  Am f(n) = 0.   A solution 
must satisfy   f(n+m) = 0  for all integers  n.   This forces  
f(n) = 0  for all  n, i.e., the only solution is the zero function.

Consequence If  p(A) = Am q(A)  where  q(A)  is a polynomial 
of degree  d ≥ 1, then the solution space of the equation  
p(A) f(n) = 0  will be a  d-dimensional subspace of  V.

Remark This explains why we have focused on the form:

(a0Ad + a1Ad-1 + a2Ad-2 + …+ ad-1A + ad) f(n) = 0

with  both  a0 and  ad non-zero.



The Non-Homogeneous Case

Theorem Let  p(A) f = g  be a non-homogeneous 
equation.   If  h0 is  any solution to this equation, 
then the general solution is  h0 + f  where  f  is a 
solution to the associated homogeneous equation              
p(A) f = 0.

Note The proof of this theorem is relatively 
straightforward.

Terminology The function  h0 is referred to as a 
particular solution to  p(A) f = g.



Proof of the General Theorem

Theorem The solution space  S  of the operator 
equation:

(a0Ad + a1Ad-1 + a2Ad-2 + …+ ad-1A + ad) f(n) = 0

is a  d-dimensional subspace of  V, provided both  a0

and  ad are non-zero.  Furthermore, a basis for  S 
can be formed by taking functions of the form  nirn

where  r ≠ 0  is a root of the associated polynomial 
and  0 ≤ i < m, with  m  the multiplicity of  r.



A Key Lemma

Theorem  Let  d ≥ 1, let  r, s ≠ 0.  Then let

p(n) = a0nd + a1nd-1+  a2nd-2 + … +ad-1n + ad

be a complex polynomial of degree  d, i.e., the leading 
coefficient  a0 ≠ 0.   Then  (A – r) p(n)rn = q(n)rn for some 
polynomial  q(n)  of degree d – 1.

Furthermore, if s ≠ r, then  (A – s) p(n)rn =q’(n)rn for some 
polynomial  q’(n)  of degree  d. 



A Useful Corollary

Corollary  Let  d ≥ 0 and let

p(n) = a0nd + a1nd-1+  a2nd-2 + … +ad-1n + ad

be a complex polynomial of degree  d, i.e., the leading 
coefficient  a0 ≠ 0.   Then  there is a uniquely determined 
polynomial  q(n)  of degree  d + 1  so that 

(A – r) q(n)rn = p(n)rn



Outline of Arguments

Theorem  Let  m ≥ 1  and let  r ≠ 0.  Then the solution 
space  S  of the equation  (A – r)m f(n)  is an  m-
dimensional subspace of  V and the following functions 
form a basis for  S:

rn n rn n2 rn n3 rn n4 rn …    nm-1 rn

Remark There are three parts to the proof.  First is 
showing that each of these functions is a solution. Second 
is showing that every solution is a linear combination of 
these functions.  Third is showing that they are linearly 
independent.  We will sketch these arguments in class.



Analysis of Solutions

Questions   Consider the Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

Is the 1000th term more or less than 10300 ?

Does the ratio  f(n+1)/f(n)  tend to a limit.

Answers The equation  is  (A2 – A – 1) f(n) = 0.
There are two roots:  (1 + √5)/2  and (1 - √5)/2
and the initial conditions are  f(0) = f(1) = 1.


