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Reminders

Test 3  Tuesday, November 24, 2015

Final Exam  Tuesday, December 8, 2015, 8:05 – 10:55am.

Three-way Option  (Full details in email)

1. Do even numbered problems from assigned set.
2. Obtain/write code for implementing one of the 

algorithms in our course on my data set.
3. Write 3 – 4 page (typewritten) report on one of the 

selected math papers, all of which are accessible to 
undergraduates. 



A Networking Problem

Problem The vertices represent  8  regional data centers which need 
to be connected with high-speed data lines.  Feasibility studies show 
that the links illustrated above are possible, and the cost in millions of 
dollars is shown next to the link.  Which links should be constructed to 
enable full communication (with relays allowed) and keep the total cost 
minimal?



Links Will Form a Spanning Tree

Cost (T) = 47 + 23 + 75 + 74 + 55 + 74  + 79

= 427



Minimum Weight Spanning Trees

Problem Given a connected graph with non-negative weights 
on the edges, find a spanning tree  T  for which the sum of 
the weights on the edges in  T  is as small as possible.



Why Not Try All Possibilities?

1. Suppose the graph has  n vertices.  Then the number of 
possible spanning trees can be as large as  nn-2.

2. When  n = 75, this means that the number of spanning trees 
can be as large as 

7576562804644601479086318651590413464814067833088403
3924704328101802427997135680470819352194666862487792
96875



Kruskal’s Algorithm (Avoid Cycles)

1. Sort the edges by weight.  

2. Build a spanning forest (that eventually becomes a tree) by 
proceeding in a “greedy” manner, adding the edge of minimum 
weight which when added to those already chosen does not 
form a cycle.



Kruskal – Step 1

Remark Start with an edge having minimum weight.  



Kruskal – Step 2

Remark Among the remaining edges, choose one of 
minimum weight.  



Kruskal – Step 3

Remark Among the remaining edges, choose one of 
minimum weight which avoids cycles. 



Kruskal – Step 4

Remark Among the remaining edges, choose one of 
minimum weight which avoids cycles.



Kruskal – Step 5

Remark Among the remaining edges, choose one of 
minimum weight which avoids cycles.



Kruskal – Step 6

Remark Among the remaining edges, choose one of 
minimum weight which avoids cycles.



Why Avoiding Cycles Matters

Remark Up to this point, we have simply taken 
the edges in order of their weight.  But now we 
will have to reject an edge since it forms a cycle 
when added to those already chosen.



Forms a Cycle

Note We cannot take the blue edge having weight  55, as this 
would form a cycle.



Kruskal – Step 7    DONE!!

Weight (T) = 23 + 29 + 31 + 32 + 47 + 54 + 66 = 282



Prim’s Algorithm (Build Tree)

1. Build a tree one vertex at a time.

2. Start with a trivial one point tree  T.

3. Then add the edge of minimum weight among those with one 
endpoint in  T  and the other not in  T.



Prim – Step 1

Remark In this example, we take vertex  1  as the “root” and 
start with the trivial tree consisting of just the root.  We 
illustrate the first step after the initialization step.



Prim – Step 2

Remark Choose the minimum weight edge which expands  
T  by a single vertex.



Prim – Step 3

Remark Choose the minimum weight edge which expands  
T  by a single vertex.



Prim – Step 4

Remark Choose the minimum weight edge which expands  T  
by a single vertex.



Prim – Step 5

Remark Choose the minimum weight edge which expands  T  
by a single vertex.



Prim – Step 6

Remark Choose the minimum weight edge which expands  
T  by a single vertex.



Prim – Step 7    Done!!

Weight (T) = 23 + 29 + 31 + 32 + 47 + 54 + 66 = 282



The Mathematics Behind the Algorithms

Remark  With the next several slides, we will explain why 
Kruskal (avoid cycles) and Prim (build tree) work as 
intended.  Students may find it interesting that the 
underlying principles are drawn from linear algebra, but 
now with a finite field rather than with the more familiar 
fields of real numbers and complex numbers.  In fact, 
these principles apply to a wide range of discrete 
optimization problems.



The Exchange Principle (1)

Remark We start by considering a spanning tree  
T  in a graph  G.



The Exchange Principle (2)

Observation Consider any edge  e not in the tree  T.  Then 
there is a unique path  P  in  T  from one endpoint of  e  to the 
other.



The Exchange Principle (3)

Remark Consider any edge  f  from  T  which belongs 
to the path  P.



The Exchange Principle (4)

Important Fact  Then  T’  =  T – f + e is again a tree. 



A New Kind of Vector Space

Mathematical Framework  Let  G  be a connected graph, and let 
E  be the edge set of   G.   We consider subsets of  E and call a 
subset  S  independent if it contains no cycles.    Note that the 
maximal independent sets are the spanning trees of  G. 

Note In combinatorial mathematics,  a family of independent 
sets satisfying an exchange property is called a matroid, and 
these structures are studied extensively, just like graphs and 
posets.



Constrained Spanning Trees 

Modified Problem  Find the minimum weight spanning tree 
with some choices made by management.   These choices may 
or may not be good ones??!!



Constrained Spanning Trees 

Remark Neither of our two algorithms has a provision 
for “starting with a handicap.



Fundamental Lemma

Lemma Let  G  be a graph with non-negative weights on the 
edges, let  F  be a spanning forest  of  G  and let  C  be a 
component of  F.   Also, among all edges with one endpoint in  C  
and the other not in  C, let edge e be one of minimum weight.  
Then among all the spanning trees of  G  that contain  F, there 
is one of minimum weight that contains the edge  e.



Applying the Exchange Principle

Proof Suppose the lemma is false and let  T  be a spanning tree 
of minimum weight among all that contain the spanning forest  F.  
Then we know that  e  is not an edge in  T.   Let  e = xy with  x a 
vertex in the component  C. there are none of minimum weight 
containing the edge  e.   Then consider the unique path  x = x0, 
x1, …, xt = y  in  T.



Applying the Exchange Principle (2)

Proof (continued)  Let  i be the least integer so that  xi is in 
the component  C (together with  x)  while  xi+1 is not in  C.   
Then let  f = xixi+1.  Since  S  is optimal, and  S – f + e  is a 
spanning tree, we know that  w(f) ≤ w(e).  But by the rule used in 
the selection of  e, we know  w(e) ≤ w(f).   So  w(e) = w(f).   Thus  
T – f + e  has the same weight as  T  and contains  e.  The 
contradiction completes the proof.



The Correctness of Kruskal’s algorithm

Proof We proceed by induction on the number of edges 
specified by management, except now we consider management as 
both benevolent and enlightened.   At step  i when  i edges have 
already been selected, management considers the set of 
admissible edges (those avoiding cycles) and takes one of 
minimum weight.  In turn, manager declares the component  C to 
contain one of the end points of  C.

Note Additional details provided in class.



The Correctness of Prim’s algorithm

Proof We proceed by induction on the number of edges 
specified by management, except now we consider management 
as both benevolent and enlightened.  Now we simply take the 
component  C  as the set of edges determined by all preceding 
choices, with the initial case being  C as just the root vertex of 
the graph.  

Note Additional details provided in class.



Data Structure and Computational Issues

1. Implementing Kruskal’s Algorithm seems to require sorting 
the edges by weight as a preliminary step.  Are there 
alternatives?

2. Implementing Prim’s algorithm seems to require keeping 
track of the edge of minimum weight with one endpoint in a 
component, but the components are changing.  How does one 
do this?



Finding Shortest Paths

Problem Given a connected digraph  G  with non-negative 
weights on the edges and a root vertex  r, find for each 
vertex  x, a directed path  P(x) from  r to  x so that the sum 
of the weights on the edges in  P(x)  is as small as possible.



Dijkstra’s Algorithm

1. At each step, and each vertex x, keep track of a “distance”  
d(x) and a directed path  P(x) from root to vertex  x of length  
d(x).

2. Scan first from the root and take initial paths  P(r,x) = (r, x) 
with  d(x) = w(rx)  when  rx is an edge,  and  d(x) = ∞   when  
rx is not an edge.

3. Vertices are either “permanent” or “temporary”.  At first, the 
root  r is the only permanent vertex.  For each permanent 
vertex x, the current value of  d(x)  is the length of a shortest 
path from  r to  x.



Dijkstra’s Algorithm - The Inductive Step

1. Of all temporary vertices, choose one, say  x,  whose 
“distance” to the root is minimum.  Mark it permanent.

2. For each temporary vertex  y distinct from  x, set       

d(y) = min{d(y), d(x)+w(xy)}

3. If this assignment lowers the value of d(y), set  P(y) to be 
the path obtained by appending  y to the end of  P(x)



Initialization

Remark Initially, the paths are just the edges (if they exist) 
joining each vertex to the root.  If there is no edge, take the 
length of the edge to be infinite.  The sequence of permanent 
vertices is the trivial sequence (1).

1. d(1) = 0;    P(1) = (1) 
2. d(2) = ∞;    P(2)  = (1,2)
3. d(3) = 47;   P(3)  = (1,3)  
4. d(4) = ∞;    P(4)  = (1,4)
5. d(5) = 70;   P(5)  = (1,5)
6. d(6) = 24;   P(6)  = (1,6)  
7. d(7) = ∞;    P(7)  = (1,7)
8. d(8) = ∞;    P(8)  = (1,8)



Step 1

1. d(1) = 0;    P(1) = (1) 
2. d(2) = ∞;    P(2)  = (1,2)
3. d(3) = 47;   P(3)  = (1,3)  
4. d(4) = ∞;    P(4)  = (1,4)    New d(4) = 144;  P(4) = (1,6,4)
5. d(5) = 70;   P(5)  = (1,5)
6. d(6) = 24;   P(6)  = (1,6)  
7. d(7) = ∞;    P(7)  = (1,7)
8. d(8) = ∞;    P(8)  = (1,8)

Among the temporary vertices, choose one closest to the root.  
This is vertex  6.  Make vertex 6 permanent.  Scan edges from 6 
and see edge (6,3) of weight 25 and edge (6,4) of weight 120.  This 
results in improvements for vertex 4 but not for 3.



Step 2

1. d(1) = 0;    P(1) = (1) 
2. d(2) = ∞;    P(2)  = (1,2)    New  d(2) = 102;  P(2) = (1,3,2)
3. d(3) = 47;   P(3)  = (1,3) 
4. d(4) = 144; P(4)  = (1,6,4)  New  d(4) = 135; P(4) = (1,3,4)
5. d(5) = 70;   P(5)  = (1,5)
6. d(6) = 24;   P(6)  = (1,6)  
7. d(7) = ∞;    P(7)  = (1,7)   New d(7) = 113;  P(7) = (1,3,7)
8. d(8) = ∞;    P(8)  = (1,8)

Among the temporary vertices, choose one closest to the root.  
This is vertex  3.  Make vertex 3 permanent.  Scan edges from 3 
and see edge (3,2) of weight 55, edge (3,4) of weight 88, edge 
(3,5) of weight 23  and edge (3,7) of weight 66.   These edges 
result in improvements for vertices 2, 4 and 7 but not 5 (where 
there is a tie).



Step 3

1. d(1) = 0;      P(1) = (1) 
2. d(2)  = 102;  P(2) = (1,3,2)   New d(2) = 101; P(2) = (1,5,2)
3. d(3) = 47;    P(3)  = (1,3) 
4. d(4) = 135;  P(4) = (1,3,4)
5. d(5) = 70;    P(5)  = (1,5)
6. d(6) = 24;    P(6)  = (1,6)  
7. d(7) = 113;  P(7) = (1,3,7)   New d(7) = 112;  P(7) = (1,5,7)
8. d(8) = ∞;     P(8)  = (1,8)

Among the temporary vertices, choose one closest to the root.  
This is vertex  5.  Make vertex 5 permanent.  Scan edges from 5 
and see edge (5,2) of weight 32 and edge (5,7) of weight 42.   
These edges result in improvements for vertices 2 and 7.



Step 4

1. d(1) = 0;      P(1) = (1) 
2. d(2)  = 101; P(2) = (1,5,2)
3. d(3) = 47;    P(3)  = (1,3) 
4. d(4) = 135;  P(4) = (1,3,4)   New  d(4) = 132;  P(4) = (1,5,2,4)
5. d(5) = 70;    P(5)  = (1,5)
6. d(6) = 24;    P(6)  = (1,6)  
7. d(7) = 112;  P(7) = (1,5,7)
8. d(8) = ∞;     P(8)  = (1,8)   New d(8) = 180;  P(8) = (1,5,2,8)

Among the temporary vertices, choose one closest to the root.  
This is vertex  2.  Make vertex 2 permanent.  Scan edges from 
2 and see edge (2,4) of weight 31, edge (2,7) of weight 74 and 
edge (2,8) of weight 79.   These edges result in improvements 
for vertices 4 and 8, but not vertex 7.



Step 5

1. d(1) = 0;      P(1) = (1) 
2. d(2)  = 101; P(2) = (1,5,2)
3. d(3) = 47;    P(3)  = (1,3) 
4. d(4) = 132;  P(4) = (1,5,2,4)
5. d(5) = 70;    P(5)  = (1,5)
6. d(6) = 24;    P(6)  = (1,6)  
7. d(7) = 112;  P(7) = (1,5,7)
8. d(8) = 180;  P(8) = (1,5,2,8)  New d(8) = 178; P(8) = (1,5,7,8)

Among the temporary vertices, choose one closest to the root.  
This is vertex  7.  Make vertex 7 permanent.  Scan edges from 7 
and see edge (7,8) of weight 66.   This edge results in an 
improvement for vertex 8.



Step 6

1. d(1) = 0;      P(1) = (1) 
2. d(2)  = 101; P(2) = (1,5,2)
3. d(3) = 47;    P(3)  = (1,3) 
4. d(4) = 132;  P(4) = (1,5,2,4)
5. d(5) = 70;    P(5)  = (1,5)
6. d(6) = 24;    P(6)  = (1,6)  
7. d(7) = 112;  P(7) = (1,5,7)
8. d(8) = 178; P(8) = (1,5,7,8)  New d(8) = 161; P(8) = (1,5,2,4,8)

Among the temporary vertices, choose one closest to the root.  
This is vertex  4.  Make vertex 4 permanent.  Scan edges from 4 
and see edge (4,8) of weight 29.   This edge results in an 
improvement for vertex 8.



Step 7

1. d(1) = 0;       P(1) = (1) 
2. d(2)  = 101;  P(2) = (1,5,2)
3. d(3) = 47;     P(3)  = (1,3) 
4. d(4) = 132;   P(4) = (1,5,2,4)
5. d(5) = 70;     P(5)  = (1,5)
6. d(6) = 24;     P(6)  = (1,6)  
7. d(7) = 112;   P(7) = (1,5,7)
8. d(8) = 161;   P(8) = (1,5,2,4,8)

The last temporary vertex becomes permanent.  There are no 
edges to scan.  DONE!!



The Correctness of the Algorithm (1)

Proof A very important first observation is that Dijkstra’s
Algorithm determines a permutation  

σ  = (x1,x2,x3,x4,…,xn)

of the vertex set of the digraph according to the order in which 
the vertices are marked permanent.  Of course, x1 is the root  r.   
For each vertex  xi, the algorithm has determined a path  P(xi)  
from  r to  xi having length  d(xi).  At this stage, it is not clear 
that  d(xi)  is really the shortest distance from  r to  xi.   
However, we do know that these values are increasing, i.e.,

d(x1) ≤  d(x2) ≤  d(x3) ≤  d(x4) ≤ … ≤  d(xn)



The Correctness of the Algorithm (2)

1. We show that for each vertex  x, the length d(x) of the path  
P(x)  is the shortest distance from  r to  x.  The argument 
proceeds by induction on the minimum number  k of edges in 
a shortest path from  r to  x.  Note that the claim holds for  
k = 1,  since we scan the edge  (r,x)  at Step 1.   

2. Now assume that for some positive integer  k,  Dijkstra’s
Algorithm find a shortest path from  r  to  x  whenever the 
minimum number of edges in such a path is at most  k.  Then 
let  x be a vertex for which the minimum number of edges in 
a shortest path from  r to  x is  k+1.   Let  P  be such a path 
and let  y b the point immediately before  x on  P.



The Correctness of the Algorithm (3)

Let  Q  be the initial segment of  P  beginning at  r and ending at  y.  
Then  Q  is a shortest path from  r to  y, so the minimum number of 
edges in a shortest path from  r to  y is at most  k.  Therefore 
Dijkstra’s algorithm finds a shortest path P(y)  from  r to  y.  Note 
that  P(y) need not be the same as Q.  However,  Q and P(y) both 
length  d(y).



The Correctness of the Algorithm (4)

The length of  path  P  is  d(y) + w(x,y) ≥  d(y)  since  all weights are 
non-negative.  If  x is marked permanent before  y, then the 
algorithm has already found a path P(x)  from  r to  x of length  d(x) ≤ 
d(y).  This implies that  d(x) = d(y) and w(x,y) = 0.  So the algorithm 
has found a shortest length path from  r to  x, albeit one where the 
last edge is “free”, i.e., has weight zero.



The Correctness of the Algorithm (5)

Now suppose that  y  is marked permanent before  x.  When we scan 
from  y, we will see the edge  (x,y)  having weight  w(x,y).  Therefore, 
d(x) ≤ d(y) + w(x,y), i.e., the algorithm will find a shortest path from  
r  to  x.  This observation completes the proof.



Data Structure and Computational Issues

1. Dijkstra’s Algorithm has modest space requirements since 
we only maintain information about the candidate optimal 
path.

2. If the graph has  n  vertices, each iteration marks a new 
vertex as permanent, so there are only  n  iterations.  Also, 
each scan involves  O(n)  calculations.  So the running time is  
O(n2). In fact, the running time is essentially the same as 
the time it takes to read the data.


