
November 17, 2015

Math 3012 – Applied
Combinatorics

Lecture 24

William T. Trotter
trotter@math.gatech.edu

Reminders

Test 3 Tuesday, November 24, 2015

Final Exam Tuesday, December 8, 2015, 8:05 – 10:55am.

Three-way Option (Full details in email)

1. Do even numbered problems from assigned set.
2. Obtain/write code for implementing one of the

algorithms in our course on my data set.
3. Write 3 – 4 page (typewritten) report on one of the

selected math papers, all of which are accessible to
undergraduates.

The Max Flow/Min Cut Theorem

Theorem The maximum value of a flow is equal to the minimum
capacity of a cut.

Observation If there are n vertices, there are 2n–2 cuts so
even if we could evaluate them all to find the minimum capacity of
a cut, we would gain no information about the details of a
maximum flow. Remarkably, there is an efficient algorithm for
finding a maximum flow and a minimum cut at the same time!

It’s All About Augmenting Paths!!

Observation Let L denote the set of all vertices X for which
there is an augmenting path from S to X, and let R be the
remaining vertices. Then if e is an edge from L to R, it
follows that e is full. On the other hand, if f is an edge from
R to L, then f is empty. In this example, L = (S, B, E) while
the remaining vertices are in R. Notice that the edges (E, D),
(B, G), (S, C) and (B, C) are full while (B, D) and (B, A) are
empty.

It’s All About Augmenting Paths!! (2)

Observation Simple algebra now implies that when all the edges
from L to R are full and all the edges from R to L are empty,
then the value of the current flow is equal to the capacity of the
cut (L, R).

Observation So all we have to do is keep finding augmenting
paths and increase the flow each time we find one. Eventually,
there will be no augmenting paths and we are done.

Augmenting Paths – Be Careful

Remark In the figure, suppose M = 1,000,000,000 and we
advance from the zero flow using the longest augmenting path
we can find. Do you see that it takes 2M steps to find the
maximum flow? Furthermore, if you take shortest augmenting
paths, you get to the final answer in 2 steps.

Remark This example suggests that we should focus on finding
augmenting paths using the minimum number of edges.

Primal Dual with Dijstra as the Dual

Strategy Use Dijkstra to find an
augmenting path using the
minimum number of edges.
Normally, this is done by carrying
out the Ford-Fulkerson labelling
algorithm. This algorithm assigns
triples to vertices of the
network, starting with a labelling
of the source S. If the sink T is
labelled, then we will have found
an augmenting path using the
minimum number of edges.

Details on the Labelling Scheme

Initialize Label the source S with the triple (*, +, ∞).

Scan Using the rule: first labelled, first scan, let X be a labelled
vertex and let a(X) be the positive amount on X. Scan the
neighbors on X in pseudo-alphabetic order (S, T, A, B, C, D, E, F,
…). If Y is scanned an the edge is (X, Y), i.e., the edge is oriented
from X to Y, and it is not full, let a(X, Y) be the spare capacity.
Label Y as (X, + , min { a(X), a(X, Y)).

If the edge is (Y, X), i.e., oriented from Y to X, and the edge is
not empty, let a(Y, X) denote the flow on this edge. Then label Y
as (X, -, min{ a(x), a(Y, X) }).

Halt if the sink T is labeled, as backtracking will specify an
augmenting path using the minimum number of edges.

Primal Dual with Dijstra as the Dual

Ford-Fulkerson

S (*, +, ∞)

B (S, +, 12)

E (B, -, 9)

D (E, +, 8)

A (F, +, 7)

F (D, +, 8)

G (A, +, 4)

T (F, +, 8)

Augmenting Path (S, B, E, D, F, T) with value 8.

The Example Updated

Ford-Fulkerson

S (*, +, ∞)

B (S, +, 4)

E (B, -, 4)

The algorithm halts
with S = { S, B, E }.
The remaining
vertices belong to R.

Conclusion The current flow is maximum and the cut
(L, R) is minimum. Done!

A Second Example

Exercise Carry out the Ford-Fulkerson labelling
algorithm on the network flow.

Network Flows and Linear Programming

Definition A problem in n variables x1, x2, …, xn is called a
linear programming (LP) problem when it has the form:

Maximize c1x1 + c2x2 + … cnxn

subject to m constraints of the form:

ai1x1 + ai2x2 + … ainxn ≤ bi

With all variables x1, x2, …, xn non-negative.

Example Maximize 5x1 + 7x2

subject to 14x1 + 3x2 ≤ 42

5x1 + 9x2 ≤ 45

x1, x2 ≥ 0

Some Observations on LP problems

Fact There are many equivalent formulations of the class of LP
problems. In the set of constraints, you can allow equations and
inequalities in the opposite direction. Also you call allow some or
all of the variables to be negative.

Fact The solution space to the set of constraints forms a
convex body in Rn with a bounded number of extreme (corner
points). The maximum value always occurs and an extreme point.
The number of extreme points can be exponentially large in
terms of the number n of variables.

Fact LP problems posed with integer constraints have solutions
in the rational number system, but in general they do not have
solutions with all variables being integers.

A Key Detail on Network Flow Problems

Fact A network flow problem posed with integer capacities on
edges always has a maximum flow in which the flow on every edge
is an integer. The proof of this fact is an immediate
consequence of the fact that the Ford-Fulkerson labelling
algorithm uses only addition, subtraction and minimum as its
three operations.

Remark It is an important general problem to determine when
optimization posed with integer constraints have integer valued
solutions. Network flows are just one example.

Network Flow Problems with Capacities 1

Exercise Carry out the Ford-Fulkerson labelling
algorithm on the network flow.

