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Reminders

Test 3  Tuesday, November 24, 2015

Final Exam  Tuesday, December 8, 2015, 8:05 – 10:55am.

Three-way Option  (Full details in email)

1. Do even numbered problems from assigned set.
2. Obtain/write code for implementing one of the 

algorithms in our course on my data set.
3. Write 3 – 4 page (typewritten) report on one of the 

selected math papers, all of which are accessible to 
undergraduates. 



The Max Flow/Min Cut Theorem

Theorem The maximum value of a flow is equal to the minimum 
capacity of a cut.

Observation If there are  n  vertices, there are  2n–2 cuts so 
even if we could evaluate them all to find the minimum capacity of 
a cut, we would gain no information about the details of a 
maximum flow.  Remarkably, there is an efficient algorithm for 
finding a maximum flow and a minimum cut at the same time!



It’s All About Augmenting Paths!!

Observation Let  L denote the set of all vertices  X  for which 
there is an augmenting path from  S  to  X, and let  R be the 
remaining vertices.   Then  if  e  is an edge from  L  to  R, it 
follows that  e  is full.  On the other hand, if  f  is an edge from  
R  to  L, then  f  is empty.    In this example,  L = (S, B, E)  while 
the remaining vertices are in  R.   Notice that the edges  (E, D),     
(B, G),  (S, C)  and  (B, C)  are full while  (B, D)  and  (B, A)  are 
empty.



It’s All About Augmenting Paths!!  (2)

Observation Simple algebra now implies that when all the edges 
from  L to  R  are full and all the edges from  R  to  L  are empty, 
then the value of the current flow is equal to the capacity of the 
cut  (L, R).  

Observation So all we have to do is keep finding augmenting 
paths and increase the flow each time we find one. Eventually, 
there will be no augmenting paths and we are done.



Augmenting Paths – Be Careful

Remark In the figure, suppose  M = 1,000,000,000  and we 
advance from the zero flow using the longest augmenting path 
we can find.  Do you see that it takes  2M  steps to find the 
maximum flow?   Furthermore, if you take shortest augmenting 
paths, you get to the final answer in  2  steps.

Remark This example suggests that we should focus on finding 
augmenting paths using the minimum number of edges.



Primal Dual with Dijstra as the Dual

Strategy Use Dijkstra to find an 
augmenting path using the 
minimum number of edges.   
Normally, this is done by carrying 
out the Ford-Fulkerson labelling 
algorithm.  This algorithm assigns 
triples to vertices of the 
network, starting with a labelling 
of the source S.  If the sink  T is 
labelled, then we will have found 
an augmenting path using the 
minimum number of edges.



Details on the Labelling Scheme

Initialize   Label the source  S  with the triple  ( *,  +, ∞ ).

Scan Using the rule:  first labelled, first scan, let  X  be a labelled 
vertex and let  a(X)  be the positive amount on  X.  Scan the 
neighbors on  X  in pseudo-alphabetic order (S, T, A, B, C, D, E, F, 
…).  If  Y is scanned an the edge is  (X, Y), i.e., the edge is oriented 
from  X  to  Y, and it is not full, let  a(X, Y)  be the spare capacity.  
Label  Y  as  ( X,  + ,  min { a(X), a(X, Y)).

If the edge is  (Y, X), i.e., oriented from  Y  to  X, and the edge is 
not empty, let  a(Y, X) denote the flow on this edge.  Then label   Y  
as  ( X,  -,   min{ a(x),  a(Y, X) }).

Halt if the sink  T  is labeled, as backtracking will specify an 
augmenting path using the minimum number of edges.



Primal Dual with Dijstra as the Dual

Ford-Fulkerson  

S  ( *,  +,  ∞ )

B  ( S,  +,  12 )

E  ( B,  -,  9 )

D  ( E,  +,  8 )

A  ( F,  +,  7 )

F  ( D,  +,  8 )

G  ( A,  +,  4 )

T  ( F,  +,  8 )  

Augmenting Path   (S, B, E, D, F, T) with value  8.



The Example Updated

Ford-Fulkerson  

S  ( *,  +,  ∞ )

B  ( S,  +,  4 )

E  ( B,  -,  4 )

The algorithm halts 
with   S = { S, B, E }. 
The remaining 
vertices belong to  R.

Conclusion  The current flow is maximum and the cut  
(L, R )  is minimum.  Done!



A Second Example

Exercise  Carry out the Ford-Fulkerson labelling 
algorithm on the network flow. 



Network Flows and Linear Programming

Definition A problem in  n  variables  x1, x2, …, xn is called a 
linear programming (LP) problem when it has the form:

Maximize   c1x1 + c2x2 + … cnxn

subject to  m  constraints  of the form:

ai1x1 + ai2x2 + … ainxn ≤  bi

With all variables  x1, x2, …, xn non-negative.

Example    Maximize 5x1 + 7x2

subject to   14x1 + 3x2 ≤ 42 

5x1 + 9x2 ≤  45

x1, x2 ≥ 0            



Some Observations on  LP problems

Fact There are many equivalent formulations of the class of  LP  
problems.  In the set of constraints, you can allow equations and 
inequalities in the opposite direction.  Also you call allow some or 
all of the variables to be negative.

Fact The solution space to the set of constraints forms a 
convex body in  Rn with a bounded number of extreme (corner 
points).  The maximum value always occurs and an extreme point.  
The number of extreme points can be exponentially large in 
terms of the number  n  of variables.

Fact LP  problems posed with integer constraints have solutions 
in the rational number system, but in general they do not have 
solutions with all variables being integers.



A Key Detail on Network Flow Problems

Fact A network flow problem posed with integer capacities on 
edges always has a maximum flow in which the flow on every edge 
is an integer.  The proof of this fact is an immediate 
consequence of the fact that the Ford-Fulkerson labelling 
algorithm uses only addition, subtraction and minimum as its 
three operations. 

Remark It is an important general problem to determine when 
optimization posed with integer constraints have integer valued 
solutions.  Network flows are just one example. 



Network Flow Problems with Capacities  1

Exercise  Carry out the Ford-Fulkerson labelling 
algorithm on the network flow. 


