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Reminders

Test 3  Tuesday, November 24, 2015

Final Exam  Tuesday, December 8, 2015, 8:05 – 10:55am.

Three-way Option  (Full details in email)

1. Do even numbered problems from assigned set.
2. Obtain/write code for implementing one of the 

algorithms in our course on my data set.
3. Write 3 – 4 page (typewritten) report on one of the 

selected math papers, all of which are accessible to 
undergraduates. 



A Key Detail on Network Flow Problems

Fact A network flow problem posed with integer capacities on 
edges always has a maximum flow in which the flow on every edge 
is an integer.  The proof of this fact is an immediate 
consequence of the fact that the Ford-Fulkerson labelling 
algorithm uses only addition, subtraction and minimum as its 
three operations. 

Remark It is an important general problem to determine when 
optimization posed with integer constraints have integer valued 
solutions.  Network flows are just one example. 



Network Flow Problems with Capacities  1

Exercise  Carry out the Ford-Fulkerson labelling 
algorithm on the network flow. 



Network Flow Problems with Capacities  1

Remark  Here the presence of an edge signals capacity  
1, and the flow is indicated with two colors. This flow 
has value  2.



Network Flow Problems with Capacities  1

Remark  Here the presence of an edge signals capacity  
1, and the flow, which has value  3  is indicated with 
three colors. 



Disjoint Paths From  x  to  y

Remark  There are two different notions of “disjoint”.  We 
could simply require that two different paths share no edges.  
Or we could make the stronger requirement that they have no 
vertices in common other than  x  and  y.   Network flows will 
find the maximum number of disjoint paths in either case.



Some Consequences

Theorem (Menger’s Theorem – Edge Version)  Let  x  and  y  be 
distinct vertices in a connected graph  G.  Then the maximum 
number of edge disjoint paths from  x  to  y  is equal to the 
minimum number of edges whose removal from  G  leaves  x  and  
y  in different components.

Theorem (Menger’s Theorem – Vertex Version)  Let  x  and  y  
be distinct non-adjacent vertices in a connected graph  G.  Then 
the maximum number of vertex disjoint paths from  x  to  y  is 
equal to the minimum number of vertices whose removal from  G  
leaves  x  and  y  in different components.



Matchings in Graphs

Definition  A matching in a graph is a set of edges no two of 
which share an end point. Typically the problem is to find a 
maximum size matching.   The matching shown is maximal.  Is it 
maximum?  The same kind of algorithm used to solve network 
flows will find a maximum matching in a graph.



Matchings in Bipartite Graphs

Remark  We are particularly interested in finding a maximum 
matching in a bipartite graph.  Again, the matching shown is 
maximal.  Is it maximum?  



Maximum Matchings in Bipartite Graphs

Observation There is a natural way to form a network flow 
problem from a bipartite graph.  Simply add a source and a sink 
as shown, orient all edges left to right and give them capacity  1. 
Turn on Ford-Fulkerson and go get a cup of coffee.



Maximum Matchings in Bipartite Graphs (2)

Observation It isn’t really necessary to draw the source and sink 
as their configuration is understood.   Now the matching shown is 
maximum.  To see this, turn on Ford-Fulkerson and enjoy a donut 
with your coffee. 



More on Matchings in Bipartite Graphs

Setup A company has  9  open positions and  7  applicants.  The 
graph has an edge from applicant  x  to position  i when  x  is 
capable of performing   i.  A matching is then an employment 
plan, and it is natural to try to fill as many open positions as 
possible.  Note that some applicants may not be capable of doing 
any job and there may be some jobs that no applicant can do.



The Concept of Defect

Definitions  Let  G = (X, Y, E)  be a bipartite graph.  For each 
subset  S  of  X, let  N(S)  denote the set of all elements  y  in  
Y  for which there is some  x  in  X  adjacent to  y.  We call  N(S) 
the set of neighbors of  S. The defect of  G, denoted  d(G),  is:

d(G) = max { |S| - N(S):  S  X }



Hall’s Theorem (Defect Form)

Theorem (Hall) Let  G = (X, Y, E)  be a bipartite graph.  Then the 
maximum size of a matching in  G  is  |X| - d(G).

Corollary There is a matching of size  |X|  if and only if  d(G) = 0, 
i.e.,  |N(S)| ≥ |S|  for every subset  S  of  X.



Regular Balanced Bipartite Graphs

Corollary Let  G = (X, Y, E)  be a balanced regular bipartite graph.  
Then there is a matching of size  |X| in  G.



Regular Balanced Bipartite Graphs

Corollary Let  G = (X, Y, E)  be a balanced regular bipartite graph.  
If the degree is  r,  then the edge set of  G  can be partitioned 
into  r  matchings.



Posets to Bipartite Graphs

Remark  For each  x  in  P, the bipartite graph contains two 
points labeled  x’  and  x’’ respectively.  The edges in the graph 
have the form  x’y’’  where  x < y  in  P. 



Posets to Bipartite Graphs

Remark  A matching in  G  determines a chain partition of  P  
with  x  immediately below  y  in a chain  when  x’y’’ is one of the 
matching edges.  This matching corresponds to the chain 
partition:   C1 = {e < c < f}     C2 = {d < a}  and  C3 = {b}.    If the 
matching is maximum, then the chain partition is a Dilworth 
partition of  P, i.e, it uses  w  chains where  w = width(P).



Finding a Maximum Antichain

Remark  When the Ford-Fulkerson labelling algorithm halts, for 
each chain  Ci in the partition, there is a point  xi in  Ci so that  
xi’  is labeled and  xi’’  is not.  These points form an antichain. In 
chain C1 = {e < c < f}, take  f.  In chain  C2 = {d < a}, take  a  and  
C3 = {b},  take  b (the only choice).  Note that  {f, a, b} is a  3-
element antichain.   DONE!!!


