Math 3012 - Applied
 Combinatorics Lecture 3

William T. Trotter trotter@math.gatech.edu

First Homework Assignment

Note I've made the first homework assignment but have not yet set a due date. Although I'll give you at least one week's advance notice, look for this to occur just before Test 1 which is set for Thursday, September 17.

Note Problem 16 from Chapter 2 was assigned twice. This is a bit of overkill and just to show you what a great guy I am, you only have to work it once!!

Binomial Coefficients Everywhere

Foundational Enumeration Problem

Given a set of m identical objects and n distinct cells, the number of ways they can be distributed with the requirement that no cell is empty is

$$
\binom{m-1}{n-1}
$$

Explanation
A A A A A A|AA|AAA \mid |AAAAAA $A|A| A A$ m objects, $m-1$ gaps. Choose $n-1$ of them. In this example, there are 23 objects and 6 cells. We have illustrated the distribution (6, 2, 4, 7, 1, 3).

Equivalent Problem

Restatement

How many solutions in positive integers to the equation:

$$
x_{1}+x_{2}+x_{3}+\ldots x_{n}=m
$$

Given a set of m identical objects and n distinct cells, the number of ways they can be distributed with the requirement that no cell is empty is

$$
\binom{m-1}{n-1}
$$

Building on What We Know

Restatement

How many solutions in non-negative integers to the equation:

$$
x_{1}+x_{2}+x_{3}+\ldots x_{n}=m
$$

Answer

$$
\binom{m+n-1}{n-1}
$$

Explanation Add n artificial elements, one for each variable.

Mixed Problems

Problem How many integer solutions in non-negative integers to the equation:

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}=142
$$

Subject to the constraints:

$$
x_{1}, x_{2}, x_{5}, x_{7} \geq 0 ; \quad x_{3} \geq 8 ; \quad x_{4}>0 ; \quad x_{6}>19
$$

Answer

$$
\binom{119}{6}
$$

Good = All - Bad

Problem How many integer solutions in non-negative integers to the equation:

$$
x_{1}+x_{2}+x_{3}+x_{4}=63
$$

Subject to the constraints:

$$
x_{1}, x_{2} \geq 0 ; \quad 2 \leq x_{3} \leq 5 ; \quad x_{4}>0
$$

Answer

$$
\binom{63}{3}-\binom{59}{3}
$$

Lattice Paths (1)

Restriction Walk on edges of a grid. Only allowable moves are R (right) and U (up), i.e., no L (left) and no D (down) moves are allowed.

Lattice Paths (2)

Observation The number of lattice paths from $(0,0)$ to (m, n) is $\binom{\boldsymbol{m}+\boldsymbol{n}}{\boldsymbol{m}}$.
$(6,4)$

Explanation A lattice path corresponds to a choice of m horizontal moves in a sequence of $m+n$ moves. Here the choices are: RUURRRURUR

Lattice Paths - Not Above Diagonal

Question How many lattice paths from $(0,0)$ to (n, n) never go above the diagonal?

Good

Bad

Lattice Paths - Not Above Diagonal

Solution The number of lattice paths from $(0,0)$ to (n, n) which never go above the diagonal is the Catalan Number:

$$
\frac{\binom{2 n}{n}}{n+1}
$$

Observation The first few Catalan numbers are:
$1,1,2,5,14$. What is the next one?

Parentheses and Catalan Numbers

Basic Problem How many ways to parenthesize an expression like:

$$
x_{1}^{*} x_{2}^{*} x_{3}{ }^{*} x_{4}{ }^{*} \ldots x_{n}
$$

For example, when $n=4$, we have 5 ways:

$$
\begin{aligned}
& x_{1} *\left(x_{2} *\left(x_{3} * x_{4}\right)\right) \\
& \left.x_{1} *\left(\left(x_{2} * x_{3}\right) * x_{4}\right)\right) \\
& \left(x_{1} * x_{2}\right) *\left(x_{3} * x_{4}\right) \\
& \left(\left(x_{1} * x_{2}\right) * x_{3}\right) x_{4} \\
& \left(x_{1}^{*} *\left(x_{2} * x_{3}\right)\right){ }^{*} x_{4}
\end{aligned}
$$

Can you verify that there are 14 ways when $n=5$?

Using Recurrence Equations (1)

Basic Problem How many regions are determined by n lines that intersect in general position?

Answer
$\mathrm{d}_{1}=2$
$d_{n+1}=d_{n}+n+1$ when $n \geq 0$.
So $d_{2}=2+(1+1)=4$

$$
\begin{aligned}
& d_{3}=4+(2+1)=7 \\
& d_{4}=7+(3+1)=11
\end{aligned}
$$

What are d_{5} and d_{6} ?

Using Recurrence Equations (2)

Basic Problem How many regions are determined by n circles that intersect in general position?

Answer
$\mathrm{d}_{1}=2$
$d_{n+1}=d_{n}+2 n$ when $n \geq 0$.
So $d_{2}=2+2 \star 1=4$

$$
\begin{aligned}
& d_{3}=4+2^{\star} 2=8 \\
& d_{4}=8+2^{\star} 3=14
\end{aligned}
$$

What are d_{5} and d_{6} ?

Using Recurrence Equations (3)

Basic Problem How many ways to tile a $2 \times n$ grid with dominoes of size 1×2 and 2×1 ?

Answer
$d_{1}=1$
$d_{2}=2$
$d_{n+2}=d_{n+1}+d_{n}$ when $n \geq 0$.
So $d_{3}=2+1=3$

$$
d_{4}=3+2=5
$$

What are d_{5} and d_{6} ?

Challenge Problem (4)

Basic Problem How many ways to tile a $3 \times n$ grid with tiles of the four shapes illustrated here?

Partial Answer $d_{1}=1$
$d_{2}=2$
$d_{3}=4$

What are d_{5} and d_{6} ?

Cash Prize One dollar to first person who can correctly evaluate d_{20}.

Using Recurrence Equations (5)

Basic Problem How ternary sequences do not contain 01 in consecutive positions?

Answer
$t_{1}=3$
$t_{2}=8$
$t_{n}=3 t_{n-1}-t_{n-2}$ when $n \geq 2$.
So $t_{3}=3 \times 8-3=21$
$t_{4}=3 \times 21-8=55$
What is t_{5} ?

Critical Question

Question If you know that:

$$
\begin{aligned}
& a_{1}=14 \\
& a_{2}=23 \\
& a_{3}=-96 \\
& a_{4}=52 \text { and }
\end{aligned}
$$

$a_{n+4}=9 a_{n+3}-7 a_{n+2}+8 a_{n+1}+13 a_{n}$ when $n \geq 1$, then you can calculate a_{n} for any positive integer n. Is this good enough, or would you like to know even more about a_{n} ?

Basis for Long Division

Theorem If m and n are positive integers, there are unique integers q and r with $q \geq 0$ and $0 \leq r<m$ so that

$$
n=q m+r
$$

Question Is this obvious or does it require an explanation/proof?

