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The Principle of Math Induction

Postulate   If  S  is a set of positive integers,  1 is in  
S, and  k + 1  is in  S  whenever  k  is in  S, then  S is 
the set of all positive integers.

Consequence To prove that a statement  Sn is true 
for all  n, it suffices to do the following two tasks.  
First show that Sn holds when  n =1.  Second, assume 
that  Sn is true when  n = k  and show that it then 
holds when  n = k + 1.



CS Students Use Induction Intuitively

int my_function (int a) { 
if (a   == 1) {     

return  42;             /* The Secret  */
else return 3*my_function (a -1) - 80;

}

What is the value of:

my_function (3)

Answer 58



A More Challenging Example

int update_value (int a) { 
if (a  % 2  == 0) {                  /*  a % 2 = a mod 2 */

return  a/2;
else return 3*a + 1;

}

int collatz_sequence (int a) {
printf(“%d \n”, a);
do while (a != 1) {a = update (a);}
printf(“Success!\n”);

}



Applying Math Induction (1)

Theorem  The sum of the first  n  odd integers is  n2, i.e.,
1 + 3 + 5 + 7 + … + (2n – 1) = n2.

Proof 2 * 1 – 1 = 12 = 1, so true when  n = 1.
Assume true when  n = k, i.e., assume
1 + 3 + 5 + 7 + … + (2k – 1) = k2.

Then
1 + 3 + 5 + 7 + … + (2k – 1) + (2k + 1) = k2 + (2k + 1)

= k2 + 2k + 1
= (k +1)2

QED



Avoiding Ambiguity (1)

Theorem  The sum of the first  n  odd integers is  n2, i.e.,
1 + 3 + 5 + 7 + … + (2n – 1) = n2.

But … can we really be certain about what is meant with 
the expression of the left hand side?   Let’s take out the 
ambiguity.    In the English language, we might say “the 
sum of the first  n  odd integers is  n2.”

Here’s an even more precise way.  First,
for a sequence  {an:  n ≥ 1}, we define:

 𝑖=1
1 𝑎𝑖 = 𝑎1 and  𝑖=1

𝑘+1 𝑎𝑖 = 𝑎𝑘+1 +  𝑖=1
𝑘 𝑎

𝑖



Avoiding Ambiguity (2)

Theorem   𝑖=1
𝑛 2𝑖 − 1 = 𝑛2

Proof  𝑖=1
1 2𝑖 − 1 = 2 1 − 1 = 1 = 12

Now assume  𝑖=1
𝑘 2𝑖 − 1 = 𝑘2

Then   𝑖=1
𝑘+1 2𝑖 − 1 = 𝑘2+ [2 𝑘 + 1 − 1]

= 𝑘2 + 2𝑘 + 1
= 𝑘 + 1 2

QED    



Theory vs. Practice

Remark In practice most mathematicians, computer 
scientists and engineers prefer the informal notation as 
they feel it is more intuitive.  However, whenever truly 
pressed, they could if absolutely forced, go the more 
formal and absolutely unambiguous route.

Also A combinatorial proof is usually preferable to a 
formal inductive proof … as this helps us to understand 
what is really going on behind the scenes.

Remember Usually means usually and not always.



Applying Math Induction (2)

Exercise  Show that the following formula is valid:
12 + 22 + … + n2 = n(n+1)(2n+1)/6.

Proof 12 = 1 = 1(1+1)(2*1+1)/6, so true when  n = 1.
Assume true when  n = k, i.e., assume
12 + 22 + … + k2 = k(k+1)(2k+1)/6.

Then
12 + 22 + … + k2 + (k+1)2 = k(k+1)(2k+1)/6 + (k+1)2

= [(2k3 + 3k2 +k)+(6k2+12k+6)]/6
= (2k3 + 9k2 + 13k + 6)/6
= (k +1)(k + 2)(2k + 3)/6

QED



Applying Math Induction (3)

Theorem  For all  n ≥ 1,  n3 + (n + 1)3 + (n + 2)3 is divisible 
by  9.

Proof  When  n = 1, 13 + 23 +33 = 1 + 8 + 25 = 36.

Assume true when  n = k.  Then, if  n = k+1,

(k+1)3 + (k+2)3 +(k+3)3

=  (k+3)3 + (k+1)3+ (k+2)3

=  (k3 +9k2 + 27k + 27) + (k+1)3 + (k+2)3

=  [(k3 + (k+1)3 +(k+2)3] + [9k2 + 27k +27]
QED



An Exercise in Math Induction (1)

Exercise Show that for all  n ≥ 2,  

1/√1 + 1/√2 + 1/√3 + … + 1/√n  > √n

Solution (Which turned out to be more substantive than 
our other examples presented thus far.)

The base case is  n = 2.  Here the left hand is
1 + 1/√2  while the right hand side is   √2, so we want to 
show that 1 + 1/√2 > √2.



An Exercise in Math Induction (2)

Exercise (continued) Squaring both sides, this is 
equivalent to showing that 

1 + 2/√2 + 1/2 > 2   and this is equivalent to
√2  > 1/2  which is true since √2 > 1.

So we have established that the inequality is valid when  n = 
2.   Now assume that it is valid for some  integer  k, i.e.,

1/√1 + 1/√2 + 1/√3 + … + 1/√k  > √k



An Exercise in Math Induction (3)

Exercise (continued)   It follows that

1/√1 + 1/√2 + 1/√3 + … + 1/√k  + 1/√(k+1) > √k + 1/√(k+1).

Now what we want to prove is that 

1/√1 + 1/√2 + 1/√3 + … + 1/√k  + 1/√(k+1) > √(k+1), 

so it suffices to prove that 

√k + 1/√(k+1) > √(k+1)



An Exercise in Math Induction (4)

Exercise (continued)   Squaring both sides, the last 
inequality is equivalent to 

k + 2 √k/ √(k+1) + 1/(k+1)  >  k + 1, which is equivalent to 

2 √k/ √(k+1) + 1/(k+1) > 1.  But this inequality holds if

2 √k/ √(k+1) > 1, which is not equivalent to
4k > k+1, which is true.

QED  (Whew!)



Basis for Long Division

Theorem   If  m  and  n  are positive integers, there are 
unique integers  q  and  r  with  q ≥ 0  and  0 ≤ r < m  so 
that

n = q m  + r

Question Is this obvious or does it require an 
explanation/proof?  

Yes!! It does require an argument.



Long Division Revisited

Strategy  Make the following statement Sn:  For all 
positive integers  m, there exist  q  and  r  with  q ≥ 0  and  
0 ≤ r < m  so that   n = q m  + r.

Proof When  n = 1,  if  m = 1, then  1 = 1*1 + 0, and if  m > 
1, then  1 = 0*m + 1.   So  S1 is true.
Now assume  Sk is true, and let  m  be a positive integer.
Choose  q  and  r  so that  k = q m + r.  Then
k + 1 = q m + (r + 1)  works unless  r + 1 = m.  In this case,
k + 1 = (q + 1) m + 0.

The uniqueness part is just high school algebra.



Finding Greatest Common Divisors

Problem  If  n  and  m  are positive integers with  n ≥ m,  
find their greatest common divisor.

Solution ??? The following loop always works.
int gcd (int n, int m) { 

int gotit = 0;
answer = m;
while (gotit == 0) do {

if (n % answer == 0) return answer;
gotit = 1;

else answer = answer -1;
}  

}



The Limits of Computing Power

Remark  There is no computer on the planet that will 
solve the following problem using the algorithm on the 
preceding slide:

gcd (275887499882303013399012285973582,
3747754982288837599088247)

Comment Maple reported that they are relatively prime 
in less than one second.



The Euclidean Algorithm

Setup  Suppose  n  and  m  are positive integers with  
n ≥ m.  Choose   q  and  r  with  q ≥ 0  and  0 ≤ r < m  so 
that   n = q m  + r.  

Fact If  r = 0, then  gcd(n, m) = m.

Fact If  r > 0, then  gcd(n, m) = gcd(m, r).

Explanation n/d = (qm + r)/d = q (m/d) + r/d.



An Improved Algorithm

int gcd (int n, int m) { 
int gotit = 0;
while (gotit == 0) do {

r = n % m;                   /*  r = n  mod  m   */
if (r == 0) return  m;
gotit = 1;

else  n = m;
m = r;

}
}



Concrete Example

Problem Find  gcd(10262736, 85470).

10262736 %  85470  = 6336
85470  %  6336    = 3102
6336  %  3102     = 132
3102  %  132       = 66
132  %  66         = 0

Answer 66 = gcd(10262736, 85470)



Quotients and Remainders 

Problem Find  gcd (n, m)  when  n = 10262736  
and  m = 85470.

10262736 = 120 * 85470 + 6336
85470  = 13 * 6336 + 3102
6336 = 2 * 3102 + 132
3102 = 23 * 132 + 66
132 = 2 * 66 + 0

6336 = 10262736 - 120 * 85470 
3102 = 85470  - 13 * 6336
132 = 6336 - 2 * 3102
66= 3102 - 23 * 132

Problem Use back-tracking to find integers  a 
and  b  so that   a n  +  b m  = gcd (n, m).



An Important Diophantine Equation 

Fact When  n  and  m  are positive integers, 
there are integers   a  and  b  so that

gcd (n, m)  = a n  +  b m

Fact We can find  a  and  b  by back-tracking 
with the information gained in carrying out the 
Euclidean algorithm



Back Tracking Details 

Problem Find  a  and  b  so that  gcd (n, m) = an + b m  
when  n = 10262736  and  m = 85470

66  = 3102 - 23 * 132                         and    132= 6336 - 2 * 3102

= -23 * 6336 + 47 * 3102             and   3102 = 85470  - 13 * 6336

=   47 * 85470 – 634 * 6336        and   6336 = 10262736 - 120 * 85470

=  -634 * 10262736 + 76127 * 85470

Solution a = -634  and  b = 76127 



Preferring Loops 

Recommendation

Check out the program  gcd_lcm.c on the course web 
site and see how to compute gcd’s and  solve the 
Diophantine equation   a n  +  b m  =  gcd (n, m)   using a 
loop with no back tracking and very little memory.


