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Test 1 and Homework Due Date

Reminder   Test 1, Thursday September 17, 2015.  
Taken here in MRDC 2404.   Final listing of material 
for test will be made via email after class on 
Thursday, September 10. 

Homework Due Date Tuesday, September 15, 2015.
Papers will be returned with tests – with a target of
Tuesday, September 22, 2015.  Scores posted on T-
Square.



Multinomial Coefficients

Problem   How many different arrangements of 

AABBBCCCCCCDEEEEEEFFFFFFFF   ?

Answer

26
2,3,1,6,6,8

=
26!

2! 3! 1! 6! 6! 8!

Note Informally, this is known as the “MISSISSIPPI” 
problem. 



Binomial and Multinomial Coefficients

Observation

When there are only two parts, a multinomial 
coefficient is just a binomial coefficient.  So for 
example,

26
7,19
=
26
7

However   You should only use the binomial notation 
in this case.



The Binomial Theorem

Theorem

𝑥 + 𝑦 𝑛 =  𝑘=0
𝑛 𝑛
𝑘
𝑥𝑛−𝑘𝑦𝑘

Explanation

𝑥 + 𝑦 𝑛 = 𝑥 + 𝑦 𝑥 + 𝑦 𝑥 + 𝑦 𝑥 + 𝑦 … 𝑥 + 𝑦

From each of  n  terms, you either take  x  or  y, so if  
k  is the number of times you take  y, then you take  x 
exactly  n – k  times.



Applying the Binomial Theorem

Theorem

𝑥 + 𝑦 𝑛 =  𝑘=0
𝑛 𝑛
𝑘
𝑥𝑛−𝑘𝑦𝑘

Problem What is the coefficient of 𝑎14𝑏18 in

(3𝑎2− 5𝑏)25

Answer 25
7
37 −5 18



The Multinomial Theorem

Theorem
𝑥1+ 𝑥2+ 𝑥3+ 𝑥4

𝑛

=  

𝑘
1
+𝑘
2
+𝑘
3
+𝑘
4
=𝑛

𝑛
𝑘1, 𝑘2, 𝑘3, 𝑘4

𝑥1
𝑘
1𝑥2
𝑘
2𝑥3
𝑘
3𝑥4
𝑘
4

Problem What is the coefficient of 𝑎6𝑏8𝑐6𝑑6 in

(4𝑎3− 5𝑏 + 9𝑐2+ 7𝑑)19

Answer
19
2,8,3,6

42(−5)89376



The Pigeon Hole Principle

Old Saying  If you have to put  n + 1  pigeons into  n  
holes, then you must put some two pigeons into the 
same hole.

More generally  If you have to put  mn + 1  pigeons 
into  n  holes, then you must put some  m + 1  pigeons 
into the same hole.



The Erdős-Szekeres Theorem

Theorem  Any sequence of  m n + 1  distinct real 
numbers either contains an increasing subsequence 
of length  m + 1  or a decreasing subsequence of 
length  n + 1.



WTT and  Paul Erdős (1988?)



The Erdős-Szekeres Theorem

Theorem  Any sequence of  m n + 1  distinct real 
numbers either contains an increasing subsequence 
of length  m + 1  or a decreasing subsequence of 
length  n + 1.

Example Here  m = 3  and  n = 5

2, 3, -5, 0, π, 9, -4, -3, 7, 8, 5, 1, -6, 10, -8, -1

Problem Find the longest increasing subsequence 
and the longest decreasing subsequence.



Proof of the Erdős-Szekeres Theorem

Proof Let the sequence be:  (a1,a2,a3,…, at)  with  t = 
mn+1.   For each i,  place the pigeon  ai in the pigeon 
hole  (inc, dec)  where  inc is the length of the longest 
increasing subsequence starting with  ai and  dec is 
the length of the longest decreasing subsequence 
starting with  ai.  Then there are  mn + 1 pigeons and 
only  mn holes.  Consider two pigeons  ai and  aj which 
are assigned to the same hole where  i < j.  If  ai < aj, 
then  inc value for  ai is larger than the  inc value for  
aj.  If  ai > aj, then  dec value for  ai is larger than the  
dec value for  aj.



Easy Application

Exercise  Show that if  S  is  a subset of size  6  from  
{1, 2, 3,…, 9}, then there are two distinct elements of  S  
whose sum is  10.



Complexity and Problem Size

Observation  We typically say that a problem size is  n  
when the data for a problem can be interpreted as n  
packets of information with each packet readable in some 
constant amount of time.  For example, when integers are 
at most  MAX_INTEGER  in some programming language, 
we view all integers as being readable in constant time.  
With this notion in mind, we begin to discuss – quite 
informally – the running time for algorithms to solve a 
problem of size  n.



Running Time

Concept  An algorithm accepts input data of size  n  and 
then carries out a procedure which takes a total of  f(n)  
steps.   The function  f(n) is called the running time of 
the algorithm.  Typically, it is not possible to determine  
f(n)  precisely, so it is very important to be able to 
estimate  f(n)  in a reasonably accurate manner.  

Concept It is also very important to be able to compare 
two algorithms, one with running time   f(n)  and the other 
with running time  g(n).  



A Small Catolog of Increasing Functions

Fact  The following functions all increase and tend to 
infinity:

log*n      log log log n      log log n     log n         n.001

√n     n n log n       n3/2 n2 n3 nlog log n  

nlog n 2n (log n)n (√n)n   nn 22n 222n



The Big-Oh Notation

Formally When  f(n)  and  g(n)  are two functions, 
the notation  f = O(g), which is sometimes written  
f(n) = O(g(n))  means there is a constant   C > 0  so 
that  f(n) ≤ C g(n)  for all  n.   



The Big-Oh Notation

Example Consider two algorithms   A1 and  A2 which 
have running time, respectively, of  30n2 +150 n logn and  
n3 + n  respectively.  Which one is faster?

Clearly, when the problem size is small, the second one 
wins, but when the problem size becomes reasonably 
large, the first one is better.   Formally, if we set  

f(n) = 30n2 +150 n logn and
g(n) = n3 + n 

In this case, we can write  f = O(g).



The Little-Oh Notation

Formally When  f(n)  and  g(n)  are two functions, the 
notation  f = o(g), which is sometimes written  f(n) = 
o(g(n))  means that the ratio   f(n)/g(n)  tends to  0  as  n  
tends to infinity, i.e.,

lim𝑛→∞
𝑓(𝑛)

𝑔(𝑛)
= 0



Applying the Little-Oh Notation

Example Compare the two functions:

f(n) = 30 n2 +150 n logn and
g(n) = n3 + n 

When  n  is of modest size,  g(n)  is smaller, but from 
some point on  f(n)  is smaller.  In fact the ratio  f(n)/g(n) 
goes to  0.  In this case, we can write  

f = o(g).



Revisiting Increasing Functions

Fact  In each case,  if  f(n)  and  g(n)  are two functions 
occurring consecutively in this list, then  f = o(g). 

log*n      log log log n      log log n     log n         n.001

√n     n n log n       n3/2 n2 n3 nlog log n  

nlog n 2n (log n)n (√n)n   nn 22n 222n



Four Motivating Problems

Observation  We want to develop a framework for 
discussing the difficulty of a problem.  As examples, 
given a list  S of  n  distinct positive integers, consider 
the following problems:

1. What is the largest integer in  S?
2. If  a  is the first integer in  S, are there distinct 

integers  b and c  in  S  so that  a = b + c? 
3. Are there three distinct integers  a, b, c  in  S  with  

a = b + c? 
4. Can we solve the fair division problem for  S?



Elementary Algorithms

Example Finding the largest integer in   S can be 
done in  n  steps where  n = |S|  is the problem size.

Example If  a  is the first number in  S, determining 
whether there are numbers  b  and  c  in  S  so that  

a = b + c  can be done  in  𝑛 − 1
2

steps.  

Example Determining whether there are numbers  a, 

b  and  c  in  S  so that  a = b + c  can be done  in  
𝑛
3

steps.   



The Fair Division Problem

Example Determining whether the fair division problem 
can be solved for   S can be done in  n2n steps.  Each 
step consists of choosing a subset  T  of  S, and adding all 
the numbers in  T, adding all the numbers in  S – T and 
then checking whether the answers are the same.  In 
contrast to the other algorithms, each step takes a 
formidable amount of time, as  n – 1 additions and one 
comparison have to be made.



Sorting

Sorting Problem  You are told that there is an unknown 
linear order on the integers in {1, 2, …, n}  and your job is 
to discover this order by asking questions of the form:  
Is  i < j  in  L?   For example, if  L = (2,5,3,1,4), you might 
discover it by asking:

Is   2 < 1  in L?    Answer  Yes
Is   4 < 3 in  L?    Answer  No
Is   3 < 1  in  L?    Answer  Yes
Is   2 < 5 in  L?     Answer  Yes
Is   3 < 5  in  L?    Answer  No
Is   1 <  4  in  L?    Answer  Yes



The UGA Sorting Algorithm

UGA Sorting Algorithm  For each  2-element subset  
{i, j}  of  {1, 2, …, n}, ask the question:   

Is  i < j  in  L?

So a total  of  
𝑛
2
=
𝑛 𝑛−1

2
questions are asked.   

Now you have all the information and can easily 
assemble the linear order  L with these answers.



Lower Bound on Sorting

Theorem In worst case, any sorting algorithm can 
be forced to ask  log 2 n!  questions.

Explanation There are  n!  different linear linear
orders (permutations)  of  {1, 2, …, n}.  Each time a 
question is asked, in worst case the number of 
possible answers is reduced by at most ½.  So if  t  
questions are asked, we must have  2t ≥ n! 

This is equivalent  to  t ≥ log 2 n! 



The Stirling Approximation

Theorem   In advanced calculus courses, the following 
asymptotic formula is proved:

lim𝑛→∞
𝑛!

2𝜋𝑛
𝑛

𝑒
𝑛
= 1

It follows that  log2 n! ~ n log2 n.

Accordingly A sorting algorithm is said to be optimal 
if its running time is  O(n log n).



Some Optimal Sorting Algorithms

Fact   The list of optimal sorting algorithms includes:  
merge sort, heap sort, introsort, Timsort, Cubesort
and Block Sort (there are others).  



An Informal Discussion of Merge Sort

Concept   To determine an unknown linear order on  
{1, 2, …, n}, first divide the problem into two equal size 
subproblems.  That is, first find the restriction to  
the subset consisting of the first  n/2 integers  
{1, 2, …, n/2}.  Then find the restriction to the last  
n/2  integers   {n/2 + 1, n/2 + 2, …, n}.  Then “merge” 
the two answers to determine the full linear order.

Fact Two sorted lists of size  n/2 can be merged in 
running time  n.

Fact Merge sort has a running time  r(n)  satisfying 
the recurrence  r(n) = 2 r(n/2) + n.  An easy calculation 
now shows that  r(n) = O(n log n).


