
September 1, 2015

Math 3012 – Applied
Combinatorics

Lecture 5

William T. Trotter
trotter@math.gatech.edu

Test 1 and Homework Due Date

Reminder Test 1, Thursday September 17, 2015.
Taken here in MRDC 2404. Final listing of material
for test will be made via email after class on
Thursday, September 10.

Homework Due Date Tuesday, September 15, 2015.
Papers will be returned with tests – with a target of
Tuesday, September 22, 2015. Scores posted on T-
Square.

Multinomial Coefficients

Problem How many different arrangements of

AABBBCCCCCCDEEEEEEFFFFFFFF ?

Answer

26
2,3,1,6,6,8

=
26!

2! 3! 1! 6! 6! 8!

Note Informally, this is known as the “MISSISSIPPI”
problem.

Binomial and Multinomial Coefficients

Observation

When there are only two parts, a multinomial
coefficient is just a binomial coefficient. So for
example,

26
7,19
=
26
7

However You should only use the binomial notation
in this case.

The Binomial Theorem

Theorem

𝑥 + 𝑦 𝑛 = 𝑘=0
𝑛 𝑛
𝑘
𝑥𝑛−𝑘𝑦𝑘

Explanation

𝑥 + 𝑦 𝑛 = 𝑥 + 𝑦 𝑥 + 𝑦 𝑥 + 𝑦 𝑥 + 𝑦 … 𝑥 + 𝑦

From each of n terms, you either take x or y, so if
k is the number of times you take y, then you take x
exactly n – k times.

Applying the Binomial Theorem

Theorem

𝑥 + 𝑦 𝑛 = 𝑘=0
𝑛 𝑛
𝑘
𝑥𝑛−𝑘𝑦𝑘

Problem What is the coefficient of 𝑎14𝑏18 in

(3𝑎2− 5𝑏)25

Answer 25
7
37 −5 18

The Multinomial Theorem

Theorem
𝑥1+ 𝑥2+ 𝑥3+ 𝑥4

𝑛

=

𝑘
1
+𝑘
2
+𝑘
3
+𝑘
4
=𝑛

𝑛
𝑘1, 𝑘2, 𝑘3, 𝑘4

𝑥1
𝑘
1𝑥2
𝑘
2𝑥3
𝑘
3𝑥4
𝑘
4

Problem What is the coefficient of 𝑎6𝑏8𝑐6𝑑6 in

(4𝑎3− 5𝑏 + 9𝑐2+ 7𝑑)19

Answer
19
2,8,3,6

42(−5)89376

The Pigeon Hole Principle

Old Saying If you have to put n + 1 pigeons into n
holes, then you must put some two pigeons into the
same hole.

More generally If you have to put mn + 1 pigeons
into n holes, then you must put some m + 1 pigeons
into the same hole.

The Erdős-Szekeres Theorem

Theorem Any sequence of m n + 1 distinct real
numbers either contains an increasing subsequence
of length m + 1 or a decreasing subsequence of
length n + 1.

WTT and Paul Erdős (1988?)

The Erdős-Szekeres Theorem

Theorem Any sequence of m n + 1 distinct real
numbers either contains an increasing subsequence
of length m + 1 or a decreasing subsequence of
length n + 1.

Example Here m = 3 and n = 5

2, 3, -5, 0, π, 9, -4, -3, 7, 8, 5, 1, -6, 10, -8, -1

Problem Find the longest increasing subsequence
and the longest decreasing subsequence.

Proof of the Erdős-Szekeres Theorem

Proof Let the sequence be: (a1,a2,a3,…, at) with t =
mn+1. For each i, place the pigeon ai in the pigeon
hole (inc, dec) where inc is the length of the longest
increasing subsequence starting with ai and dec is
the length of the longest decreasing subsequence
starting with ai. Then there are mn + 1 pigeons and
only mn holes. Consider two pigeons ai and aj which
are assigned to the same hole where i < j. If ai < aj,
then inc value for ai is larger than the inc value for
aj. If ai > aj, then dec value for ai is larger than the
dec value for aj.

Easy Application

Exercise Show that if S is a subset of size 6 from
{1, 2, 3,…, 9}, then there are two distinct elements of S
whose sum is 10.

Complexity and Problem Size

Observation We typically say that a problem size is n
when the data for a problem can be interpreted as n
packets of information with each packet readable in some
constant amount of time. For example, when integers are
at most MAX_INTEGER in some programming language,
we view all integers as being readable in constant time.
With this notion in mind, we begin to discuss – quite
informally – the running time for algorithms to solve a
problem of size n.

Running Time

Concept An algorithm accepts input data of size n and
then carries out a procedure which takes a total of f(n)
steps. The function f(n) is called the running time of
the algorithm. Typically, it is not possible to determine
f(n) precisely, so it is very important to be able to
estimate f(n) in a reasonably accurate manner.

Concept It is also very important to be able to compare
two algorithms, one with running time f(n) and the other
with running time g(n).

A Small Catolog of Increasing Functions

Fact The following functions all increase and tend to
infinity:

log*n log log log n log log n log n n.001

√n n n log n n3/2 n2 n3 nlog log n

nlog n 2n (log n)n (√n)n nn 22n 222n

The Big-Oh Notation

Formally When f(n) and g(n) are two functions,
the notation f = O(g), which is sometimes written
f(n) = O(g(n)) means there is a constant C > 0 so
that f(n) ≤ C g(n) for all n.

The Big-Oh Notation

Example Consider two algorithms A1 and A2 which
have running time, respectively, of 30n2 +150 n logn and
n3 + n respectively. Which one is faster?

Clearly, when the problem size is small, the second one
wins, but when the problem size becomes reasonably
large, the first one is better. Formally, if we set

f(n) = 30n2 +150 n logn and
g(n) = n3 + n

In this case, we can write f = O(g).

The Little-Oh Notation

Formally When f(n) and g(n) are two functions, the
notation f = o(g), which is sometimes written f(n) =
o(g(n)) means that the ratio f(n)/g(n) tends to 0 as n
tends to infinity, i.e.,

lim𝑛→∞
𝑓(𝑛)

𝑔(𝑛)
= 0

Applying the Little-Oh Notation

Example Compare the two functions:

f(n) = 30 n2 +150 n logn and
g(n) = n3 + n

When n is of modest size, g(n) is smaller, but from
some point on f(n) is smaller. In fact the ratio f(n)/g(n)
goes to 0. In this case, we can write

f = o(g).

Revisiting Increasing Functions

Fact In each case, if f(n) and g(n) are two functions
occurring consecutively in this list, then f = o(g).

log*n log log log n log log n log n n.001

√n n n log n n3/2 n2 n3 nlog log n

nlog n 2n (log n)n (√n)n nn 22n 222n

Four Motivating Problems

Observation We want to develop a framework for
discussing the difficulty of a problem. As examples,
given a list S of n distinct positive integers, consider
the following problems:

1. What is the largest integer in S?
2. If a is the first integer in S, are there distinct

integers b and c in S so that a = b + c?
3. Are there three distinct integers a, b, c in S with

a = b + c?
4. Can we solve the fair division problem for S?

Elementary Algorithms

Example Finding the largest integer in S can be
done in n steps where n = |S| is the problem size.

Example If a is the first number in S, determining
whether there are numbers b and c in S so that

a = b + c can be done in 𝑛 − 1
2

steps.

Example Determining whether there are numbers a,

b and c in S so that a = b + c can be done in
𝑛
3

steps.

The Fair Division Problem

Example Determining whether the fair division problem
can be solved for S can be done in n2n steps. Each
step consists of choosing a subset T of S, and adding all
the numbers in T, adding all the numbers in S – T and
then checking whether the answers are the same. In
contrast to the other algorithms, each step takes a
formidable amount of time, as n – 1 additions and one
comparison have to be made.

Sorting

Sorting Problem You are told that there is an unknown
linear order on the integers in {1, 2, …, n} and your job is
to discover this order by asking questions of the form:
Is i < j in L? For example, if L = (2,5,3,1,4), you might
discover it by asking:

Is 2 < 1 in L? Answer Yes
Is 4 < 3 in L? Answer No
Is 3 < 1 in L? Answer Yes
Is 2 < 5 in L? Answer Yes
Is 3 < 5 in L? Answer No
Is 1 < 4 in L? Answer Yes

The UGA Sorting Algorithm

UGA Sorting Algorithm For each 2-element subset
{i, j} of {1, 2, …, n}, ask the question:

Is i < j in L?

So a total of
𝑛
2
=
𝑛 𝑛−1

2
questions are asked.

Now you have all the information and can easily
assemble the linear order L with these answers.

Lower Bound on Sorting

Theorem In worst case, any sorting algorithm can
be forced to ask log 2 n! questions.

Explanation There are n! different linear linear
orders (permutations) of {1, 2, …, n}. Each time a
question is asked, in worst case the number of
possible answers is reduced by at most ½. So if t
questions are asked, we must have 2t ≥ n!

This is equivalent to t ≥ log 2 n!

The Stirling Approximation

Theorem In advanced calculus courses, the following
asymptotic formula is proved:

lim𝑛→∞
𝑛!

2𝜋𝑛
𝑛

𝑒
𝑛
= 1

It follows that log2 n! ~ n log2 n.

Accordingly A sorting algorithm is said to be optimal
if its running time is O(n log n).

Some Optimal Sorting Algorithms

Fact The list of optimal sorting algorithms includes:
merge sort, heap sort, introsort, Timsort, Cubesort
and Block Sort (there are others).

An Informal Discussion of Merge Sort

Concept To determine an unknown linear order on
{1, 2, …, n}, first divide the problem into two equal size
subproblems. That is, first find the restriction to
the subset consisting of the first n/2 integers
{1, 2, …, n/2}. Then find the restriction to the last
n/2 integers {n/2 + 1, n/2 + 2, …, n}. Then “merge”
the two answers to determine the full linear order.

Fact Two sorted lists of size n/2 can be merged in
running time n.

Fact Merge sort has a running time r(n) satisfying
the recurrence r(n) = 2 r(n/2) + n. An easy calculation
now shows that r(n) = O(n log n).

