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EulerTrails and Circuits

Definition A trail  (x1, x2, x3, …, xt) in a graph  G  is 
called an Euler trail in  G  if for every edge  e  of  G, 
there is a unique  i with  1 ≤ i < t so that  e = xi xi+1. 

Definition A circuit  (x1, x2, x3, …, xt)  in a graph  G  is 
called an Euler circuit if for every edge  e  in  G, 
there is a unique  i with  1 ≤ i ≤ t so that  e = xi xi+1.  
Note that in this definition, we intend that  
xtxt+1=xtx1.



Euler Circuits in Graphs

Here is an Euler circuit for this  graph:  

(1,8,3,6,8,7,2,4,5,6,2,3,1)



Euler’s Theorem

Theorem A non-trivial connected 
graph  G  has an Euler circuit if and 
only if every vertex has even degree.

Theorem A non-trivial connected 
graph has an Euler trail if and only if 
there are exactly two vertices of odd 
degree.



Algorithm for Euler Circuits

1.  Choose a root vertex  r and start with the trivial 
partial circuit  (r).

2.  Given a partial circuit  (r = x0,x1,…,xt = r) that 
traverses some but not all of the edges of G containing  
r, remove these edges from G.   Let  i be the least 
integer for which  xi is incident with one of the 
remaining edges.  Form a greedy partial circuit among 
the remaining edges of the form (xi = y0,y1,…,ys = xi).

3.  Expand the original circuit by setting

r =(x0,x1,…, xi-1, xi = y0,y1,…,ys = xi, xi+1,…, xt=r)



An Example

Start with the trivial circuit  (1).  Then the greedy 
algorithm yields the partial circuit  (1,2,4,3,1).



Remove Edges and Continue

Start with the partial circuit (1,2,4,3,1).   
First vertex incident with an edge remaining 
is  2.   A greedy approach yields (2,5,8,2).  
Expanding, we get the new partial circuit  
(1,2,5,8,2,4,3,1)



Remove Edges and Continue

Start with the partial circuit (1,2,5,8,2,4,3,1).   First 
vertex incident with an edge remaining is  4.   A 
greedy approach yields (4,6,7,4,9,6,10,4).  Expanding, 
we get the new partial circuit 
(1,2,5,8,2,4,6,7,4,9,6,10,4,3,1)



Remove Edges and Continue

Start with the partial circuit 
(1,2,5,8,2,4,6,7,4,9,6,10,4,3,1) First vertex incident with 
an edge remaining is  7.   A greedy approach yields 
(7,9,11,7).  Expanding, we get the new partial circuit 
(1,2,5,8,2,4,6,7,9,11,7,4,9,6,10,4,3,1).   This exhausts the 
edges and we have an euler circuit.



Interpreting Halting Conditions

Remark Suppose any loop halts with a starting vertex  x  
and a terminating vertex  y  which is distinct from  x. 
The conclusion is that  y  has odd degree.  If we are 
searching for an Euler circuit, there isn’t one.   End of 
story.  But if we are willing to accept an Euler trail,  start 
over with  y  as root.

Remark If we halt with another odd pair, then there’s 
not even an Euler trail.   

Remark If we halt, there are unvisited edges and 
there’s no place to start the next loop, then the graph 
has two non-trivial components.



Data Structure Issues

Remark When we read the data for the graph, we must 
build for each vertex  x  a structure that keeps track of 
the neighbors of  x.   As the algorithm progresses, we 
must keep track of the neighbors of   x  for which we 
have already walked on the edge  xy.  So either we have 
to “flag” edges already visited or have a convenient way 
to delete them from the neighborhood.

Remark The Greedy Algorithm taught in class tries to 
capture the spirit of these complexities, but in fact an 
actual implementation might follow a quite different 
track.



Hamiltonian Paths and Cycles

Definition  When  G  is a graph on  n ≥ 3  vertices, a cycle  
C = (x1, x2, …, xn)  in  G is called a Hamiltonian cycle, i.e, 
the cycle  C visits each vertex in  G exactly one time and 
returns to where it started.

Definition  When  G  is a graph on  n ≥ 3  vertices, a path  
P = (x1, x2, …, xn)  in  G is called a Hamiltonian path, i.e, 
the path  P  visits each vertex in  G exactly one time.  In 
contrast to the first definition, we no longer require that 
the last vertex on the path be adjacent to the first.



Hamiltonian Paths and Cycles (2)

Remark  In contrast to the situation with Euler circuits 
and Euler trails, there does not appear to be an efficient 
algorithm to determine whether a graph has a 
Hamiltonian cycle (or a Hamiltonian path).  For the 
moment, take my word on that but as the course 
progresses, this will make more and more sense to you.



Hamiltonian Paths

Question  Does the graph shown below have a 
Hamiltonian path?



Hamiltonian Paths (2)

Answer  Yes!!

(12, 9, 17, 14, 3, 1, 15, 5, 10, 13, 16, 8, 2, 11, 7, 6, 4)



Hamiltonian Cycles

Question  Does the graph shown below have a 
Hamiltonian cycle?



Hamiltonian Cycles (2)

Answer  Yes!!

(1, 3, 14, 17, 9, 12, 7, 11, 2, 4, 6, 10, 13, 8, 16, 5, 15)



Certificates for “Yes” Answer

Remark  Given a graph  G, a “yes” answer to the question: 
Does  G  have a Hamiltonian path?”  can be validated by 
providing a certificate in the form of a permutation of 
the vertex set of  G.  An impartial referee (computer) 
can quickly check the essential details.  Is every vertex 
listed exactly once?  Are consecutive vertices adjacent 
in the graph?

Remark An analogous statement applies for Hamiltonion
cycles.



Hamiltonian Paths (3)

Question   Does this graph have a Hamiltonian path?

Answer  Yes!!

Certificate (6, 3, 1, 4, 5, 2)

Note The correctness of the 
answer can be verified quickly 
by an impartial referee 
(computer).

Graph_data.txt
6
5   2
1   4
6   5
3   6
1   3
4   5
4   6
6   1



Hamiltonian Cycles (3)

Question   Does this graph have a Hamiltonian cycle?

Answer  Yes!!

Certificate (6, 3, 1, 4, 5, 2)

Note The correctness of the 
answer can be verified quickly 
by an impartial referee 
(computer).

Graph_data.txt
6
5   2
1   4
6   5
3   6
1   3
4   5
4   6
6   2



Certificates for “No” Answer

Remark  Given a graph  G, there does not seem to be a 
way to provide a certificate to validate a “no” answer to 
the question: Does  G  have a Hamiltonian cycle?”   To be 
more  precise, there does not seem to be a way to 
provide an impartial referee (computer) with information 
which can be effectively checked and will satisfy the 
referee that your answer is correct.



There Are Exceptions

Question   Does this graph have a Hamiltonian cycle?

Answer  No!!

Certificate Vertex  2  has 
degree 1.  If a graph has a 
Hamiltonian cycle, every vertex 
has degree at least 2.

Note The correctness of the 
answer can be verified quickly 
by an impartial referee 
(computer).

Graph_data.txt
6
5   2
1   4
6   5
3   6
1   3
4   5
4   6
6   1



Certificates for “No” Answer

Remark  Given a graph  G, there does not seem to be a 
way to provide a certificate to validate a “no” answer to 
the question: Does  G  have a Hamiltonian cycle?”   To be 
more  precise, there does not seem to be a way to 
provide an impartial referee (computer) with information 
which can be effectively checked and will satisfy the 
referee that your answer is correct, at least not in 
general.  This does not preclude there being a 
justification for a “no” answer in some cases.



Computational Complexity

A Very Informal Perspective The class  P consists of 
all “yes-no” questions for which the answer can be 
determined using an algorithm which is provably correct 
and has a running time which is polynomial in the input 
size.

Examples

1. Given a list of  n  numbers,  is 2388643 in the list?

2. Given a list of  n  numbers, can you find three distinct 
numbers  a, b and c  in the list so that  a + b = c?

3. Given a graph  G, does it have an Euler circuit?



Computational Complexity (2)

A Very Informal Perspective The class  NP consists 
of all “yes-no” questions for which there is a certificate 
for a “yes” answer whose correctness can be verified 
with an algorithm whose running time is polynomial in the 

input size.   Any question in  P is also in  NP.

Examples

1. Given a list of  n  numbers,  is there a fair division?

2. Given a graph  G, is there a clique whose size is at 
least  n/2?

3. Given a graph  G, does it have a Hamiltonian cycle?



Computational Complexity (3)

Observation As we have already noted, any problem 

which is in  P is also in  NP,  but no one knows whether 

the converse statement is true or not. The current 
reward for settling this question:

P  = NP ?

Stands at  $1, 000, 000 USD.

http://www.claymath.org/millennium-problems



Revisiting Euler Circuits

Remark  Given a graph  G, a “no” answer to the question: 
Does  G  have an Euler circuit?”  can be validated by 
providing a certificate.  Now this certificate is one of 
the following.  Either the graph is not connected, so the 
referee is told of two specific vertices for which the 
graph does not contain a path between them.  On the 
other hand, if the graph is connected, then the referee 
is told that there is vertex of odd degree.



Bipartite Graphs

Definition  A bipartite graph is a triple (A, B, E)  where  
A  and  B  are disjoint finite sets and  E  is a collection of 
2-element sets, each of which contains one element of  A  
and one element of  B.  In the bipartite graph shown 
below,  A = {a, b, c, d, e, f, g}  and  B = {1, 2, 3, 4, 5}



Unlabelled Bipartite Graphs

Caution  In a discussion of unlabelled bipartite graphs, 
care has to be exercised regarding which elements 
belong to  A  and which belong to  B.   The potential for 
confusion is minor when the graph is connected.



Unlabelled Bipartite Graphs

Caution  But there are real problems when the graph is 
disconnected.   For example, consider the red, blue and 
green points in the graph shown below.  Which side are 
they on?



Complete Bipartite Graphs

Definition  For  m, n ≥ 1, the complete bipartite graph  
Km, n  has  m + n vertices, with m  on one side  and  n  on 
the other.  There are  mn edges in  Km, n, i.e., each vertex 
on one side is adjacent to every vertex on the other.  
Here is  a drawing of  K7, 5.



Hamiltonian Cycles in Bipartite Graphs

Observation  If a bipartite graph  G = (A, B, E)  has a 
Hamiltonian cycle, then it is connected and  |A| = |B|.



Hamiltonian Cycles in Bipartite Graphs (2)

Observation  In particular, the complete bipartite graph  
Kn, n+1  does not have a Hamiltonian cycle, even though 
every vertex is adjacent to (nearly) half the other 
vertices. 



Dirac’s Theorem

Theorem  If  G  is a graph on  n  vertices and every 
vertex in  G  has at least  n/2  neighbors, then  G  has a 
Hamiltonian cycle.

Note The complete bipartite graph  Kn, n+1  has  2n + 1 
vertices but the vertices in the larger part have only  n 
neighbors  and  n < (2n + 1)/2.



An Algorithm to Find a Hamiltonian Cycle

Initialization:  Build Long Path  

Note We may assume that all the neighbors of 
the end (red) vertices are on the path; otherwise 
we get a longer path.  This implies  t > 1 + n/2.



A Two-Phase Algorithm

Phase 1 – Path of size  t  produces cycle of size  t  

Note Using the pigeon-hole principle, there are 
consecutive vertices  i and  i+1  on the path with  
{1, i+1}  and  {i, t} as edges in  G. 



A Two-Phase Algorithm (2)

Phase 2 – Cycle of size  t  produces path of size  t+1  

Note Since the size of the cycle is at least  
n/2, any vertex not on the cycle has a neighbor 
on the cycle.   Therefore, if the cycle has size t, 
we get a path of size  t + 1. 


