1 Answers to Chapter 3, Odd-numbered Exercises

1) $r(n)=25 r(n-1)+3 r(n-2)+10^{n-1}$. There are $25 r(n-1)$ identifiers satisfying the first condition, $3 r(n-2)$ satisfying the second condition, and 10^{n-1} satisfying the third condition. $r(5)=10605609$.
2) $g(n)=2 g(n-1)+(g(n-1)-g(n-3))=3 g(n-1)-g(n-3) . g(1)=3, g(2)=9$, $g(3)=26$. Our recursion involves looking back 3 terms $(g(n-3))$, so we need to specify 3 initial values. Ternary strings are strings over the alphabet $\{0,1,2\}$. We can form a valid 102 -avoiding string of length n as follows: take a valid 102-avoiding string of length $n-1$ and put a 0 or 2 in the first position to get a length n string that also does not contain 102. There are $2 g(n-1)$ such strings. We can also take a valid length $n-1$ string and put a 1 in the first position, but if there is a 02 in the next two positions, we no longer have a valid string. There are $g(n-3)$ valid, length $n-1$ strings starting with 02 , so subtracting those out, we have $g(n-1)+g(n-3)$ such strings starting with a 1 .
3) $h(n)=4 h(n-1)-2 h(n-2)+h(n-3)$. $h(1)=4, h(2)=14, h(3)=49$. Our recursion involves looking back 3 terms, $(h(n-3))$ so we need to specify 3 initial values. Valid strings of length n can be formed as follows. Take a valid string of length $n-1$ and place a 0 or 3 in the front. Since the last $n-1$ positions do not contain a 12 , placing a 0 or a 3 in the first position preserves this property, and so there are $2 h(n-1)$ valid length n strings starting with a 0 or a 3 . We can also place a 1 or a 2 in the first position, but then we must subtract out the length $n-1$ strings that have a 2 or a 0 in their first position respectively. The number of valid length $n-1$ strings that have a 2 in the first position is $h(n-2)-h(n-3)$ - it would be $h(n-2)$ but we cannot have a 0 afterward so we subtract out $h(n-3)$ such strings - and hence, the number of valid length n strings starting with a 1 is $h(n-1)-(h(n-2)-h(n-3)$. The number of valid length $n-1$ strings that have a 0 in the first position is $h(n-2)$. Hence, the number of valid length n strings starting with a 2 is $h(n-1)-h(n-2)$. Adding these disjoint cases together gets the result.
4) $\operatorname{gcd}(827,249)=1 . a=-168, b=558$. The steps in your algorithm should look as follows:

$$
\begin{aligned}
827 & =3 \cdot 248+80 \\
249 & =3 \cdot 80+9 \\
80 & =8 \cdot 9+8 \\
9 & =1 \cdot 8+1 \\
8 & =8 \cdot 1+0
\end{aligned}
$$

9) (a)The base case:

$$
1^{2}=\frac{1(1+1)(2 \cdot 1+1)}{6}
$$

For the inductive step, use the inductive hypothesis to conclude

$$
1^{2}+2^{2}+3^{2}+\ldots+(n-1)^{2}+n^{2}=\frac{(n-1)(n)(2(n-1)+1)}{6}+n^{2}
$$

Basic algebraic manipulations show that the right hand side is equal to $n(n+1)(2 n+1) / 6$. For a combinatorial proof, both sides count the number of 3 -tuples (x, y, z) where $0 \leq x, y<z \leq n$.

On the left hand side, if $z=k$, then there are k^{2} choices for x and y - they can each be any number $0,1, \ldots, k-1$. Summing up these cases gives the left hand side. For the right hand side, we divide the problem into two cases. Case 1: We first consider such triples where $x=y$. There are $\binom{n+1}{2}$ such triples since we choose 2 distinct elements from $\{0,1, \ldots, n\}$, let the larger number be z and the smaller number be x and y. Case 2: If $x<y$, then there are $\binom{n+1}{3}$ such triples. If $x>y$, there are also $\binom{n+1}{3}$ such triples. Basic algebraic manipulation shows that

$$
\binom{n+1}{2}+2\binom{n+1}{3}=\frac{n(n+1)(2 n+1)}{6}
$$

(b)See Example 2.14 for a combinatorial proof. For the inductive proof, we will use Pascal's formula which we recall for the reader:

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

Now, for the base case,

$$
\binom{1}{0} 2^{0}+\binom{1}{1} 2^{1}=1+2=3^{1}
$$

For the inductive step,

$$
\begin{aligned}
\sum_{k=0}^{n}\binom{n}{k} 2^{k} & =\binom{n}{0}+\sum_{k=1}^{n-1}\left(\binom{n-1}{k-1}+\binom{n-1}{k}\right) \cdot 2^{k}+\binom{n}{n} 2^{n} \\
& =1+2 \sum_{k=1}^{n-1}\binom{n-1}{k-1} 2^{k-1}+\sum_{k=1}^{n-1}\binom{n-1}{k} 2^{k}+1 \\
& =2 \cdot 3^{n-1}+3^{n-1}=3^{n}
\end{aligned}
$$

11) We show this by induction. For the base case of $n=0,2^{0}=1=2^{0+1}-1$. For the inductive step,

$$
\sum_{i=0}^{n} 2^{i}=2^{n}+\sum_{i=0}^{n-1} 2^{i}=2^{n}+2^{n}-1=2^{n+1}-1
$$

13) For $n=1,9-5=4$. For the inductive step,

$$
9^{n}-5^{n}=9 \cdot 9^{n-1}+5 \cdot 5^{n-1}=4 \cdot 9^{n-1}+5\left(9^{n-1}+5^{n-1}\right)
$$

By the induction hypothesis, $9^{n-1}+5^{n-1}=4 k$ for some positive integer k. Hence,

$$
9^{n}-5^{n}=4\left(9^{n-1}+5 k\right)
$$

which proves the statement.
15) For $n=1$,

$$
1^{3}+2^{3}+3^{3}=1+8+27=36=4 \cdot 9
$$

For the inductive step, first observe that

$$
(n-1)^{3}=n^{3}-3 n^{2}+3 n-1
$$

Now,

$$
\begin{aligned}
n^{3}+(n+1)^{2}+(n+2)^{3} & =n^{3}+(n+1)^{3}+n^{3}+6 n^{2}+12 n+8 \\
& =n^{3}+(n+1)^{3}+n^{3}-3 n^{2}+3 n-1+9 n^{2}+9 n+9 \\
& =(n-1)^{3}+n^{3}+(n+1)^{3}+9 n^{2}+9 n+9
\end{aligned}
$$

By the induction hypothesis, the sum of the first 3 terms is divisible by 3. The last 3 terms are obviously divisible by 3 , and so this proves the statement.
17) For $n=0,3 \cdot 0^{2}-0+2=2=f(0)$, and for $n=1,3 \cdot 1^{2}-1+2=4=f(1)$. For the inductive step, since

$$
f(n)=2 f(n-1)-f(n-2)+6,
$$

we may apply the inductive hypothesis (we use strong induction here) to conclude

$$
f(n)=2\left(3(n-1)^{2}-(n-1)+2\right)-\left(3(n-2)^{2}-(n-2)+2\right)+6 .
$$

Basic algebraic manipulations show that this is equal to $3 n^{2}-n+2$.
19) For $n=0,(1+x)^{0}=1 \geq 1+0 \cdot x=1$. For the inductive step,

$$
\begin{aligned}
(1+x)^{n}=(1+x)(1+x)^{n-1} & \geq(1+x)(1+(n-1) x) \\
& =1+(n-1) x+x+(n-1) x^{2} \\
& =1+n x+(n-1) x^{2} \\
& \geq 1+n x .
\end{aligned}
$$

