
1 Answers to Chapter 3, Odd-numbered Exercises

1) r(n) = 25r(n − 1) + 3r(n − 2) + 10n−1. There are 25r(n − 1) identifiers satisfying the first
condition, 3r(n− 2) satisfying the second condition, and 10n−1 satisfying the third condition.
r(5) = 10605609.

3) g(n) = 2g(n − 1) + (g(n − 1) − g(n − 3)) = 3g(n − 1) − g(n − 3). g(1) = 3, g(2) = 9,
g(3) = 26. Our recursion involves looking back 3 terms (g(n − 3)), so we need to specify 3
initial values. Ternary strings are strings over the alphabet {0, 1, 2}. We can form a valid
102-avoiding string of length n as follows: take a valid 102-avoiding string of length n− 1 and
put a 0 or 2 in the first position to get a length n string that also does not contain 102. There
are 2g(n − 1) such strings. We can also take a valid length n − 1 string and put a 1 in the
first position, but if there is a 02 in the next two positions, we no longer have a valid string.
There are g(n − 3) valid, length n − 1 strings starting with 02, so subtracting those out, we
have g(n− 1) + g(n− 3) such strings starting with a 1.

5) h(n) = 4h(n − 1) − 2h(n − 2) + h(n − 3). h(1) = 4, h(2) = 14, h(3) = 49. Our recursion
involves looking back 3 terms, (h(n− 3)) so we need to specify 3 initial values. Valid strings
of length n can be formed as follows. Take a valid string of length n − 1 and place a 0 or 3
in the front. Since the last n− 1 positions do not contain a 12, placing a 0 or a 3 in the first
position preserves this property, and so there are 2h(n−1) valid length n strings starting with
a 0 or a 3. We can also place a 1 or a 2 in the first position, but then we must subtract out
the length n−1 strings that have a 2 or a 0 in their first position respectively. The number of
valid length n− 1 strings that have a 2 in the first position is h(n− 2)− h(n− 3) – it would
be h(n− 2) but we cannot have a 0 afterward so we subtract out h(n− 3) such strings – and
hence, the number of valid length n strings starting with a 1 is h(n−1)− (h(n−2)−h(n−3).
The number of valid length n− 1 strings that have a 0 in the first position is h(n− 2). Hence,
the number of valid length n strings starting with a 2 is h(n − 1) − h(n − 2). Adding these
disjoint cases together gets the result.

7) gcd(827, 249) = 1. a = −168, b = 558. The steps in your algorithm should look as follows:

827 = 3 · 248 + 80

249 = 3 · 80 + 9

80 = 8 · 9 + 8

9 = 1 · 8 + 1

8 = 8 · 1 + 0

9) (a)The base case:

12 =
1(1 + 1)(2 · 1 + 1)

6
.

For the inductive step, use the inductive hypothesis to conclude

12 + 22 + 32 + . . . + (n− 1)2 + n2 =
(n− 1)(n)(2(n− 1) + 1)

6
+ n2.

Basic algebraic manipulations show that the right hand side is equal to n(n+1)(2n+1)/6. For a
combinatorial proof, both sides count the number of 3-tuples (x, y, z) where 0 ≤ x, y < z ≤ n.



On the left hand side, if z = k, then there are k2 choices for x and y – they can each be any
number 0, 1, . . . , k − 1. Summing up these cases gives the left hand side. For the right hand
side, we divide the problem into two cases. Case 1: We first consider such triples where
x = y. There are

(
n+1
2

)
such triples since we choose 2 distinct elements from {0, 1, . . . , n}, let

the larger number be z and the smaller number be x and y. Case 2: If x < y, then there are(
n+1
3

)
such triples. If x > y, there are also

(
n+1
3

)
such triples. Basic algebraic manipulation

shows that (
n + 1

2

)
+ 2

(
n + 1

3

)
=

n(n + 1)(2n + 1)

6

(b)See Example 2.14 for a combinatorial proof. For the inductive proof, we will use Pascal’s
formula which we recall for the reader:(

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Now, for the base case, (
1

0

)
20 +

(
1

1

)
21 = 1 + 2 = 31.

For the inductive step,

n∑
k=0

(
n

k

)
2k =

(
n

0

)
+

n−1∑
k=1

((
n− 1

k − 1

)
+

(
n− 1

k

))
· 2k +

(
n

n

)
2n

= 1 + 2
n−1∑
k=1

(
n− 1

k − 1

)
2k−1 +

n−1∑
k=1

(
n− 1

k

)
2k + 1

= 2 · 3n−1 + 3n−1 = 3n.

11) We show this by induction. For the base case of n = 0, 20 = 1 = 20+1 − 1. For the inductive
step,

n∑
i=0

2i = 2n +
n−1∑
i=0

2i = 2n + 2n − 1 = 2n+1 − 1

13) For n = 1, 9− 5 = 4. For the inductive step,

9n − 5n = 9 · 9n−1 + 5 · 5n−1 = 4 · 9n−1 + 5(9n−1 + 5n−1).

By the induction hypothesis, 9n−1 + 5n−1 = 4k for some positive integer k. Hence,

9n − 5n = 4(9n−1 + 5k)

which proves the statement.

15) For n = 1,
13 + 23 + 33 = 1 + 8 + 27 = 36 = 4 · 9.

For the inductive step, first observe that

(n− 1)3 = n3 − 3n2 + 3n− 1.



Now,

n3 + (n + 1)2 + (n + 2)3 = n3 + (n + 1)3 + n3 + 6n2 + 12n + 8

= n3 + (n + 1)3 + n3 − 3n2 + 3n− 1 + 9n2 + 9n + 9

= (n− 1)3 + n3 + (n + 1)3 + 9n2 + 9n + 9

By the induction hypothesis, the sum of the first 3 terms is divisible by 3. The last 3 terms
are obviously divisible by 3, and so this proves the statement.

17) For n = 0, 3 · 02− 0 + 2 = 2 = f(0), and for n = 1, 3 · 12− 1 + 2 = 4 = f(1). For the inductive
step, since

f(n) = 2f(n− 1)− f(n− 2) + 6,

we may apply the inductive hypothesis (we use strong induction here) to conclude

f(n) = 2
(
3(n− 1)2 − (n− 1) + 2

)
−
(
3(n− 2)2 − (n− 2) + 2

)
+ 6.

Basic algebraic manipulations show that this is equal to 3n2 − n + 2.

19) For n = 0, (1 + x)0 = 1 ≥ 1 + 0 · x = 1. For the inductive step,

(1 + x)n = (1 + x)(1 + x)n−1 ≥ (1 + x)(1 + (n− 1)x)

= 1 + (n− 1)x + x + (n− 1)x2

= 1 + nx + (n− 1)x2

≥ 1 + nx.


