1 Answers to Chapter 7, Odd-numbered Exercises

1) 11 students do not like any of the flavors. To see this, draw a Venn diagram with a circle for each flavor, and fill in the numbers in each area starting from the center (18 for all three flavors, then 7 for chocolate and strawberry since it adds to 25 , and so on.)
2) 40. There are 50 positive integers less than or equal to 100 that are divisible by 2 . They are $\{2 \cdot k: k=1, \ldots, 50\}$. There are 20 positive integers less than or equal to 100 that are divisible by 5 . They are $\{5 \cdot k: k=1, \ldots, 20\}$. Let A be the first set and B be the second set. If we can determine $A \cup B$, then the number of positive integers less than or equal to 100 that are not divisible by 2 or 5 will be $100-|A \cup B|$.
By inclusion-exclusion, $|A \cup B|=|A|+|B|-|A \cap B|$. $A \cap B$ is the set of positive integers less than or equal to 100 that are divisible by 2 and 5 - ie. divisible by 10. Therefore,

$$
|A \cup B|=50+20-10=60
$$

So the number divisible by neither 2 or 5 is $100-60=40$.
5) 560. Let A, B, C be the set of positive integers less than or equal to 1000 that are divisible by 3,8 , and 25 , respectively. So,

$$
\begin{aligned}
& A=\{3 \cdot k: k=1, \ldots, 333\} \\
& B=\{8 \cdot k: k=1, \ldots, 125\} \\
& C=\{25 \cdot k: k=1, \ldots, 40\}
\end{aligned}
$$

We want to find $1000-|A \cup B \cup C|$. By inclusion-exclusion,

$$
|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C| .
$$

Observe that $A \cap B, A \cap C, B \cap C, A \cap B \cap C$ are the set of positive integers less than or equal to 1000 that are divisible by $\operatorname{lcm}\{3,8\}=24, \operatorname{lcm}\{3,25\}=75, \operatorname{lcm}\{8,25\}=200$, $\operatorname{lcm}\{3,8,25\}=600$, respectively. They have sizes $41,13,5,1$, respectively. Hence,

$$
|A \cup B \cup C|=333+125+40-41-13-5+1=440 .
$$

So the number divisible by neither 3 , 8 , or 25 is $1000-440=560$.
7) The number of solutions to $x_{1}+x_{2}+x_{3}+x_{4}=32$ without restrictions (ie. $x_{i} \geq 0$) is $\binom{35}{3}$. Let A_{i} denote the set of solutions to $x_{1}+x_{2}+x_{3}+x_{4}=32$ with $x_{i}>10$. The number of solutions with $0 \leq x_{i} \leq 10$ will be

$$
\binom{35}{3}-\left|A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right|
$$

Hence, we use inclusion-exclusion to determine the size of the union of the A_{i}.

$$
\left|A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right|=\sum_{i=1}^{4}\left|A_{i}\right|-\sum_{1 \leq i<j \leq 4}\left|A_{i} \cap A_{j}\right|+\sum_{1 \leq i<j<k \leq 4}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\left|\bigcap_{i=1}^{4} A_{i}\right|
$$

By the counting methods introduced in Chapter 2 (Section 2.5), one can see that

$$
\begin{aligned}
\left|A_{i}\right| & =\binom{24}{3} \\
\left|A_{i} \cap A_{j}\right| & =\binom{13}{3} \\
\left|A_{i} \cap A_{j} \cap A_{k}\right| & =0 \\
\left|A_{1} \cap A_{2} \cap A_{3} \cap A_{4}\right| & =0
\end{aligned}
$$

Hence,

$$
\left|A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right|=4 \cdot\binom{24}{3}-6\binom{13}{3}
$$

and so the number of solutions that we are looking for is

$$
\binom{35}{3}-\left[4 \cdot\binom{24}{3}-6\binom{13}{3}\right] .
$$

9) Yes, he ate alone 1 time. Label his friends $1,2,3,4,5,6$, and let A_{i} be the set of weeks that he ate lunch with friend i. Since there are 15 weeks in the semester, the number of times he ate alone is

$$
15-\left|\bigcup_{i=1}^{6} A_{i}\right|
$$

By inclusion-exclusion, the size of the union is

$$
\left|\bigcup_{i=1}^{6} A_{i}\right|=\sum_{i=1}^{6}\left|A_{i}\right|-\sum\left|A_{i} \cap A_{j}\right|+\sum\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots-\left|A_{1} \cap A_{2} \cap \ldots \cap A_{6}\right| .
$$

The problem statement gives us the size of each of these intersections, so

$$
\left|\bigcup_{i=1}^{6} A_{i}\right|=6 \cdot 11-\binom{6}{2} \cdot 9+\binom{6}{3} \cdot 6-\binom{6}{4} \cdot 4+\binom{6}{5} \cdot 4-1=14
$$

So, he ate alone $15-14=1$ time.
11) (a). No, because $f(2)=2$ (and also $f(6)=2$). Yes, it satisfies P_{3}. It also satisfies P_{5} and P_{7}.
(b). Yes. Let $g(x)=x$ for $1 \leq x \leq 7$ and $g(8)=1$. Then g satisfies no P_{i} for $i \leq 7$.
(c). No, it is not possible because since $9>8$, there will always be an element in $\{1,2, \ldots, 9\}$ that does not get mapped to by h.
13) (a). Yes, because $12 \in[15]$ and 3 divides 12 . It does not satisfy P_{5} since 5 does not divide 12. It also satisfies $P_{1}, P_{2}, P_{4}, P_{6}, P_{1} 2$.
(b). 2 satisfies only P_{1} and P_{2}. Any other prime will also work.
(c). 6 satisfies $P_{1}, P_{2}, P_{3}, P_{6}$.
(d). 4 satisfies P_{1}, P_{2}, P_{4}.
15) $S(10,4)$. This is equal to the number of surjections from a set of 10 elements (the books) to a set of 4 elements (John, Paul, Ringo, and George). Since we are counting surjections, this means that each of them will get at least one book.
17) $S(11,5)+S(11,6)$. Label the students with elements from [6], and label the topics with labels from [12]. Let Katie be labeled 6, and let the hardest topic be labeled 12. The number of ways that the professor can assign topics is the number of mappings from [12] to [6] such that the map is a surjection and 12 gets mapped to 6 . If Katie does not receive any extra topics, then this is equal to the number of surjections from [11] to [5] which is $S(11,5)$. If Katie receives some extra topics, then this is equal to the number of surjections from [11] to [6] which is $S(11,6)$. Since these cases are disjoint, their sum gives us the total number of mappings.
19) The number of derangements of a 9 element set are, by Theorem 7.10, equal to

$$
d_{9}=\sum_{k=0}^{9}(-1)^{k}\binom{9}{k}(9-k)!.
$$

We calculate that this is equal to 133496 .
21) $d_{4} \cdot\binom{7}{3}$. Label each employee with an element in $[7]$. There are $\binom{7}{3}$ ways to choose which employees receive the correct checks. There are d_{4} ways to arrange the remaining 4 checks so that no other employee receives their correct check.
23) $\phi(18)=6$. The elements relatively prime to 18 are $\{1,5,7,11,13,17\}$. By Theorem 7.13,

$$
\phi(18)=18 \cdot\left(\frac{2-1}{2} \cdot \frac{3-1}{3}\right)=18 \cdot \frac{1}{3}=6 .
$$

25) By Theorem 7.13,

$$
\begin{aligned}
\phi(1625190883965792) & =1625190883965792 \cdot\left(\frac{2-1}{2} \cdot \frac{3-1}{3} \cdot \frac{11-1}{11} \cdot \frac{13-1}{13} \cdot \frac{23-1}{23} \cdot \frac{181-1}{181}\right) \\
& =432431285299200
\end{aligned}
$$

27) .
