1 Answers to Chapter 8, Odd-numbered Exercises

1) (a) $1+4 x+6 x^{2}+4 x^{3}+x^{4}$.
(b) $1+x+x^{2}+x^{3}+x^{4}+x^{7}$.
(c) $x^{3}+2 x^{4}+3 x^{5}+4 x^{6}+6 x^{7}$.
(d) $1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}$.
(e) $3+x^{3}-4 x^{4}+7 x^{5}$.
(f) $x^{4}+2 x^{5}-3 x^{6}+x^{8}$.
2) (a) By the Binomial Theorem, for $0 \leq n \leq 11, a_{n}=\binom{10}{n}$. For $n>11, a_{n}=0$.
(c) For $n=4 k+3, k \geq 0, c_{n}=1$. Otherwise, $c_{n}=0$. The generating function looks like

$$
x^{3}\left(1+x^{4}+x^{8}+x^{12}+\ldots\right)=x^{3}+x^{7}+x^{11}+x^{15}+\ldots+x^{4 k+3}+\ldots
$$

(e) $e_{n}=1$ for $n \geq 0$ except for $n=3,4 ; e_{3}=e_{4}=2$. We combine the following three generating functions:

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{k=0}^{\infty} x^{k} \\
\frac{x^{2}}{1-x} & =\sum_{k=2}^{\infty} x^{k} \\
\frac{x^{4}}{1-x} & =\sum_{k=4}^{\infty} x^{k}
\end{aligned}
$$

to get that

$$
\frac{1+x^{2}-x^{4}}{1-x}=1+x+2 x^{2}+2 x^{3}+x^{4}+x^{5}+\ldots+x^{k}+\ldots
$$

(g) $g_{n}=(-4)^{n}$ for $n \geq 0$. To see this,

$$
\frac{1}{1-u}=\sum_{n=0}^{\infty} u^{n}
$$

Now substitute $u=-4 x$ into the right hand side and left hand side.
(i) $i_{n}=1$ for $n=7 k$ or $n=7 k+1$ or $n=7 k+2$ where $k \geq 0$. We combine the following three generating functions:

$$
\begin{gathered}
\frac{1}{1-x^{7}}=\sum_{k=0}^{\infty} x^{7 k} \\
\frac{x}{1-x^{7}}=\sum_{k=0}^{\infty} x^{7 k+1} \\
\frac{x^{2}}{1-x^{7}}=\sum_{k=0}^{\infty} x^{7 k+2}
\end{gathered}
$$

to get that

$$
\frac{x^{2}+x+1}{1-x^{7}}=\sum_{k=0} x^{7 k}+x^{7 k+1}+x^{7 k+2}
$$

5) There are 24 ways to get 10 balloons, and the generating function is $\frac{x^{2}+x^{3}+x^{4}}{(1-x)^{2}}$. Since we want at least one white balloon and at least one gold balloon, we model each of these with the generating function

$$
\frac{x}{1-x}=x+x^{2}+x^{3}+\ldots
$$

Since we want at most two blue balloons, we model this with

$$
1+x+x^{2}
$$

Hence, the number of ways to create a bunch of n balloons is the coefficient of x^{n} in the expansion of

$$
\frac{x}{1-x} \cdot \frac{x}{1-x} \cdot\left(1+x+x^{2}\right)=\frac{x^{2}+x^{3}+x^{4}}{(1-x)^{2}}
$$

To find this coefficient, observe that

$$
\frac{1}{(1-x)^{2}}=\frac{d}{d x} \frac{1}{1-x}=\sum_{n=0}^{\infty}(n+1) x^{n} .
$$

Hence,

$$
\begin{aligned}
\frac{x^{2}+x^{3}+x^{4}}{(1-x)^{2}} & =\sum_{n=0}(n+1) x^{n+2}+\sum_{n=0}(n+1) x^{n+3}+\sum_{n=0}(n+1) x^{n+4} \\
& =\sum_{n=2}^{\infty}(n-1) x^{n}+\sum_{n=3}^{\infty}(n-2) x^{n}+\sum_{n=4}^{\infty}(n-3) x^{n} \\
& =x^{2}+3 x^{3}+\sum_{n=4}^{\infty}(3 n-6) x^{n}
\end{aligned}
$$

Hence, there are $3 n-6$ ways to get a bunch of n balloons.
7) The number of solutions is $\binom{n+1}{3}$. The number of solutions to $x_{1}+x_{2}+x_{3}+x_{4} \leq n$ is equal to the number of solutions to $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=n$. For $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$, the associated generating functions are, respectively,

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n} ; \\
\frac{x^{2}}{1-x} & =\sum_{n=0}^{\infty} x^{n+2}=\sum_{n=2}^{\infty} x^{n} ; \\
\frac{1}{1-x^{4}} & =\sum_{n=0}^{\infty} x^{4 n} ; \\
1+x+x^{2}+x^{3} & =\frac{1-x^{4}}{1-x} ; \\
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n} .
\end{aligned}
$$

The coefficient of x_{n} in the product gives us the number of solutions:

$$
\frac{1}{1-x} \cdot \frac{x^{2}}{1-x} \cdot \frac{1}{1-x^{4}} \cdot \frac{1-x^{4}}{1-x} \cdot \frac{1}{1-x}=\frac{x^{2}}{(1-x)^{4}}
$$

Now, since

$$
\frac{d^{3}}{d x^{3}} \frac{1}{1-x}=\frac{6}{(1-x)^{4}}
$$

we have that

$$
\frac{x^{2}}{(1-x)^{4}}=\frac{x^{2}}{6} \cdot \frac{d^{3}}{d x^{3}} \frac{1}{1-x}=\frac{x^{2}}{6} \sum_{n=3}^{\infty} n(n-1)(n-2) x^{n-3}=\sum_{n=2}^{\infty}\binom{n+1}{3} x^{n} .
$$

9) $(1+x)^{p}$. For each of the p students, a student can either be chosen or not. Hence, their associated generating function is $1+x$. Therefore, the generating function for the number of ways to choose n students from p students is

$$
(1+x)^{p}=\sum_{n=0}^{p}\binom{p}{n} x^{n}
$$

11) 103. For dollar coins, dollar bills, and $\$ 2$ bills, the associated generating functions are, respectively:

$$
\begin{aligned}
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \\
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \\
& \frac{1}{1-x^{2}}=\sum_{n=0}^{\infty} x^{2 n}
\end{aligned}
$$

So, the number of ways to make change for $\$ 100$ is the coefficient of x^{100} in the expansion of

$$
\frac{1}{(1-x)^{2}\left(1-x^{2}\right)} .
$$

By a partial fraction expansion,

$$
\frac{1}{(1-x)^{2}\left(1-x^{2}\right)}=\frac{1 / 4}{1-x}+\frac{1 / 4}{1+x}+\frac{1 / 2}{(1-x)^{2}}=\frac{1}{4} \sum_{n=0}^{\infty} x^{n}+\frac{1}{4} \sum_{n=0}^{\infty}(-1)^{n} x^{n}+\sum_{n=0}^{\infty}(n+1) x^{n} .
$$

Hence, the coefficient of x^{100} is $1+(-1)^{100}+101=103$.
13) (a)

$$
\sum_{n=0}^{\infty} b_{n} x^{n}=\frac{x^{2}\left(1-x^{7}\right)\left(1+4 x+10 x^{2}\right)}{(1-x)^{2}\left(1-x^{2}\right)}
$$

The generating functions for chocolate bites, peanut butter cups, and peppermint candies are, respectively,

$$
\begin{aligned}
\frac{x^{2}}{1-x} & =\sum_{n=2}^{\infty} x^{n} \\
\frac{1}{1-x^{2}} & =\sum_{n=0}^{\infty} x^{2 n} \\
1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}=\frac{1-x^{7}}{1-x} &
\end{aligned}
$$

For fruit chews, the generating function is a bit more complicated. If there are no fruit chews in the bag, there is exactly 1 way to do this. If there is 1 fruit chew in the bag, since there are 4 flavors, there are 4 ways to do this. If there are 2 fruit chews in the bag, there are $\binom{4}{2}+4=6+4=10$ ways to do this (there are $\binom{4}{2}$ ways if the flavors are different, and 4 ways if the flavors are the same). So the generating function for fruit chews is

$$
1+4 x+10 x^{2}
$$

The product of these is the generating function for b_{n}.
(b) We are looking for the smallest n such that $b_{n} \geq 400$. We use a computer algebra system (Wolfram Alpha) to find the partial fraction decomposition:

$$
\begin{aligned}
\frac{x^{2}\left(1-x^{7}\right)\left(1+4 x+10 x^{2}\right)}{(1-x)^{2}\left(1-x^{2}\right)} & =266+217 x+162 x^{2}+118 x^{3}+78 x^{4}+49 x^{5}+24 x^{6}+10 x^{7}- \\
& -\frac{1281 / 4}{1-x}+\frac{7 / 4}{1+x}+\frac{105 / 2}{(1-x)^{2}}
\end{aligned}
$$

So for $n>7$, the coefficient of x^{n} is

$$
\frac{-1281}{4}+(-1)^{n} \frac{7}{4}+\frac{105}{2}(n+1)
$$

Plugging this into a calculator, we see that this is more than 400 for $n \geq 13$. So, 13 pieces of candy are needed.
15) (a) 213. The generating functions for pennies, nickels, dimes, and quarters are, respectively,

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n} \\
\frac{1}{1-x^{5}} & =\sum^{\infty} n=0^{\infty} x^{5 n} \\
\frac{1}{1-x^{10}} & =\sum_{n=0}^{\infty} x^{10 n} \\
\frac{1}{1-x^{25}} & =\sum_{n=0}^{\infty} x^{25 n}
\end{aligned}
$$

The coefficient of x^{95} in the expansion of

$$
\frac{1}{(1-x)\left(1-x^{5}\right)\left(1-x^{10}\right)\left(1-x^{25}\right)}
$$

is the number of ways to make change for $\$ 0.95$. Using a computer algebra system, we find that this is 213.
(b) The generating functions for pennies, nickels, dimes, and quarters are, respectively,

$$
\begin{array}{r}
1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}+\ldots \\
1+x^{5}+\frac{x^{10}}{2!}+\frac{x^{15}}{3!}+\ldots+\frac{x^{5 n}}{n!}+\ldots \\
1+x^{10}+\frac{x^{20}}{2!}+\frac{x^{30}}{3!}+\ldots+\frac{x^{10 n}}{n!}+\ldots \\
1+x^{25}+\frac{x^{50}}{2!}+\frac{x^{75}}{3!}+\ldots+\frac{x^{25 n}}{n!}+\ldots
\end{array}
$$

One can then use a computer algebra system, cutting off any terms after x^{95} to get the result.
17) A partition of 10 into odd parts consists of $1 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}, 7 \mathrm{~s}$, and 9 s . The generating function for each of these is, respectively,

$$
\begin{array}{r}
1+x+x^{2}+x^{3}+\ldots+x^{10} \\
1+x^{3}+x^{6}+x^{9} \\
1+x^{5}+x^{10} \\
1+x^{7} \\
1+x^{9}
\end{array}
$$

Hence, the coefficient of x^{10} in the product of these gives the answer. Multiplying these polynomials together with a computer algebra system yields 10 as the coefficient of x^{10}.
19)

$$
\prod_{n=1}^{\infty} \frac{1}{1-x^{2 n}}
$$

21) (a) $a_{n}=7^{n}$, because

$$
e^{7 x}=1+7 x+\frac{(7 x)^{2}}{2!}+\frac{(7 x)^{3}}{3!}+\ldots
$$

(b) $b_{n}=n(n-1) 3^{n}$, because

$$
x^{2} e^{3 x}=\sum_{n=0}^{\infty} \frac{(3 x)^{n+2}}{n!}=\sum_{n=2}^{\infty} \frac{(3 x)^{n}}{(n-2)!}=\sum_{n=2}^{\infty} \frac{n(n-1)(3 x)^{n}}{n!}
$$

(c) $c_{n}=n$!.
23) $\frac{1}{2}\left(4^{n}-3^{n}-2^{n}+1\right)$. The exponential generating functions for the letters a, b, c, d are, respec-
tively,

$$
\begin{aligned}
e^{x}-1 & =\sum_{n=1}^{\infty} \frac{x^{n}}{n!} \\
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
\frac{e^{x}-e^{-x}}{2} & =\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!} \\
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
\end{aligned}
$$

The coefficient of x^{n} / n ! in the product gives the number of strings:

$$
\begin{aligned}
\left(e^{x}-1\right)\left(e^{x}\right)\left(\frac{e^{x}-e^{-x}}{2}\right)\left(e^{x}\right) & =\left(e^{3 x}-e^{2 x}\right)\left(\frac{e^{x}-e^{-x}}{2}\right)=\frac{1}{2}\left(e^{4 x}-e^{3 x}-e^{2 x}+e^{x}\right) \\
& =\frac{1}{2} \sum_{n=0}^{\infty} \frac{\left(4^{n}-3^{n}-2^{n}+1\right) x^{n}}{n!}
\end{aligned}
$$

25) $a_{0}=0, a_{1}=0, a_{2}=0$ and for $n \geq 3$,

$$
a_{n}=n 2^{n}-2 n+(-1)^{n-1} \cdot 2 n-(n)(n-1)+(-1)^{n} n(n-1)
$$

The exponential generating functions for the letters a, b, c, d are, respectively,

$$
\begin{aligned}
e^{x}-1 & =\sum_{n=1}^{\infty} \frac{x^{n}}{n!} \\
\frac{e^{x}-e^{-x}}{2} & =\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!} \\
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
x+\frac{x^{2}}{2} &
\end{aligned}
$$

The coefficient of x^{n} / n ! in the product gives the number of strings:

$$
\begin{aligned}
\left(e^{x}-1\right)\left(\frac{e^{x}-e^{-x}}{2}\right)\left(e^{x}\right)\left(x+\frac{x^{2}}{2}\right) & =\frac{1}{4}\left(e^{2 x}-1-e^{x}+e^{-x}\right)\left(2 x+x^{2}\right) \\
& =2 x e^{2 x}-2 x-2 x e^{x}+2 x e^{-x}+x^{2} e^{2 x}-x^{2}-x^{2} e^{x}+x^{2} e^{-x} \\
& =-2 x-x^{2}+2 \sum_{n=1}^{\infty} \frac{2^{n-1} x^{n}}{(n-1)!}-2 \sum_{n=1}^{\infty} \frac{x^{n}}{(n-1)!} \\
& +2 \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{(n-1)!}+-\sum_{n=2}^{\infty} \frac{x^{n}}{(n-2)!}+\sum_{n=2}^{\infty} \frac{(-1)^{n} x^{n}}{(n-2)!}
\end{aligned}
$$

