
1 Answers to Chapter 9, Odd-numbered Exercises

1) (a) (A2 − A− 2)f = 0.

(c) (A3 − 5A + 1)f = 3n.

(e) (A5 − 4A4 − A2 + 3)f = (−1)n.

3) gn = c12
n + c2. We write the recurrence as the advancement operator equation

(A2 − 3A + 2)f = 0.

This can be rewritten as
(A− 2)(A− 1)f = 0.

Hence, our solutions are c12
n and c21

n = c2. Combining these to generate the entire family
of solutions gives us the general solution gn = c12

n + c2.
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We solve the recurrence relation fn = fn−1 + fn−2 with initial conditions f0 = 1, f1 = 1 (note
that, for convenience, we start our recurrence at f0 instead of f1). The recurrence can be
written as an advancement operator equation

(A2 − A− 1)f = 0.

The roots of the above polynomial are
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Hence, our family of solutions is given by
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Since f0 = 1 and f1 = 1, we get two linear equations in two variables:
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Solving this yields c1 = 1/
√

5 and c2 = −1/
√

5.

7) (−6/7)(−5)n + (20/7)2n. We factor

A3 + 3A− 10 = (A + 5)(A− 2)



to deduce that c1(−5)n and c22
n are solutions to the advancement operator equation. Using

the initial conditions f(0) = 2 and f(1) = 10, we get two linear equations in two variables

c1 + c2 = 2

−5c1 + 2c2 = 10

Solving this yields c1 = −6/7, c2 = 20/7.

9) (a) c15
n +c2(−2)n− 1

10
3n. We try f0(n) = d3n. By multiplying out the advancement operator

equation, we see that d3n must satisfy

an+2 − 3an+1 − 10an = 3n.

Plugging it in yields
d3n+2 − 3d3n+1 − 10d3n = 3n.

So, d = −1
10

.

(c) c13
n + c2n3n + c3n

33n + (−3/8)n+ (−11/16). We try f0(n) = an+ b. By multiplying out
the advancement operator equation, we see that an + b must satisfy

an+3 − 9an+2 + 27an+1 − 27an = 3n + 1.

Plugging it in yields

a(n + 3) + b− 9(a(n + 2) + b) + 27(a(n + 1) + b)− 27(an + b) = 3n + 1.

From this, we see that
−8an = 3n and 12a− 9b = 1.

So a = −3/8 and b = −11/16.

(e) c12
n+c24
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25
9n. We try out f0(n) = an2+bn+c+d9n. By multiplying

our the advancement operator equation, we see that an2 + bn + c + d9n must satisfy

an+2 − 6an+1 + 8an = 3n2 + 9n.

Plugging it in yields

a(n+2)2+b(n+2)+c+81d9n−6(a(n+1)2+b(n+1)+c+9d9n+8(an2+bn+c+d9n) = 3n2+9n.

From this, one can solve to find

a =
1

3
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(g) c13
n + c2n3n + c3(−1)n + 1

36
n23n. Since 3 is a repeated root to the advancement operator

equation, c13
n and c2n3n are distinct solutions to the recurrence relation. Hence, we try

dn33n to get a nonhomogeneous solution to the recurrence. By multiplying/expanding our
advancement operator equation, we see that dn23n must satisfy

an+3 − 5an+2 + 3an+1 + 9an = 2 · 3n.



Plugging it in yields

27d(n + 3)2 − 45d(n + 2)2 + 9d(n + 1)2 + 9dn2 = 2.

This reduces to
72d = 2

and so d = 1/36.

(i) d12
n +d2n2n +d3− 1

8
n2 · 2n. Since the nonhomogenous part of the equation is (3n2 + 1)2n,

we want to try (an2 + bn + c)2n. However, since 2 is a repeated root, we will not generate
distinct solutions unless we multiply by n2 (if 2 was a single root, we would multiply only by
n, and if it was not a root at all, we would not have to multiply by any extra factors). Hence,
we try f0(n) = (an4 + bn3 + cn2)2n. By multiplying/expanding our advancement operator
equation, we see that f0(n) must satisfy

an+3 − 5an+2 + 8an+1 − 4an = 2n22n + 2n.

Plugging f0(n) in for an yields

8(a(n + 3)4 + b(n + 3)3 + c(n + 3)2)− 20(a(n + 2)4 + b(n + 2)3 + c(n + 2)2)+

+ 16(a(n + 1)2 + b(n + 1) + c)− 4(an4 + bn3 + cn2) = 2n2 + 1.

Solving this yields a = 0, b = 0, c = −1/8.

11) tn = 2n − 1. First, observe that tn satisfies the following recurrence relation tn = 2tn−1 + 1
with t1 = 1. To see this, in order to move the largest disc to the rightmost peg, the only way
to do this is by first moving all of the other pegs onto the center peg first. This is done in
tn−1 steps. Then, we do 1 step by moving the largest disc to the rightmost peg, and now we
must again perform tn−1 steps to move all the other discs on top of the rightmost peg again.

Now, to determine a formula for tn, we solve the recurrence relation by observing that it can
be modeled by the advancement operator equation

(A− 2) = 1.

So, tn = c2n + d. We first solve for d (the nonhomogeneous part of the solution), then we use
our initial condition to finally solve for c.

We must have that d satisfies the recurrence, and so d = 2d + 1 implying d = −1. Now,
1 = t1 = c21 +−1, implying c = 1.
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3). If we are to tile a 2×n rectangle (2 rows, n columns),

there is 1 way to do this for n = 1 (we must use 1 × 1 squares), and there are 5 ways to do
this for n = 2 (the four rotations of the L-tile, along with the configuration to use all 1 × 1
tiles). For n = 3, there are 11 ways to tile it (just draw out all 11 cases). So t1 = 1, t2 = 5,
t3 = 11. We now analyze tn.

Consider the upper rightmost square of the grid. Case 1: If it is filled by a 1× 1 square, then
there are two possibilities. Either there is a 1× 1 square below it, or there is an L-tile around
it. There are tn−1 ways to tile the former, and tn−2 ways to tile the latter. Case 2: If it is an
L-tile, then there are three orientations the L-tile could be in. If the orientation is such that
there is a 1 × 1 square in the bottom left square, then there are tn−2 ways to tile the rest of



the grid. Otherwise, there are tn−2 + tn−3 ways to tile the grid. Summing these distinct cases
up results in

tn = tn−1 + tn−2 + tn−2 + 2(tn−2 + tn−3) = tn−1 + 4tn−2 + 2tn−3.

The advancement operator polynomial is

A3 − A2 − 4A− 2 = 0

which can be factored as
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Hence,
tn = a(−1)n + b(1−
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Using the initial conditions t1 = 1, t2 = 5, t3 = 11, we get the system of equations
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Solving this (preferably using a computer algebra system or Wolfram Alpha) results in a =
1, b = −1/

√
3, c = 1/

√
3.

15) rn = 3/5(−2)n + 2/53n. Let r(x) be the generating function for the sequence rn. So,
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Summing these together results in

r(x)(1− x− 6x2) = 1 + 3x− 4x +
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n=2

(rn − 4rn−1 − 6rn−2)x
n = 1− x

So,
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A partial fraction expansion gives
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So the coefficent of xn is (3/5)(−2)n + (2/5)3n.



17) Let b(x) be the generating function for the sequence bn. So,
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Now, observe that if b0 = 1, b2 = 1, b3 = 4 and, by the recurrence relation, b3 = 4b2 − b1 −
6b0 + 30, we get that b1 = −5. Summing the right hand sides in the above equations as well
as the left hand sides results in

r(x)(1− 4x + x2 + 6x3) = 1− 5x + x2 − 4x + 20x2 + x2 +
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n=3

3n−3xn = 1− 9x + 22x2 +
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We can now solve for r(x) and do a partial fraction expansion:
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Expanding these as infinite sums gets us that rn is equal to

rn =
−208

81
· 2n +

41

48
· 3n +

1

12
(n + 1) · 3n +

3457

1296
· (−1)n.


