
FINAL EXAM SOLUTIONS

Student Name and ID Number
MATH 3012 Final Exam, December 15, 2010, WTT
Note. The answers given here are more complete and detailed than students are expected to
provide when taking a test. The extra information given here should help current students to
understand the questions being asked on the test. At the same time, it is intended to help future
students by supplementing explanations given in the text.

1. Consider the 9-element set X consisting of the five letters {a, b, c, d, e} and the four digits
{0, 1, 2, 3}.
a. How many strings of length 7 can be formed if repetition of symbols is permitted?

This is just asking for the number of strings of length 7 that can be formed from an
alphabet of size 9. Answer: 97.

b. How many strings of length 7 can be formed if repetition of symbols is not permitted?

This is the number of permutations of length 7 that can be formed from a set of 9
objects. So the answer is P (9, 7) = 9 · 8 · 7 · 6 · 5 · 4 · 3.

c. How many strings of length 7 can be formed using exactly two 3’s, three a’s and two c’s?

This is the classic “Mississippi” problem. Answer is the multinomial coefficient:(
7

2, 3, 2

)
=

7!

2! 3! 2!

d. How many strings of length 7 can be formed if exactly three characters are digits and exactly
two of the remaining characters are c’s? Here, repetition is allowed.

Choose the three positions for the digits. Of the remaining four positions, choose
two for the c’s. The two positions that are not c’s can be any of the remaining four
letters. Answer:

(
7
3

)
43
(
4
2

)
42.

e. How many symmetric binary relations are there on X?

For each x ∈ X, we choose whether (x, x) belongs to the relation or not. Each of
the two choices is allowed. This gives a factor of 29. For each of the

(
9
2

)
pairs {x, y}

from X with x 6= y, we either put both of (x, y) and (y, x) in the relation, or we put

neither. This gives another 2(9
2) choices. Answer: 29 2(9

2).

f. How many equivalence relations are there on X with class sizes 3, 3, 2 and 1?

This is another multinomial coefficient problem with the extra complication that we
can permute the classes. So the answer is:

7!

3! 3! 2! 1! 2! 1! 1!

The problem is so small that the form of the correct answer may not be clear.
Perhaps a better problem would be to ask how many equivalence relations there
are on a 59 element set if the class sizes are 7, 7, 7, 7, 7, 4, 4, 4, 2, 2, 2, 2, 2, 2. Now the
answer is:

59!

7! 7! 7! 7! 7! 4! 4! 4! 2! 2! 2! 2! 2! 2! 5! 3! 6!



2. Bob has a job with the Math department at a university (of sorts) some 60 miles from Atlanta.
Bob is responsible for paperclip inventory, i.e., counting the department’s paperclips and storing
them for safe-keeping. Being thoroughly conscientious in his assignment, Bob determines that they
have exactly 2, 835 paperclips on hand. Now Bob will distribute these paperclips among three
Storage Rooms. Room 1 is in the math building, Room 2 is in the central administration building,
and Room 3 is located underneath the bleachers in the football stadium. In other words, Bob will
choose non-negative integers x1, x2 and x3 with x1 + x2 + x3 = 2, 835, and then store xi paperclips
in Room i, for i = 1, 2, 3. Count the number of ways Bob can store the paperclips, subject to the
following restrictions:

a. xi ≥ 0 for i = 1, 2, 3 (i.e., no restrictions).

For each room, we add an artificial paperclip. The new total is 2838. Now choose
two gaps from the 2837 = 2838− 1 gaps they form when lined up (something that
Bob would love to do). This separates the list of paperclips into three group, each
containing at least one paperclip. Then subtract one from each group. This results
in the non-negative number going to each of the three rooms. Note, for suspect
reasons, this question came before the next one, which is really the starting point
for this type of problem. Answer:

(
2837
2

)
.

b. xi > 0 for i = 1, 2, 3.

As mentioned above, this question should really be answered first. Bob lines up the
2835 paperclips. There are 2834 gaps. He chooses two gaps, and the paperclips are
partitioned left to right into three groups. Those in the first group (say the leftmost)
are put in Room 1. Those in the next group (say the middle group) are placed in
Room 2, and those in the third group are placed in Room 3. Answer:

(
2834
2

)
.

c. xi > 0 for i = 1, 2, 3 and x3 > 700.

Set aside 700 paperclips in advance for Room 3. There are 2135 = 2835 − 700
remaining. Choose two gaps among the 2134. Answer:

(
2134
2

)
. Note that because

Room 3 will get at least one more, the total for Room 3 will be strictly larger
than 700.

d. xi > 0 for i = 1, 2, 3 and x3 < 700.

Following the same reasoning as in part c, there are
(
2135
2

)
ways resulting in x3 > 699,

which is the same as requiring x3 ≥ 700. So we subtract these from the answer to
part b to find the number with x3 < 700. Answer:

(
2834
2

)
−
(
2134
2

)
.



3. Use the Euclidean algorithm to find

a. d = gcd(7735, 1638).

Using long division, we make the following calculations:

7735 = 4 · 1638 + 1183

1638 = 1183 + 455

1183 = 2 · 455 + 273

455 = 273 + 182

273 = 182 + 91

182 = 2 · 91 + 0

This shows that d, the last positive remainder, is 91 = 7 · 13.

b. Use your work in the first part of this problem to find integers a and b so that d = 7735a+1638b.

We begin by rewriting the top five statements above as:

91 = 273− 182

182 = 455− 273

273 = 1183− 2 · 455

455 = 1638− 1183

1183 = 7735− 4 · 1638

Substituting, we see that:

91 = 273− 182

= 273− (455− 273) = −455 + 2 · 273

= −455 + 2(1183− 2 · 455) = 2 · 1183)− 5 · 455

= 2 · 1183− 5(1638− 1183) = −5 · 1638 + 7 · 1183

= −5 · 1638 + 7(7735− 4 · 1638) = 7 · 7735− 33 · 1638

It follows that we make take a = 7 and b = −33. Note. There are infinitely many
choices for a and b. The ones given here are just what result from backtracking
through the calculations for d.

Note further that as discussed in class, both the greatest common divisor d =
gcd(m,n) as well as integers a and b so that d = am+ bn can be computed with a
loop. No backtracking is actually required.

c. Using your previous work, factor 1638 completely into a product of primes. You will need this
answer later on this test.

We know 1638 is divisible by 91 and just a little work shows that 1638 = 91 · 18 =
2 · 32 · 7 · 13.



4. For a positive integer n, let tn count the number of ways to tile a 3×n array with dominoes of
the following three sizes: 1×3, 3×1 and 2×3. Note that dominoes of size 3×2 are not permitted.
Then t1 = 1, t2 = 1 and t3 = 4. Develop a recurrence for tn and use it to find t6.

We develop a recurrence for tn when n ≥ 4. We consider how the last column is
covered. It could be done by a single 3 × 1 domino. That results in tn−1 ways to
cover the first n − 1 columns. It could happen that the last column is covered by
three 1 × 3 dominoes. This results in tn−3 tilings for the other columns. It could
happen that the last column is covered by a 1×3 domino and a 2×3 domino. There
are two ways for this to happen—either the 1× 3 domino is on the top, or it is on
the bottom. In either case, we get tn−3 ways to cover the remaining columns. So
the recurrence is tn = tn−1 + 3tn−3. And it follows that

t4 = t3 + 3t1 = 4 + 3 = 7

t5 = t4 + 3t2 = 7 + 3 = 10

t6 = t5 + 3t3 = 10 + 12 = 22

5. Use the algorithm developed in class to find an Euler circuit in the graph G shown below (use
node 1 as root):

1
5

3
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7
8

9
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11

14

2

We start with node 1 and proceed greedily:

1, 4, 5, 1

Not all edges have been visited, so we proceed along this path to the first vertex
incident with an edge we have not already visited. This is vertex 4. From there we
proceed greedily to obtain:

4, 6, 3, 10, 7, 4

This loop is inserted into our original sequence, resulting in

1, 4, 6, 3, 10, 7, 4, 5, 1

Again we find the first vertex incident with an edge not already visited. This is
vertex 10. From there we proceed greedily:

10, 11, 2, 8, 7, 14, 2, 9, 5, 14, 9, 8, 14, 10



Inserting this subsequence, we have the final answer:

1, 4, 6, 3, 10, 11, 2, 8, 7, 14, 2, 9, 5, 14, 9, 8, 14, 10, 7, 4, 5, 1

6. We show the same graph G again.

1
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a. Explain why {1, 4, 5} is a maximal clique.

It is a clique because each pair of vertices in the set is adjacent. It is maximal since
no other vertex of G is adjacent to all three of these vertices.

b. Find the maximum clique size ω(G) and find a set of vertices that form a maximum clique.

The maximum clique size (by inspection for now) is 4 and {2, 8, 9, 14} is a maximum
clique.

c. Show that χ(G) = ω(G) by providing a proper coloring of G. You may indicate your coloring
by writing directly on the figure.

We provide another drawing of the graph with the bold face numbers providing a
coloring with 4 colors. Note that we have now truly established that ω(G) = 4,
since we have found both a clique of size 4 and a 4-coloring.
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d. Despite the fact that χ(G) = ω(G), the graph G is not perfect. Explain why.

In order for a graph G to be perfect, we need χ(H) = ω(H) for every induced sub-
graphH. In this case, the induced subgraph generated by the vertices {2, 7, 8, 10, 11}
is a 5-cycle which has maximum clique size 2 and chromatic number 3. So G is not
perfect. Note that {3, 4, 6, 7, 10} is also a 5-cycle.



7. Show that the graph G from the first two problems is hamiltonian by writing an appropriate
listing of the vertices, starting and ending with node 1.

By inspection, we find the hamiltonian cycles:

(1, 4, 6, 3, 10, 11, 2, 8, 7, 14, 9, 5, 1) and (1, 4, 6, 3, 10, 11, 2, 9, 8, 7, 14, 5, 1)

The first of these two cycles is illustrated with the darkened edges in the figure
below.
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8. Count the number of linear extensions of the following poset:

a

b

c d

e

We consider the incomparable pair ed. Either e > d or e < d in a linear extension
of P and both possibilities can occur. The choice e > d leads to the poset P1 shown
below on the left, while d > e leads to the poset P2 on the right.

a

b

c d

e

a

b

c

d

e

It is easy to see that P1 has 6 linear extensions, while P2 has 2. Therefore P has
8 = 6 + 2 linear extensions. We note that while this divide and conquer approach
always works, it can (and typically does) take exponentially many steps.



9. For the subset lattice 212,
a. The total number of elements is:

This is just the number of subsets of a 12-element set; equivalently, the number of
bit strings of length 12. Answer: 212

b. The total number of maximal chains is:
Start with a string of length 12, all entries set to zero. Choose one of the 12 positions
and toggle this entry to a 1. There are 11 remaining 0’s. Choose one and toggle it
to a 1. Continue in this way until you reach the top element, the string of all 1’s.
Answer: 12!

c. The number of maximal chains through {1, 3, 6, 7, 9} is:

Now you have 5! ways to proceed from the string of all 0’s to the string (1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0),
which is associated with this set. Similarly, you have 7! ways to continue on to the
top. Answer: 5! 7!

d. The width of 212 is:

This is just a specific instance of Sperner’s theorem: The width of the subset lattice
2n is just the size of a middle rank, i.e, the binomial coefficient

(
n
dn/2e

)
. Answer:(

12
6

)
.

10. For the poset P shown below,

ab

c

d e

fg

h

i

j

kl

a. List all elements comparable with a.

Clearly, these elements are {c, f, k}. Note that c > a, while f < a and k < a.

b. List all elements covered by a.

There is only one such element, i.e., the element f .

c. By inspection (not by algorithm), explain why this poset is not an interval order.

We search for a copy of 2 + 2 contained in P . There are many. Among them are
the subposets generated by: {e, j, a, c}, {b, e, c, a}, {b, e, c, i} and {g, d, a, f}.



d. Find the height h and a partition into h antichains by recursively stripping off the set of minimal
elements. You may display your answer by writing directly on the diagram. Then darken a set of
points that form a maximum chain.

Our answer is provided in the following diagram in which the minimal elements are
marked with a boldface 1. If these elements are removed, then the minimal elements
among those that remain are marked boldface 2, etc.

ab

c

d e

fg

h

i

j

kl

1

1
1

1

2
3

4
5

2

3

4

2

We note that the height is 5; the darkened points, i.e., {b, e, f, j, k} form a 5-element
chain.

11. The poset P shown below is an interval order:

a

b

c

d

e

f

g h

a. Find the down sets and the up sets. Then use these answers to find an interval representation
of P that uses the least number of end points.

In the table below, we list the up sets and down sets for each of the elements in P ,
noting that there are four distinct down sets which can be labeled as D1, D2, D3

and D4 so that D1 ( D2 ( D3 ( D4.

Similarly, there are four distinct up sets and we label them as U1, U2, U3 and U4 so
that U4 ( U3 ( U2 ( U1. The bold face numbers correspond to these labelings.

Finally, in the right most column, we associate with each element of P the interval
determined by the assignment of the bold face numbers in the first two columns

D(a) = ∅ 1
D(b) = {a, g, h} 3
D(c) = {h} 2
D(d) = ∅ 1
D(e) = {a, b, d, g, h} 4
D(f) = {a, g, h} 3
D(g) = ∅ 1
D(h) = ∅ 1

U(a) = {b, e, f} 2
U(b) = {e} 3
U(c) = ∅ 4
U(d) = {e} 3
U(e) = ∅ 4
U(f) = ∅ 4
U(g) = {b, e, f} 2
U(h) = {b, c, e, f} 1

I(a) = [1, 2]
I(b) = [3, 3]
I(c) = [2, 4]
I(d) = [1, 3]
I(e) = [4, 4]
I(f) = [3, 4]
I(g) = [1, 2]
I(h) = [1, 1]



b. In the space below, draw the representation you have found. Then use the First Fit Coloring
Algorithm for interval graphs to solve the Dilworth Problem for this poset, i.e., find the width w
and a partition of P into w chains. You may display your answers by writing the colors directly on
the intervals in the diagram.

Our work is captured in the following diagram. In this figure, we are coloring the
intervals using First Fit and respecting the ordering by left endpoints. When there
is a tie, we proceed alphabetically, so for example interval d was colored before g
although both have the same left endpoint.
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c. Find a maximum antichain in P :
From the diagram above, we see that the width of P is 4 because the highest
color used is 4. There are three maximum antichains: {a, d, g, h}, {a, c, d, g} and
{b, c, d, f}. The coloring algorithm will find the first two of these using the left
endpoint of intervals receiving the highest color. The third maximum antichain
could be found by a linear scan looking for all the intervals containing integer i
where 1 ≤ i ≤ 4.

12.
a. Write all the partitions of the integer 9 into odd parts:

We proceed by inspection. There is no general way to do this.

9 = 9

= 7 + 1 + 1

= 5 + 3 + 1

= 5 + 1 + 1 + 1 + 1

= 3 + 3 + 3

= 3 + 3 + 1 + 1 + 1

= 3 + 1 + 1 + 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 We note that there are 8 partitions of this type.



b. Write all the partitions of the integer 9 into distinct parts:

Again, we proceed by inspection.

9 = 9

= 8 + 1

= 7 + 2

= 6 + 3

= 5 + 4

= 6 + 2 + 1

= 5 + 3 + 1

= 4 + 3 + 2 We note that there are 8 partitions of this type.

c. Use generating functions to prove that the number of partitions of an integer into odd parts
equals the number of partitions into distinct parts.

Let f(x) =
∑∞

n=0 anx
n be the generating function for the number of partitions of the

integer n into distinct parts, and let g(x) =
∑∞

n=0 bnx
n be the generating function

for the number of partitions of n into odd parts. We show that f(x) = g(x).

The starting point in discussions of partition of an integer is the following basic
formula for the sum of a geometric series:

1

1− x
= 1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + · · · =

∞∑
n=0

xn

Substituting xm for x when m ≥ 2, we have

1

1− xm
= 1 + xm + x2m + x3m + x4m + x5m + x6m + x7m + · · · =

∞∑
n=0

xnm

Now consider the function p(x) defined as an infinite product:

p(x) = Π∞m=1

1

1− xm

Now it is easy to see that p(x) is just the generating function for the number of
partitions of the integer n. Similarly, the function f(x) defined by

f(x) = Π∞m=1

1

1− x2m−1

is the generating function for the number of partitions of n into odd parts.
Now let g(x) be the generating function for the number of partitions of n into
distinct parts. Clearly,

g(x) = Π∞m=1(1 + xm)



Since 1 + xm = (1− x2m)/(1− xm), it follows that

g(x) = Π∞m=1

1− x2m

1− xm

=
Π∞m=11− x2m

Π∞m=11− xm

=
Π∞m=11− x2m

Π∞m=11− x2m−1Π∞m=11− x2m

= Π∞m=1

1

1− x2m−1
= f(x)

This shows that the number of partitions of an integer n into odd parts equals the
number of partitions of n into distinct parts.

13. Find the general solution to the advancement operator equation:
(A− 2)4(A+ 7)2(A− 9)f = 0

The general solution is given by

f(n) = c12
n + c2n2n + c3n

22n + c4n
32n + c5(−7)n + c6n(−7)n + c79

n

14. Find the solution to the advancement operator equation:
(A2 − 12A+ 35)f(n) = 0, f(0) = −2 and f(1) = 12.

We can readily factor A2 − 12A + 35 as (A − 5)(A − 7), so the general solution is
c15

n+c27
n. The initial conditions require that c1+c2 = −2 and 5c1+7c2 = 12. This

results in c1 = −13 and c2 = 11. So the general solution is f(n) = −13 · 5n + 11 · 7n.

15.
a. Write the inclusion/exclusion formula for the number of onto functions from {1, 2, . . . , n} to
{1, 2, . . . ,m}.

Let n and m be positive integers with n ≥ m. Then let X denote the set of all
functions from {1, 2, . . . , n} to {1, 2, . . . ,m}. For an integer i ∈ {1, 2, . . . ,m}, we
say that a function f ∈ X satisfies property Pi if i is not in the range of f . A
function is onto when it satisfies none of the properties. If S is a set of i properties,
then the number of functions satisfying all the properties in S is (m− i)n; and there
are

(
m
i

)
sets S of size i. The following inclusion/exclusion formula for the number

S(n,m) of onto functions follows easily.

S(n,m) =
m∑
i=0

(−1)i
(
m

i

)
(m− i)n

b. Evaluate your formula when n = 5 and m = 3.

The formula yields

S(5, 3) =

(
3

0

)
35 −

(
3

1

)
25 +

(
3

2

)
15 −

(
3

3

)
)05

= 243− 3 · 32 + 3 = 150



16.
a. Write the inclusion/exclusion formula for the number of derangements on {1, 2, . . . , n}.

Let X consist of all permutations on the set {1, 2, . . . , n}. For each i = 1, 2, . . . , n,
we say that a permutation σ ∈ X satisfies property Pi if σ(i) = i. A derangement
is a permutation satisfying none of the properties. If S is a set of i properties, then
there are (n − i)! permutations satisfying all the properties in S. Now there are(
n
i

)
sets of size i, so the following inclusion/exclusion formula for the number dn of

derangements follows immediately.

dn =
n∑

i=0

(−1)i
(
n

i

)
(n− i)!

b. Evaluate your formula when n = 5.

The formula yields

d5 =

(
5

0

)
5!−

(
5

1

)
4! +

(
5

2

)
3!−

(
5

3

)
2! +

(
5

4

)
1!−

(
5

5

)
0!

= 5!− 5 · 4! + 10 · 6− 10 · 2 + 5 · 1− 1 · 1
= 120− 120 + 60− 20 + 5− 1

= 44

c. Verify the correctness of your answer by writing all derangements when n = 5.

We elected to proceed lexicographically. Here are the 44 derangements when n = 5.

21453 21534 23154 23451 23514 24153 24513 24531 25134 25413 25431

31254 31452 31524 34152 34251 34512 34521 35124 35214 35412 35421

41253 41523 41532 43152 43251 43512 43521 45123 45132 45213 45231

51234 51423 51431 53124 53214 53412 53421 54123 54132 54213 54231

17. Previously, you factored 1638 into a product of primes. Using this factorization, evaluate the
euler φ-function φ(1638).

Let n be an integer with n ≥ 2 and let p1, p2, . . . , pk be the distinct prime factors of
n. Then the inclusion/exclusion formula for φ(n) is:

φ(n) = n Πk
i=1(1−

1

pi
)

Earlier in the test, we found that 1638 = 91 · 18 = 2 · 32 · 7 · 13. It follows that

φ(1638) = 1638 (1− 1

2
)(1− 1

3
)(1− 1

7
)(1− 1

13
)

= 1638
1

2

2

3

6

7

12

13
= 432



18. Let G be a graph on 23 vertices in which every vertex has 19 neighbors. Explain why G is
hamiltonian but not planar.

A terrible typo here. Your professor gets a thousand whacks with an∞ sign. There
is no such graph!! One of the basic facts about graphs is that the number of vertices
of odd degree is even! This comes from the following identity. Let degG(x) denote
the degree of the vertex x in a graph G, let V denote the vertex set of G, and let q
be the number of edges in G. Then

2q =
∑
x∈V

degG(x)

This equation follows from the fact that each edge in the graph is counted twice in
the sum, once from each endpoint.

To see what I had in mind in posing the problem, change the 19 to an 18. We show
that a graph G with 23 vertices in which every vertex has degree 18 is hamiltonian
but not planar.

The fact that G is hamiltonian can be deduced from Dirac’s Theorem which provides
a sufficient condition for a graph to be hamiltonian: A graph on n vertices is
hamiltonian if every vertex has degree at least dn/2e. Here, this requires that all
vertices have degree at least d23/2e = 12, which they do.

On the issue of planarity, we recall one of the corollaries to Euler’s formula: The
maximum number of edges in a planar graph on n vertices is 3n − 6. Should our
graph be planar, it could have at most 3 · 23− 6 = 63 edges. But since every vertex
has degree 18, the number of edges in G is 23 · 18/2 = 207, which means that G is
very nonplanar!

19. Verify Euler’s formula for the planar graph shown below.

a
b

c

d
e

f

g
h

Given a drawing of a planar connected graph, let V denote the number of vertices,
E the number of edges and F the number of faces (including the unbounded exterior
face). Then Euler’s formula is:

V − E + F = 2

For the graph shown, V = 8, F = 8 and E = 14, so that 8−14 + 8 = 2, as required.



20. Consider the following weighted graph:

a
b

c

d
e

f

g
h

23
25

48
46

83

86
9985

82

84
92

91

90

31

In the space below, list in order the edges which make up a minimum weight spanning tree using,
respectively Kruskal’s Algorithm (avoid cycles) and Prim’s Algorithm (build tree). For Prim, use
vertex a as the root.

To implement Kruskal’s algorithm, we consider the edges sorted from least to great-
est weight and choose edges greedily as long as we do not form a cycle with edges
previously chosen. To implement Prim, we start with a one point tree T consisting
of the root node a. We then expand T by choosing the cheapest edge with one
endpoint in T and the other one not in T . The results are reflected in the following
tables.

Kruskal’s Algorithm

bf weight 23
dg weight 25
ef weight 31
cf weight 48
gh weight 82
cd weight 83
ad weight 84

Total weight: 376

Prim’s Algorithm

ad weight 84
dg weight 25
gh weight 82
cd weight 83
cf weight 48
bf weight 23
cf weight 31

Total weight: 376

21. A data file digraph data.txt has been read for a digraph whose vertex set is [7]. The weights
on the directed edges are shown in the matrix below. The entry w(i, j) denotes the length of the
edge from i to j. If there is no entry, then the edge is not present in the graph. Apply Dijkstra’s
algorithm to find the distance from vertex 1 to all other vertices in the graph. Also, for each x, find
a shortest path from 1 to x.

W 1 2 3 4 5 6 7
1 0 32 24 28 68 80
2 0 30 44 10
3 0 41 56
4 27 5 8 0 51
5 12 0 28 3
6 82 5 3 2 2 0
7 3 2 4 8 12 0



We start with the following candidate paths from the root node 1 to all other
nodes—using the notation Pi for the candidate path from the root to node i:

Path P2 : (1, 2) Length: 32
Path P3 : (1, 3) Length: 24
Path P4 : (1, 4) Length: 28
Path P5 : (1, 5) Length: 68
Path P6 : (1, 6) Length: 80
Path P7 : (1, 7) Length: ∞

Note the length of the path P7 is infinite, which indicates that there is no edge from
node 1 to node 7. Now we taken the shortest temporary path, declare it permanent
and then scan from that node to see if we can improve other candidate paths. In
this case, the shortes temporary path has length 24, so we declare once and for all
the shortest path from 1 to 3 has length 24 and the path P3 = (1, 3) has this length.

Now we scan from node 3 to all other nodes. For starters, an alternate path from
1 to 3 would be (1, 3, 2). This path has length 24 + w(3, 2) = 24 + ∞ = ∞,
which is certainly worse that what we now have for a path from node 1 to 2.
Similarly, we make no update for the path from 1 to 4. However, we currently
have a path of length 68 from 1 to 5. However, the alternate path (1, 3, 5) has
length 24 + w(3, 5) = 24 + 41 = 65, which is shorter. So we update this path.

Currently, we have a candidate path of length 80 from node 1 to 6. When we consider
the alternate path (1, 3, 6), we find that it has length 24 + w(3, 6) = 24 + 56 = 80,
i.e., it has the same length as the current path. Here, we make no change, as we
will only update when we get a real improvement.

Since w(3, 7) = ∞, there is no update for the path P7. With this observation, the
scan from node 3 is complete. Here are the resulting candidate paths for all nodes
except node 3.

Path P2 : (1, 2) Length: 32
Path P4 : (1, 4) Length: 28
Path P5 : (1, 3, 5) Length: 65
Path P6 : (1, 6) Length: 80
Path P7 : (1, 7) Length: ∞

Now the shortest temporary path is P4 so again, we declare this path and the
distance it provides as permanent. As before, we scan from node 4 for improvements.
But it is straightforward to verify that none are to be found. So our shortened list
of candidate paths becomes:

Path P2 : (1, 2) Length: 32
Path P5 : (1, 3, 5) Length: 65
Path P6 : (1, 6) Length: 80
Path P7 : (1, 7) Length: ∞

So the path P2 is declared permanent and the distance from 1 to 2 is 32. Now we
scan from node 2 for possible improvements. In this case, we get the following paths,
all of which are improvements: P5 = (1, 2, 5) which has length 32 + 30 = 62 < 65;
P6 = (1, 2, 6) which has length 32 + 44 = 76 < 80 and P7 = (1, 2, 7) which has
length 42 <∞. So the updated set of candidate paths becomes:



Path P5 : (1, 2, 5) Length: 62
Path P6 : (1, 2, 6) Length: 76
Path P7 : (1, 2, 7) Length: 42

Now P7 is declared permanent and we scan from node 7. This results in improved
paths for 5 and 6. These new paths are P5 = (1, 2, 7, 5) which has length 42 + 10 =
52 < 62 and P6 = (1, 2, 7, 6) which has length 42 + 12 = 54 < 76.

Path P5 : (1, 2, 7, 5) Length: 62
Path P6 : (1, 2, 7, 6) Length: 54

Path P6 is declared permanent and we make one last scan for an even shorter path
to node 5, and we find it since the alternate path P5 = (1, 2, 7, 6, 5) has length
55 + 2 = 57 < 62. So this becomes the permanent path and true distance from 1 to
5 and the algorithm is complete.

22. Consider the following network flow:
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a. What is the current value of the flow?

The value of the flow the amount leaving the source—which is also the amount
arriving at the sink. This amount is: 66 + 38 + 85 = 189.

b. What is the capacity of the cut V = {S,G,E,C, I} ∪ {A,H,B,D, F, J,K, L, T}.

We calculate the sum of the capacities of edges from vertices in the first set to vertices
in the second. This includes the following edges, listed with their capacities:

(S, F ) capacity: 86
(S,H) capacity: 38
(G,B) capacity: 12
(G, J) capacity: 18
(E,L) capacity: 22

(E, T ) capacity: 4
(C,A) capacity: 25
(C,H) capacity: 27
(I, A) capacity: 28
(I, L) capacity: 31



Adding these capacities together, we see that the capacity of this cut is:

86 + 38 + 12 + 18 + 22 + 4 + 25 + 27 + 28 + 31 = 291

c. Carry out the labeling algorithm, using the pseudo-alphabetic order on the vertices and list
below the labels which will be given to the vertices.

The following labels will be applied:

S (∗,+,∞)
C (S,+, 8)
F (S,+, 20)
H (C,+, 7)
I (H,+, 6)
E (I,−, 5)
G (E,−, 5)

L (E,+, 5)
B (G,−, 5)
A (L,−, 5)
K (B,−, 5)
D (K,+, 3)
T (D,+, 3)

Backtracking from the sink T , we find the path

(T,D,K,B,G,E, I,H,C, S)

from the sink T back to the source S. Reversing, we have the augmenting path

(S,C,H, I, E,G,B,K,D, T )

Along this path, all edges are forward except (I, E), (E,G) and (B,K, which are
backwards. We increase the flow on the forward edges by 3 and decrease the flow
on the backwards edges by 3. This results in a flow of value 192 = 189 + 3. We
show this updated flow below.
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d. Use your work in part c to find an augmenting path and make the appropriate changes directly
on the diagram.

e. Carry out the labeling algorithm a second time on the updated flow. It should halt without the
sink being labeled. Find a cut whose capacity is equal to the value of the flow.

Here are the results of carrying out the labelling algorithm a second time.

S (∗,+,∞)
C (S,+, 5)
F (S,+, 20)
H (C,+, 4)
I (H,+, 3)
E (I,−, 2)

G (E,−, 2)
L (E,+, 2)
B (G,−, 2)
A (L,−, 2)
K (B,−, 2)

Now the labelling algorithm halts without the sink being labelled. And we have the
following partition:

L = {S,C, F,H, I, E,G, L,B,A,K} and U = {D, J, T}.

The edges which go from L to U are:

(K,D) capacity: 38
(B,D) capacity: 34
(B, J) capacity: 11

(G, J) capacity: 18
(E, T ) capacity: 4
(L, T ) capacity: 87

It follows that the capacity of this cut is 38 + 34 + 11 + 18 + 4 + 87 = 192, which is
value of the current flow. This shows that the flow is optimal.

23. Consider a poset P whose ground set is X = {a, b, c, d, e, f, g, h, i, j}. Network flows (and
the special case of bipartite matchings) are used to find the width w of P and a minimum chain
partition. When the labelling algorithm halts, the following edges are matched:

h′d′′ a′g′′ j′b′′ c′i′′ e′a′′ d′j′′

a. Find the chain partition of P that is associated with this matching. Also find the value of w.
The rule is that when an edge x′y′′ is part of the matching, then x is covered by y
in one of the chains in the chain partition. Accordingly, the chains are:

C1 = {h < d < j < b}
C2 = {e < a < g}
C3 = {c < i}
C4 = {f}

Note that element f makes up a singleton chain, as neither f ′ nor f ′′ is used as one
of the endpoints in the matching. Since there are 4 chains, the width w of the poset
P is 4.

b. We do not have enough information to determine a maximum antichain. Discuss what addi-
tional information is needed to do this.

When the labelling algorithm halts, some vertices will be labelled and some vertices
will be unlabelled. Of course, the source is always labelled and the sink is always



unlabelled. For each i = 1, 2, 3, 4, there will be some point xi ∈ Ci for which x′i
is labelled and x′′i is unlabelled. The set A = {x1, x2, x3, x4} will be a maximum
antichain.

To see that this claim holds in general, consider a chain C = u1 < u2 < · · · < um
assembled from a maximum matching of the bipartite graph associated with a poset
P . We claim that there is some j with 1 ≤ j ≤ m for which u′j is labelled and u′′j is
unlabelled. Since um is the highest element in the chain C, there is no element v for
which u′m is matched to v′′. This means that v′m is labelled. If u′′m is unlabelled, we
have found the desired point from C, so we may assume without loss of genrality
that v′′m is also labelled.

At the bottom of the chain, we note that u′′1 must be unlabelled, for if u′′1 were
labelled, then since there is no edge u′u′′1 in the matching, the edge u′′1T in the
network flow is empty, and we would be able to label the sink. So there is some
least positive integer j for which both u′j and u′′j are labelled, with 1 < j ≤ m.
The matching contains the edge uj−1u

′′
j so this edge has flow 1 on it. Since u′′j is

labelled, we could also label u′j−1 via a backwards edge with u′′j at the other end.
The minimality of j implies that u′′j−1 is unlabelled, so uj−1 is the desired point.

c. Explain why element f belongs to every maximum antichain in P .

This is a trivial pigeon-hole argument. Suppose that A is a maximum antichain in
P but that f 6∈ A. Since the width of P is 4, we must find the four pigeons in A
in one of the three holes: C1, C2 and C3. So two incomparable pigeons must be in
the same hole (chain).


