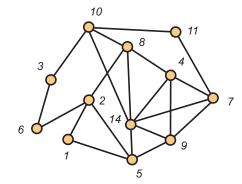
MATH 3012 Final Exam, December 15, 2011, WTT

- 1. Consider the 16-element set X consisting of the six capital letters $\{A, B, C, D, E, F\}$ and the ten digits $\{0, 1, 2, \dots, 9\}$.
- **a.** How many strings of length 11 can be formed if repetition of symbols is permitted?
- **b.** How many strings of length 11 can be formed if repetition of symbols is *not* permitted?
- **c.** How many strings of length 11 can be formed using exactly four 3's, two B's and five D's?
- **d.** How many strings of length 11 can be formed if exactly four characters are letters and exactly three of the remaining seven characters are 8's? Here, repetition is allowed.
- **e.** How many symmetric binary relations are there on X?
- **f.** How many symmetric and reflexive binary relations are there on X?
- **g.** How many equivalence relations are there on X with class sizes 4, 4, 4, 2, 1 and 1?
- 2. How many integer valued solutions are there to the equation $x_1 + x_2 + x_3 + x_4 = 52$ when:
- **a.** $x_i > 0$ for i = 1, 2, 3, 4.
- **b.** $x_i \ge 0$ for i = 1, 2, 3, 4.
- **c.** $x_i > 0$ for i = 1, 3, 4 and $x_2 > 7$.
- **d.** $x_i > 0$ for i = 1, 3, 4 and $x_2 \le 7$.
- **3 a.** Use the Euclidean algorithm to find $d = \gcd(420, 792)$.

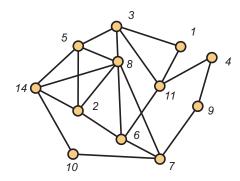
b.	Use your work in the first	part of this proble	m to find integers a a	nd <i>b</i> so that $d = 420a + 792b$
\sim .	obe your work in the line	part of this proble.	iii oo iiiid iiioogoib a a	11a 0 50 011a0 a 120a 1020

4. For a positive integer n, let t_n count the number of ways to tile a $4 \times n$ array with dominoes of the following three sizes: 4×1 , 1×4 and 2×4 . Note that dominoes of size 4×2 are not permitted. Then $t_1 = t_2 = t_3 = 1$ and $t_4 = 5$. Develop a recurrence for t_n and use it to find t_6 .

5. Use the algorithm developed in class to find an Euler circuit in the graph G shown below (use node 1 as root):

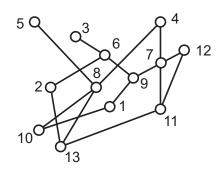


6. Consider the following graph.

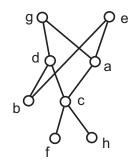


- **a.** Explain why $\{3, 5, 8\}$ is a maximal clique.
- **b.** Find the maximum clique size $\omega(G)$ for this graph, and find a set of vertices that form a maximum clique.
- **c.** Show that $\chi(G) = \omega(G)$ by providing a proper coloring of G. You may indicate your coloring by writing directly on the figure.
- **d.** Despite the fact that $\chi(G) = \omega(G)$, the graph G is not perfect. Explain why.
- 7. Show that the graph G from the preceding problem is hamiltonian by providing an appropriate listing of the vertices, starting with 1, 11, 4 and ending with 1.
- **8.** Draw an order diagram for the poset whose ground set is $\{a, b, c, d, e, f\}$ and whose order relation is: $\{(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (b, c), (f, c), (e, c), (e, a), (a, c), (f, a)\}$
- 9. For the subset lattice 2^{15} ,
 - **a.** The total number of elements is:
 - **b.** The total number of maximal chains is:
 - **c.** The number of maximal chains through $\{2, 6, 7, 9, 11\}$ is:
 - **d.** The width of 2^{15} is:

10. For the poset P shown below,

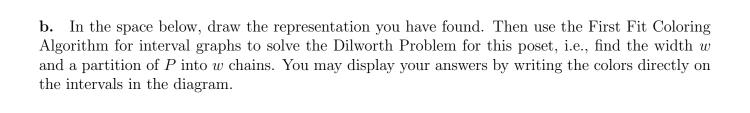


- **a.** List all elements comparable with 7.
- **b.** List all elements covered by 7.
- c. By inspection (not by algorithm), explain why this poset is not an interval order.
- **d.** Find the height h and a partition into h minimal elements by recursively stripping off the set of minimal elements. You may display your answer by writing directly on the diagram. Then darken a set of points that form a maximum chain.
- 11. The poset P shown below is an interval order:



a. Find the down sets and the up sets. Then use these answers to find an interval representation of P that uses the least number of end points.

of 1 that about the reast han	inder of end points.	
D(a) =	U(a) =	I(a) =
D(b) =	U(b) =	I(b) =
D(c) =	U(c) =	I(c) =
D(d) =	U(d) =	I(d) =
D(e) =	U(e) =	I(e) =
D(f) =	U(f) =	I(f) =
D(g) =	U(g) =	I(g) =
D(h) =	U(h) =	I(h) =



- **c.** Find a maximum antichain in P:
- 12 a. Write all the partitions of the integer 8 into odd parts:
- **b.** Write all the partitions of the integer 8 into distinct parts:
- **c.** Write all partitions of the integer 14 associated with the coefficient of x^{14} in the generating series expansion of $f(x) = (1 + x^3 + x^6)(1 + x^5)/(1 x^2)$.

13. Find the general solution to the advancement operator equation: $A^2(A-5)^3(A+2)^2(A-7)f=0$

14.	Find	the	solution	to	the	advance	ement	operator	equation:
(1	$4^2 + 8$	3A +	-12)f(n)	=	0,	f(0) =	16 and	d f(2) =	-68.

15 a. Write the inclusion/exclusion formula for the number of onto functions from $\{1, 2, ..., n\}$ to $\{1, 2, ..., m\}$.

b. Evaluate your formula when n = 6 and m = 3.

16. a. Write the inclusion/exclusion formula for the number of derangements on $\{1, 2, ..., n\}$.

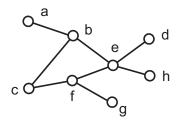
b. Evaluate your formula when n = 7.

17. Previously, you factored 792 into a product of primes. Using this factorization, evaluate the euler ϕ -function $\phi(792)$.

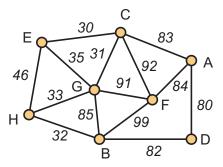
18 a. Let G be a graph on 11 vertices in which every vertex has 6 neighbors. Explain why G is hamiltonian but not planar.

a. Show that there is a non-hamiltonian graph on 11 vertices in which every vertex has degree at least 5.

19. Verify Euler's formula for the planar graph shown below.



20. Consider the following weighted graph:



In the space below, list in order the edges which make up a minimum weight spanning tree using, respectively Kruskal's Algorithm (avoid cycles) and Prim's Algorithm (build tree). For Prim, use vertex A as the root.

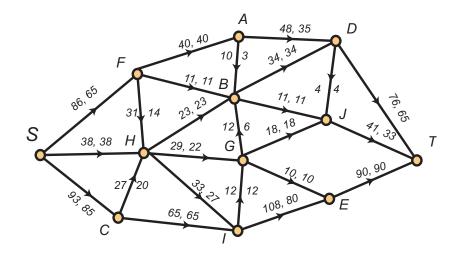
 ${\bf Kruskal's\ Algorithm}$

Prim's Algorithm

21. A data file digraph_data.txt has been read for a digraph whose vertex set is [7]. The weights on the directed edges are shown in the matrix below. The entry w(i,j) denotes the length of the edge from i to j. If there is no entry, then the edge is not present in the graph. Apply Dijkstra's algorithm to find the distance from vertex 1 to all other vertices in the graph. Also, for each x, find a shortest path from 1 to x.

W	1	2	3	4	5	6	7
1	0	38	42	17	38	64	29
2		0	4		30	23	10
3			0		41	18	
4	27	20	28	0		45	
5			2		0	21	9
6	82	5	3	2	2	0	
7		8	22	4	18	12	0

22. Consider the following network flow:



- **a.** What is the current value of the flow?
- **b.** What is the capacity of the cut $V = \{S, A, B, C, F, H\} \cup \{D, E, G, D, G, I, J, T\}$.
- **c.** Carry out the labeling algorithm, using the pseudo-alphabetic order on the vertices and list below the labels which will be given to the vertices.
- **d.** Use your work in part c to find an augmenting path and make the appropriate changes directly on the diagram.
- **e.** Carry out the labeling algorithm a second time on the updated flow. It should halt without the sink being labeled.

 ${f f.}$ Find a cut whose capacity is equal to the value of the updated flow.

23. Consider a poset P whose ground set is $X = \{a, b, c, d, e, f, g, h, i, j\}$. Network flows (and the special case of bipartite matchings) are used to find the width w of P and a minimum chain partition. When the labelling algorithm halts, the following edges are matched:

$$e'g''$$
 $b'd''$ $c'a''$ $f'b''$ $g'h''$

a. Find the chain partition of P that is associated with this matching. Also find the value of w.

b. Explain why element i belongs to every maximum antichain in P.