Student Name and ID Number
MATH 3012 Final Exam, May 3, 2013, WTT

Note. The questions posed here appeared on the Spring 2013 Final Exam, although in some
instances, the format of the question has been altered. Also, answers provided here are more
comprehensive than students are expected to provide in answering the given questions, and in a
some cases, extensive discussion of background issues has been provided. This more comprehensive
version is intended to serve as a study guide, and should be especially meaningful to students
enrolling in Math 3012 in future semesters.

1. Consider the 62-element set X consisting of the twenty-six letters (case sensitive) of the English
alphabet and the ten digits {0,1,2,...,9}.

a. How many strings of length 15 can be formed if repetition of symbols is permitted?

Standard string problem. The number of strings of length n from an m-letter alphabet is
m™, so here the answer is 6217,

Note. In our class, leaving an answer in the form 62'° is allowed since one can readily carry
out the arithmetic to find the precise answer. Here Maple reports that

62 = 768909704948766668552634368

For the remainder of these notes, I have used Maple to make complicated computations,
and I strongly encourage you to experiment with a tool, such as Maple or Mathematica, to
see how fast arithmetic calculations can be made and to learn where even the best of tools
run out of gas.

b. How many strings of length 15 can be formed if repetition of symbols is not permitted?

Standard permutation problem. The number of permutations of length n from an m-letter
alphabet is P(m,n), where P(m,n) = m!/(m — n)! when m > n and P(m,n) = 0 when
m < n. Of course, when making this calculation, we take advantage of the fact that fact
all factors in (m — n)! cancel. So in our specific problem, the answer is:

P(62,15) = 121682695942193436610560000

c. How many strings of length 15 can be formed using exactly four A’s, two a’s, seven 3’s and two
5's?

Standard “Mississippi” problem. Here the answer is

15 15!
9702700,
(4,2,7,2) or i — 2102700

d. How many strings of length 15 can be formed if exactly seven characters are capital letters,
exactly four characters are 6’s and the remaining four characters are digits? Here, repetition is
allowed.

The answer is

15 8
( - > 267 ( 4) 9* = 23737231472085331200.



Note that exactly four of the characters are 6’s. This means that the other digits are drawn
from a set of size 9.

How many binary relations are there on X7

There are n? ordered pairs that can be formed from a set X of size n, and a binary relation
on X is just a subset of X x X. So the number of binary relations on X is 2*°. In our
problem, the answer becomes 262°.

Note that I didn’t report on the precise answer, as provided by Maple, even though Maple
was able to calculate 262° in the blink of an eye. However, the answer would require a full
page of space to print. Check this out for yourself!

How many equivalence relations are there on X with class sizes 15, 15, 6, 6, 6, 6, 6 and 27

The answer is

(4,21,57,2) 15!

ST O oo = 98905131133688880.

The additional terms in the demonator stem from the ways of permuting the classes of a
specified size.

Here are some more general remarks about the number of relations of a particular type.
When X is an n-element set:

1. The number of symmetric binary relations on X is 2(3). Note that the relation must include
each pair of the form (z,z). When z # y, cither the relation contains both (z,y) and (y, z)
or it contains neither of these two pairs. So for each 2-element subset of X, there are two
choices. Note that this is also the number of labelled graphs on n vertices.

2. The number of anti-symmetric binary relations on X is 2"3@). For each pair (z, z), we get to
decide whether it belongs to the relation. When x # y, we have three choices: include (z,y)
but not (y, x), include (y, z) but not (z,y) or exclude both (z,y) and (y, z).

3. The number of reflexive, anti-symmetric binary relations on X is 3(3). For each pair (x,x),
we must put (z,x) in the relation, and when x # y, we have the same three choices as above.

However, you should note that once the transitivity condition is added, such nice formulas
can no longer be found. So it is quite challenging to find the number p(n) of partial orders
on an n-element set. Here is a table of values that I found on the web (search for the
On-Line Encyclopedia of Integer Sequences).



p(l) =1
p(2) =3
p(3) =19
p(4) = 219
p(5) = 4231
p(6) = 130023
p(7) = 6129859
p(8) = 431723379
p(9) = 44511042511
p(10) = 6611065248783
p(11) = 1396281677105899
p(12) = 414864951055853499
)
)
)
)
)
)

I can check the values of p(n) for n < 4 by hand, but verifying that p(4) = 219 takes me
about five minutes or so. I would scream bad things before attempting to find p(5) by hand.
Not surprisingly, finding these values is a modest programming challenge, say for n < 7,
but for larger values, it is a real computational challenge, and finding the last several values
in this table required considerable programming skill, an array of very fast computers and
extensiwe computing time.

How many integer valued solutions are there to the equation xy + x5 + x3 + x4 + x5 = 62 when:
x; >0fori=1,23,4,5.

Starting point for these kinds of problems—reformulate as choosing gaps. In general, the
number of ways to distribute n identical object into m distinguishable bins, in such a way
that all bins are non-empty, is (::;11) Of course, this requires n > m. Here the answer is

(°!) = 521855.
x; >0fori=1,2,3,4,5.

Add one artificial object for each bin. Then choose gaps and reduce the number of objects
in a bin by one. So here the answer is (iﬁ) = 720720.

x; >0fori=1,2,3,5and x4 > 9.

Give 9 objects to Bin 4 in advance. Then distribute the remaining 53 objects. So answer is
(°%) = 270725.

x; >0fori=1,2,3,4,5and x4 <9.



Just the difference between two previous solved problems. Here the answer is (641) — (542) =
251130.

3 a. Use the Euclidean algorithm to find d = ged (252, 1320).

Long division reports that

1320 = 5 - 252 4 60
252 =4-60+ 12
60=5-124+0
The last non-zero remainder is the greatest common divisor. So here, d = 12.

b. Use your work in the first part of this problem to find integers a and b so that d = 252a+ 1320b.

We rewrite the work previously done as:

12=1-252—-4-60
60 =1-1320 — 5252

Substituting we obtain
12=1-252 —4(1-1320 — 5-252) = 21 - 252 — 4 - 1320.

This shows that we may take a = 21 and b = —4. Note that there are actually infinitely
many solutions to this problem. Here is the general form a = 21 4+ 1320k, b = —4 — 252k,
where £ is an integer.

4. For a positive integer n, let s,, count the number of ternary sequences which do not have three
consecutive 2’s. Note that s; =3, s =9, s3 = 26 and s, = 76. For n > 5, develop a recurrence for
s, and use it to find sg.

Let n > 5 and consider a good sequence of length n. If it ends in a 0 or a 1, then the first
n — 1 characters represent any admissible sequence of length n — 1. However, if the last
character is a 2, then some of the admissible strings of length n — 1 cannot be used. These
strings have the last two characters also 2, but the character before those two 2’s is either
a 0 or a 1. Then any admissible sequence of length n — 4 is at the start. So the recurrence
is s, = 38,1 — 28,—4. It follows that

S5 =384 — 281 =3-76—-2-3=228 -6 =222, and
56 = 385 — 352 = 3-222 — -9 = 666 — 18 = 648.

5. Use the algorithm developed in class to find an Euler circuit in the graph G shown below (use
node 1 as root):




The algorithm we learned in class always takes the least integer which represents an admis-
sible choice. So starting at 1, we would produce the following initial sequence:

(1,7,4,3,2,6,4,9,2,11,6,10,5,7,9,3,8,1)

But at this point, there are no legal moves. Again, the algorithm we learned in class scans
forward to find the first position from which a legal move can be made. This entry is 9.
Now the algorithm would find the following sequence:

(9,8,14,11,9)
So this second sequence would be inserted into the first to form:
1,7,4,3,2,6,4,9,8,14,11,9,2,11,6,10,5,7,9,3,8,1)

Now that we have exhausted all edges, the algorithm halts.
You should be aware that the algorithm can halt in three different ways:

1. An Euler circuit has been completed.

2. A subroutine ends at distinct vertices x and y. In this case x and y are two vertices of
odd degree in G and the graph does not have an Euler circuit.

3. The subroutine ends, not all edges have been traversed but there are no vertices on the
path through this stage which are incident with edges which are not yet traversed. In this
case, the graph is disconnected and edges not yet traversed are in a different component.

Programming Note. Implementing this algorithm requires us to keep track of the untra-
versed edges incident with each node. This raises interesting data structure issues. For
example, at an intermediate point in the algorithm, we have to delete two edges incident
with z, the entering edge and the departing edge. Exactly how this information is stored
and how these updates are carried out is the programming challenge.

6. Consider again the graph from the preceding problem. List the vertices in an order that shows
why the graph is also hamiltonian.

A key ingredient to this problem is that we have no effective algorithm for finding a Hamil-
tonian cycle in a graph. On this test, we present a modest size graph where an exhaustive
search can be carried out without much difficulty. For the given graph, there are (at least)
three essentially different answers:

(1,7,5,10,6,4,3,9,2,11,14,8) (1,7,5,10,4,9,3,2,11,14,8) (1,7,5,10,6,2,3,4,9,11,14,8)

These are illustrated in the figure below.




Of course, each of these cycles can be traversed in two directions. Also, any of the 14
vertices can be taken as the first point in the listing, but most people do not consider these
as different cycles. Finally, note that while these three answers are certifiably correct, we
have no effective way of determining whether or not there are more. In this case, it appears
that these are the only correct answers.

Note that in listing the vertices that form a hamiltonian cycle, it is critical that the last
vertex in the sequence be adjacent to the first, so that we are actually describing a cycle.
There is also interest in the concept of a hamiltonian path, where this convention is dropped.
For example, the following sequence is a Hamiltonian path but it is not a Hamiltonian cycle.

(1,7,5,6,2,9,11,14,8, 3, 4)

7. Consider the graph G shown on the left below.

c

a. Determine w(G).

It is easy to see that w(G) = 2, since any adjacent pair of vertices forms a clique of size 2.
However, there are no triangles (cliques of size 3).

b.  Show that x(G) = w(G) by providing a proper coloring of G. You may indicate your coloring
by writing directly on the figure on the right.

An appropriate coloring is provided. However, you should be aware that while detecting
whether a graph is 2-colorable is easy, it is apparently quite difficult to answer whether it is
t-colorable, when t > 3. So on any test or assignment, if you are asked to find x(G) when
the answer is three or more, you will not be following any algorithm known today. Skilled
programmers have developed heuristics which seem to give reasonable results, but these are
not exact algorithms and no certificates can be provided for their correctness. Remember,
that for example, there are checkable certificates for a “yes” answer to the question: Is
X(G) < 37. However, nobody knows how to provide a certificate for the correctness of
a “‘no” answer to this question. Also, remember that if you discover such an algorithm,
be sure to tell me about it first, and we can become famous together. And being terribly
generous, I'll be happy to share with you the $1,000,000 cash award that comes with settling
P = NP?. Who says that math doesn’t pay?

c. Explain why the graph G is perfect.

A graph is perfect if and only if x(H) = w(H) for every induced subgraph H of G. In this
case, when H is an induced subgraph and H contains an adjacent pair of vertices, then
X(H) = w(H) = 2. On the other hand, if H does not contain an adjacent pair of vertices,
then x(H) =w(H) =1



More generally, what we have actually shown is that any graph G with w(G) < 2 is perfect.

Quite recently, Chudnovsky (Columbia), Robertson (Ohio State), Seymour (Princeton) and
Thomas (Georgia Tech) completed the proof of the following deep theorem: A graph G is
perfect if and only if neither G nor the complement of G contains an odd cycle of 5 or more
vertices as an induced subgraph. The result was conjectured more than 40 years ago by the
late Claude Berge, and the proof (more than 200 pages) appears in the Annals, arguably
one of the world’s most prestigious mathematics journals.

8. Consider the poset P shown below on the left.

a.

Which of the ordered pairs in the following list belong to the reflexive, antisymmetric and

transitive binary relation which defines this poset.

(d,b) (h.e) (aye) (f,f) (c.9) (eb) (D)

The binary relation defining the poset consists of all pairs (z,y) € X x X with x <y in P.
So the answer becomes:

(a,e) (f,f) (c.9) (b0)

b. The poset P is not an interval order. By inspection, find four points which determine a subposet
isomorphic to 2 + 2.

e.
the

The answer is {a,d, e, h}. Note that in a subsequent problem, we study an algorithm for
finding a representation for an interval order—using the least number of end points. This
algorithm will detect the presence of a copy of 2 + 2, but one can do this in O(n?) time,
just from the basic definition.

What is the width of the poset P?

The width of this poset is 4. The teaching point here is that at this stage of our course,
we had learned Dilworth’s theorem: A poset of width w can be partitioned into w chains.
However, given a finite poset P, we did not have an effective algorithm for finding the width.
And of course, we did not have a method for finding a minimum partition of the poset into
chains. These issues were deferred until the material on network flows and the follow-up
application to bipartite matchings had been presented

List a set of elements which forms a maximum antichain in P.

{a,b, f, h} is a 4-element antichain in P. Again this was done by inspection, not by following
a specified algorithm.

Find a Dilworth partition of the poset P. You may provide your answer by writing directly on
figure.



Returning to the figure above, the drawing on the right accomplishes this task. Once more,
we stress that this partition was found by inspection.

9. For the subset lattice 2'7, the statements listed below have been completed to form answers to
questions on the test.

a. The total number of elements is: 2'7. Maple says this is 131072.
b. The total number of maximal chains is: 17!. Maple says this is 355687428096000.
c. The number of maximal chains through {3,5,8,11} is: ~ 4!11!. Maple says this is 958003200.

17

9 ) Maple reports

d. The width of 217 is: (7). Of course, this answer can also be written as (
this is 24310.

The preceding questions are central to the proof of Sperner’s theorem: The width of the
subset lattice 2" is (Ln72 J)‘ The subset lattice is ranked, i.e., all maximal chains are maxi-
mum, and the width is just the maximum rank size.

As a side note, we showed that when n > 2, the cover graph of the poset 2" is hamiltonian.

10. For the poset P shown on the left below, find the height h and a partition into A antichains
by recursively stripping off the set of maximal elements. You may display your answer by writing
directly on the diagram. Then darken a set of points that form a maximum chain.

The height of this poset is 6. Again, returning to the figure above, the drawing on the right
illustrates the prescribed partition, while the darkened points form a maximum chain.

It should be noted that in general, when the height of P is h, there may be many different
partitions into h antichains. For example, one could just as well recursively strip off the
sets of minimal elements (on the final exam, several students did just that). However, we
know that there cannot be a partition into fewer than A antichains.

11. The poset P shown below is an interval order:




a. Find the down sets and the up sets. Then use these answers to find an interval representation
of P that uses the least number of end points. Note. The answers for the first two parts have
already been entered. Of course, on the exam, these spaces were blank.

D(a) = {c} 2 Ula) ={e, g} 3 I(a) = [2,3]
Db)=0 1 Ub)={d,e,g} 2 I(b) =11,2]
De)=0 1 U(e) ={a,d,e, f,g} 1 I(c) =[1,1]
D(d) = {b,c,h} 3 U(d) ={g} 4 I(d) = [3,4]
D(e) ={a,b,c,h} 4 Ule)=0 5 I(e) =[4,5]
D(f) ={c} 2 U(f)=0 5 I(f) =[2,5]
D(g) = {0’7 b,c.d, h} 5 U(g) =0 5 I(g) = [5’5]
Dh)=0 1 U(h)={d,e,g} 2 I(h) =[1,2]

b. In the space below, draw the representation you have found. Then use the First Fit Coloring
Algorithm for interval graphs to solve the Dilworth Problem for this poset, i.e., find the width w
and a partition of P into w chains. You may display your answers by writing the colors directly on
the intervals in the diagram.

1 h
—

.3 / :
— — []
3¢ 4 q 2 e
[1] — —
1 2 3 4 5

c. Find a maximum antichain in P:
The 4-element set {a, b, f, h} is a maximum antichain in P.
12 a. Write all the partitions of the integer 7 into odd parts:
There are five partitions of the integer 7 into odd parts:
T=T7
=5+1+1
=3+3+1

=3+1+1+1+1
=14+14+1+1+14+14+1+1

b. Write all the partitions of the integer 7 into distinct parts:



13a.
(A—=23(A+5)2(A-3)(A+T)f=0

There are five partitions of the integer 7 into distinct parts:

T=17
=641
=5+2
=4+3
=4+2+1

Of course, for any integer n, the number of partitions of n into odd parts is always equal to
the number of partitions of n into distinct parts.

Note. It is a challenging problem to compute 7(n), the number of partitions of the integer
n. You may wonder whether this is easier or harder than computing the then number p(n)
of partial orders on an n-element set, a problem discussed earlier. In fact, it is much easier.
For example, here is the value of 7(1000).

7(1000) = 24061467864032622473692149727991

You might be curious to know how many partitions of 1,000 have distinct parts. Here is
the answer:

74(1000) = 8635565795744155161506.

Of course, this is the same as the number of partitions of 1,000 into odd parts, but you will
take some comfort in the fact that I won’t ask to to list them and verify this fact—that’s
what proofs are for!

Finally, I comment that with today’s computing limits, it is inconceivable to me that anyone
could compute p(1000), the number of partial orders on an 1, 000-element set.

Find the general solution to the advancement operator equation:

Standard problem. When (A — r)™ is a factor, so that r is a root of multiplicity m, then
we have the following basis vectors in the solution space:

v o™ nQTn . nm—l,r,n

Note that when r = 1, so (A — 1)™ is a factor, these terms are all polynomials.
So in this problem as posed, the general solution is:

f(n) = 12" + can2" + e3n*2" + c4(—5)" + csn(—5)" + ¢63" + cr(=T7)".

b. Write the form of a particular solution of the non-homogeneous advancement operator equation
(do not carry out the work necessary to evaluate any constants in your answer):

C.

(A—23(A+5)2(A=3)(A+T7)f =4(3)"

Since 3 is a root and ¢3" is part of the solution in the homogeneous case, we must instead
try for cn3™. Another way to see this is to observe that if we apply (A — 3) to both sides,
then the answer we seek is part of the solution to the new homogeneous problem, which
now has a factor of (A — 3)2.

Find the solution to the advancement operator equation:



(A2 —=5A+6)f(n)=0, f(0)=3and f(1)=14.

The polynomial A% — 5A + 6 factors as (A — 2)(A — 3), which has roots 2 and 3. So
the solution we seek has the form f(n) = 12" + ¢23". Substituting n = 0, we see that
c1 + co = 3. Substituting n = 1, we see that 2¢; + 3co = 14. Solving these two equations
results in ¢; = —5 and ¢y = 8, so our final answer is:

f(n)=—5-2"+8-3".
14a. Write the inclusion/exclusion formula for the number S(n, m) of onto functions from {1,2,...,n}
to {1,2,...,m}.

The derivation of the formula for S(n,m) was done in class. It is also detailed in the book.
Recall that you were asked explicitly to commit this formula to memory:

S(n, m) = é(_”k ()=

b. Write the inclusion/exclusion formula for the number d,, of derangements on {1,2,...,n}.

Again, this is something you are supposed to know:
d, = zn:(_m (”) (n — k).
k=0 k

c. Evaluate your formula for d,, when n = 6.

d — i(—l)’“ (2) (6 — k)l

k=0

0 (- )5+ (- (- ()

=1-720-6-120+15-24-20-6+15-2—-6-1+1-1
= 265.

The number d,, of derangements can be readily computed for relatively large values of n,
and you can find simple formulas for Maple and Mathematica on the web. Here is one
specific value I found:

dyo = 895014631192902121.

d. Find the value of the Euler ¢-function ¢(n) when n = 23-5- 7%

1 1 1
22.5.7)=22.5-7(1—-2)(1—-=)(1 - =
o ) (1= =2)1-2)
146
—(23.5.72) 222
(2°-5 7)257
—=922.7.4.6

= 672.



One of my favorite examples is to talk about finding ¢(n) when it is known that n = p - g,
where p and ¢ are large primes. When the number of digits is several hundred and you
know p and ¢ explicitly, you can find ¢(n) very, very quickly. But if you don’t know these
values and you are just given n, then you are in a world of hurt. You have little chance
of factoring n and no chance of using any kind of loop to determine ¢(n) from the original
definition.

15a. Verify Euler’s formula for the planar graph shown on the left below.

Euler’s formula asserts that when a connected planar graph G is drawn without edge cross-
ings in the plane, then V — E + F' = 2, where V' is the number of vertices, E is the number
of edges and F' is the number of faces. In this case, V =9, E' = 11 and F = 4 (don’t forget
to count the exterior face), so 9 — 11 4+ 4 = 2, as required.

b. Now consider the weighted graph shown on the right above. In the space below, list in order
the edges which make up a minimum weight spanning tree using, respectively Kruskal’s Algorithm
(avoid cycles) and Prim’s Algorithm (build tree). For Prim, use vertex A as the root.

Kruskal’s Algorithm Prim’s Algorithm
CG 4 AD 6

BF 5 DG 11

AD 6 CG 4

CH 7 CH 7

DG 11 CE 13

CE 13 BE 15

BE 15 BF 5

This particular problem does not really illustrate what is going on with Kruskal. If you sort
the edges by weight, as many students did on the final exam, then the spanning tree is just
the first seven edges in the sorted list. In general, Kruskal always takes the two cheapest
edges, but after that, it may be necessary to skip an edge when it forms a cycle when added
to the edges already selected.

On the other hand, this example does serve to illustrate Prim fairly well. Note that the two
cheapest edges are taken well into the process.

Programming types should be sensitive to the implementation details of these two algo-
rithms. Kruskal seems to require a preliminary sort of the edges so if the graph has n
vertices and ¢ edges, the first step (sorting) takes ¢log g steps. Furthermore, as the algo-
rithm proceeds, you need to keep track of whether the two end points of an edge are in
differnt components of the forest being assembled.



In implementing Prim, you need to be able to quickly identify the cheapest edge with exactly
one end point in the partial tree built to this stage.

16. Consider again the weighted graph from the preceding problem. Consider the weights as
lengths, with all edges capable of being traversed in either direction. Apply Dijkstra’s algorithm to
find the distance from vertex A to all other vertices in the graph. Also, for each vertex X, find a
shortest path from A to X.

We start with the trivial paths:

P(A,B) = (A,B) d=o0
P(A,C) = (A,C) d=28
P(A,D)=(A,D) d=6

P(AE) = (A,E) d=oo
P(AF)=(AF) d=oo
P(A,G)=(A,G) d=20
PAH) = (A H) d=c

Of these distances, the smallest is 6 so the path P(A, D) is declared permanent. Next we
scan from D to see if any paths can be improved. This results in improvements for B and

G:
P(A,B) = (A,D,B) d=06+27=33< 0o
P(A,C)=(A,C) d=28
P(AE)=(AE) d=
PAF)=(AF) d=o0
P(A,G)=(A,D,G) d=6+11=17<20
PAJH)=(A,H) d=

Now the shortest of these paths is P(A,G) = (A, D, G) so this declared permanent. Next
we scan from G, looking for improvements. We get them for C' and F.

P(A,B)=(A,D,B) d=33
P(A,C)=(A,D,G,C) d=17+4=21< 28
P(AE)=(A,D,G,E) d=17+29 =46 < o0
P(A,F)=(AF) d=o0

P(A H) = (A, H) d=o0

Now the shortest path is P(A,C) = (A, D, G, C) so this is marked permanent. We then
scan from C and get improvements for £ and H.



P(A,B)=(A,D,B) d=33
P(AE) = (A,D,G,C,E) d=13+21=34< 46
P(AF)=(AF) d=o
P(A,H) = (A,D,G,C,H) d=21+T7=28< o0

The shortest path is P(A, H) so this becomes permanent and we scan from H. We get an
improvement for F'.

P(A,B)=(A,D,B) d=33
P(A,E) = (A,D,G,C,E) d=34
P(A,F)=(A,D,C,C,H,F) d=30+28=58< oo

We mark P(A, B) as permanent we scan from B. We get an improvement for F.

P(A,E)=(A,D,G,C,E) d=34
P(A,F)=(A,D,B,F) d=>5+33=38< 58

P(A, E) is marked permanent and we scan from E but do not get an improvement for F.
So finally, P(A, F) = (A, D, B, F), with a total length of 38 is marked permanent.

There are many ways to organize this work. Here it has been done horizontally. In lectures
I tend to do it horizontally. However, you CS types should recognize that this is a very
space effective algorithm, since in an implementation, old paths may be discarded as new
and improved versions are discovered. So the space requirements are minimal.

However, some students in the class just eye-balled the given graph and found shortest paths
by inspection—not following Dijkstra at all. Not good. Lost points. Didn’t show that you
have an understanding of how this would be done for a graph on 1000 vertices with 400, 000
edges.

17. Consider the following network flow:




a. What is the current value of the flow?

The current value of the flow is 20 +40 + 12 = 72, the amount of flow on the edges leaving
the source. Note that 72 = 12 4+ 12 + 48, the amount of flow arriving at the sink.

b. What is the capacity of the cut V- ={S, B, D, E,G} U{A,C, F,T}.
To compute the capacity of the cut, we add up the capacity of all edges from to the first
set to the second set. This results in
15+ 14 + 24 + 39 = 92.
Note that in making this calculation, we do not include the capacity of the edge from A to
D.

c. Carry out the labeling algorithm, using the pseudo-alphabetic order on the vertices and list
below the labels which will be given to the vertices.

In order, the following labels are applied:
S(*,+,00), D(S,+,20), E(S,+,37), G(S,+,7),B(D,+,20),C(D,+,7),A(C,-,5),F(A-,3), T(F, +, 3).
d. Use your work in part ¢ to find an augmenting path.

Backtracking we discover the augmenting path (S, D,C, A, F,T) on this path the edges
(S,D), (D,C) and (F,T) are forward while (C, A) and (A, F') are backwards. The flow is
increased by 3 on the forward edges and decreased by 3 on the backwards edges. Of course,
the value of the updated flow is 75 = 3 4+ 72. The new flow is shown in the updated figure
below.

e. Carry out the labeling algorithm a second time on the updated flow. It should halt without the
sink being labeled.

In order, the following labels are applied:
S(*,+,00), D(S,+,17), E(S,+,37), G(S,+,7), B(D,+,17), C(D,+,4), A(C,—,2)
f. Find a cut whose capacity is equal to the value of the updated flow.

When the labelling algorithm halts, the labelled vertices are £ = {S, A, B,C, D, E,G} and
the unlabelled vertices are U = {T', F'}, so this is the desired cut. Note that all edges from



L to T are full, while all edges (there is only one) from U to L are empty. Accordingly, the
capacity of this cut is 15 + 12 4+ 48 = 75, which is the value of the current (updated) flow.

18. Consider a poset P whose ground set is X = {a,b,c,d,e, f, g, h,i}. Network flows (and the
special case of bipartite matchings) are used to find the width w of P and a minimum chain partition.
When the labelling algorithm halts, the following edges are matched:

6/hl/ lel/ d/e/l h/bl/
a. Find the chain partition of P that is associated with this matching.

Recall that when z'y” is an edge in the matching then x is immediately under y in one of
the chains in the matching. Also, recall that if a point x has the property that there are
no matching edges of the form z'y” and also, there are no matching edges of the form z'z",
then x is a one point chain in the partition. It follows that there are five chains in the

partition:

Ci={d<e<h<b}

Cy={c< [}
Cs = {a}
Cy = {9}
05:{2'}

b. Find the width w of the poset P.
The width of P is the number of chains in the partition, which is five.
c. Explain why elements a, 7 and g belong to every maximum antichain in P.

The width of P is five, so every maximum antichain must intersect each of the five chains
in the partition. Since C3, Cy and Cj are all one-element chains, each maximum antichain
in P must contain a, g and i.

Although this detail is not reflected on the final exam, recall how the halting condition is
used to find a maximum antichain. For each chain C' in the final partition, there is a point
2 in C where 2’ is labelled and z” is unlabelled when the Ford-Fulkerson algorithm halts.
The set of all points determined in this manner always forms a maximum antichain.

I have always considered this result as a capstone event. First, we proved Dilworth’s theorem
in the classical style, much as was the custom forty years ago when nobody thought people
would actually compute the width of a poset and find minimum chain partitions.

We studied network flows as a special class of linear programming problems and learned
the essential property that when posed with integral capacities, there is always an integer
valued maximum flow.

This integrality property is particularly useful when edges have capacity 1, since the Ford-
Fulkerson algorithm will then only use the values 0 and 1 for flows on edges. A value of 1
is interpreted that the edge is “taken” and a value of 0 means that an edge is “not taken”.
This perspective allows for a combinatorial interpretation of flows and applications, for
example, to bipartite matchings. We mentioned briefly applications to graph theory, such
as Menger’s theorems, and those of you who take additional graph theory course work will
learn about these results in greater detail.



19.

True—False. The following True-False questions are answered (sometimes with comments)

at the end. On the test, you were asked to mark them in the left margin.

1.
2.

10.

11.

240 > 100,000,000. True. 2% =2%10 and 2* = 16 > 10, so 2%° > 10'° > 100, 000, 000.

There is a planar graph G on 328 vertices with x(G) = 9. False. The Four Color Theorem
asserts that every planar graph can be colored with four colors, i.e., x(G) < 4 when G is
planar.

. All graphs with 986 vertices and 4073 edges are non-planar.  True. The maximum number

of edges in a planar graph on n vertices is 3n — 6 when n > 3. This is an easy consequence of
Euler’s formula.

There is a non-hamiltonian graph on 684 vertices in which every vertex has degree 426. False.
Dirac’s theorem asserts that if G is a graph on n vertices and all vertices have degree at least
[n/2], then G is hamiltonian. Note that while we do know of an efficient algorithm for testing
whether a graph is hamiltonian, there are a number of elegant results providing sufficient
conditions for a graph to be hamiltonian. Dirac’s theorem is just such a result. It has many
generalizations and extensions.

Every connected graph on 783 vertices in which every vertex has degree 12 has an Euler
circuit. True. A connected graph has an Euler circuit if and only if all vertices have even
degree.

. A cycle on 548 vertices is a homeomorph of the complete bipartite graph Ky5. True. Note

that Ky is just C4, a cycle on four vertices.

When n > 3, the shift graph S,, has (g) vertices, and (g) edges. Furthermore, x(S,) = [lgn].
True. Shift graphs are an important instance of triangle-free graphs with large chromatic
number.

. The number of lattice paths from (0 0) to (n,n) which do not pass through a point above

the diagonal is the Catalan number ( ) /(n+1). True. Detailed explanation given in class
lectures and in text.

. Any modern computer can accept a file of 3,000 positive integers, each at most 5,000, and

quickly determine whether 3,742 is the sum of two integers in the file. True. This is an
O(n) problem, when n is the number of integers in the file and the size of the numbers is
bounded.

Any modern computer can accept a file of 3,000 positive integers, each at most 5,000, and
quickly determine whether 385, 742 is the product of two integers in the file. True An O(n?)
problem.

Any modern computer can accept a file of 3,000 positive integers, each at most 5,000, and
quickly factor each of the numbers into primes.  True. This is an O(n) problem—although
the constant depends on the amount of time required to factor integers in the file. A modern
computer can factor numbers of size at most 5,000 in less than a heartbeat. They run into
problems with numbers having more than 100 digits, but the numbers we're talking about
here have only four digits. Piece of cake.



12.

13.

14.

15.
16.

There is a graph on 782 vertices in which no two vertices have the same degree. False.
Argue by contradiction. Suppose G is such a graph. Then every vertex has degree at most
781. Since the degrees are all distinct, this means that for every i in {0,1,2,..., 781}, there
is a unique vertex z; in the graph with the degree of x; being 7. Now consider the vertex x
which then has degree zero, i.e., it is not adjacent to any other vertex in G. Then no vertex
in G can have degree 781.

There is a poset with 723 points having width 69 and height 9. False. Consider a partition
of P into 9 antichains. Since P has 723 points, the pigeon-hole principle requires one of the
antichains to have at least 723/9 points. But 723/9 > 80 > 69, which is the width of P.

There is a sequence of 923 distinct positive integers which does not have an increasing sub-
sequence of size 21 nor a decreasing subsequence of size 41. False. The Erddés-Szekeres
theorem asserts that any sequence of mn + 1 distinct numbers has either an increasing subse-
quence of size m + 1 or a decreasing subsequence of size n+ 1. Apply this result with m = 40
and n = 20, noting that mn = 800.

The permutation (7,1,3,5,2,4,6) is a derangement. False. The third entry is a 3.

The number of equivalence relations on a set of size 100 is less than 10,000. False. Con-
sider only those equivalence relations where every class has size 2 with one element from
{1,2,...,50} and the other from {51,52,...,100}. Evidently, there are 50! such equivalence
relations, and 50! > 13-12-11-10 > 10* = 10, 000.

Previously, we have commented on several counting problems. The problem of computing
II(n), the number of equivalence relations on an n-element set (which is also called the number
of partitions of an n-element set) has been computed for n < 19. Here are the known values:



17.

18.

19.

20.

21.

22.

(1) = 1

1(2) =3

I(3) = 13

I1(4) = 73

11(5) = 501

I1(6) = 4051

T1(7) = 37633

T1(8) = 394353

T1(9) = 4596553
T1(10) = 58941091
T1(11) = 824073141
T1(12) = 12470162233
T1(13) = 202976401213
T1(14) = 3535017524403
T1(15) = 65573803186921
T1(16) = 1290434218669921
T1(17) = 26846616451246353
T1(18) = 588633468315403843
T1(19) = 13564373693588558173

In this particular problem, we have been discussing I1(100), a value which is far off the bottom
of this table. But we did say that I1(100) > 50!. You might be interested to know just how
large 50! actually is. Maple reports:

50! = 30414093201713378043612608166064768844377641568960512000000000000.

The binary relation R = {(a,a), (a,b), (b,b), (¢,c)} is reflexive on X = {a,b,c}. True. Just
needs to have (z,x) for every x € X.

The binary relation R = {(a, a), (a,b), (c,c), (b, c)} is transitive on X = {a,b,c}. False. Has
(a,b) and (b, c). Needs to have (a,c) and it doesn’t.

The binary relation R = {(a,a), (a,b), (¢, c), (b,a)} is antisymmetric on X = {a,b,c}. False.
The relation contains (a,b) and (b, a) but a # b.

The binary relation R = {(a,a), (b,0), (¢,c), (a,b), (b,a)} is an equivalence relation on X =
{a,b,c}. True. The relation is reflexive, symmetric and transitive.

Linear programming problems with integer coefficient constraints always have integer valued
solutions. False. See the additional comments below.

Every linear programming problem is also a network flow problem.  False. It’s the other
way round. A network flow problem is a special case of a linear programing problem.



As we remarked earlier, the fact that network flow problems with integer capacities has a
maximum flow with all flow values integral is an important consequence of the Ford-Fulkerson
algorithm.

Here is a trivial instance of a linear programming problem with integer constraints which
does not have a solution in integers: minimize x subject to 3x = 5. For a more illustrative
example, consider: minimize 7z + 8y subject to the following constraints: (1) 9z + 4y < 36;
(2) 3z 4+ 9y < 27; (3) z,y > 0. The answer is the point in the plane where the two lines
9z + 4y = 36 and 3z + 9y = 27 cross. This point does not have integer coordinates (check it
out yourself to be sure).



