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1. Note that 3960 = 23 × 32 × 5 × 11. Compute φ(3960).
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= 1320

2. Consider the partitions of an integer n. What is the conclusion to be drawn from the following
computation? Verify your answer when n = 7.
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The computation shows that the number of partitions of an integer into distinct parts is
equal to the number of partitions into odd parts. For n = 7, there are 5 of each type:

Distinct parts: 7 6 + 1 5 + 2 4 + 3 4 + 2 + 1
Odd parts: 7 5 + 1 + 1 3 + 3 + 1 3 + 1 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 + 1 + 1

3. Let A denote the advancement operator, i.e., A f(n) = f(n + 1). Find the general solution of
the following equation:

(A2 + 4A − 12)f(n) = 0

The polynomial factors as (A + 6)(A − 2), and the roots are −6 and +2. So the general
solution is f(n) = c1(−6)n + c22n.

4. For the equation in the preceding problem, find the particular solution given f(0) = 8 and
f(1) = −8.

We solve the following two equations:

c1 + c2 = 8
−6c1 + 2c2 = −8

to obtain c1 = 3 and c2 = 5. So the particular solution is f(n) = 3(−6)n + 5(2)n.
5. Show that G is planar.
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Here’s a redrawing of the graph without edge cross-
ings, which shows that G is planar.
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6. Show that G is hamiltonian by listing
the vertices in an appropriate order, start-
ing with vertex 1.
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The following sequence forms a hamiltonian cycle in
G:

1, 9, 6, 2, 3, 8, 5, 10, 7, 1

7. Show that G has an euler circuit by
listing the vertices (with repetition al-
lowed) in an appropriate order, starting
with vertex 1.
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The following sequence forms an euler circuit in G:

1, 5, 6, 2, 5, 3, 2, 7, 3, 4, 7, 1

8. Show that G is an interval graph.
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5 The following intervals form a representation of
the given graph.

1 5

7
2

6
3

4

9. Find ω(G), and list a set of vertices
which forms a clique of maximum size.
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The maximum clique size is 3. The vertices {2, 4, 6}
form a clique of size 3. There are several other such
sets.

10. Find a proper coloring of G using
χ(G) colors.
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Here is a proper coloring of the graph using the
colors {1, 2, 3}.
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11. Verify Euler’s formula for the follow-
ing planar graph.
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4 For this drawing, V = 6, E = 8 and F = 4. Thus

V − E + F = 6 − 8 + 4 = 2.

12. Suppose G is a graph with 120 vertices and 4037 edges. Explain why G is non-planar. Also
explain why G contains a triangle.

By Euler’s formula, we know that a planar graph on n vertices contains at most 3n − 6
edges, so a planar graph with 120 vertices has at most 357 edges. By Turán’s theorem, a
triangle-free graph on n vertices has at most dn2

4 e edges, so a triangle free graph with 120
vertices has at most 3600 edges.


