MATH 3012 Quiz 3, April 19, 2007, WTT

Write the general solution of the advancement operator equation:

$$f(n) = c_1(-2) + c_2 n (-2) + c_3 n^2 (-2) + c_4 3^n + c_5 n^3$$

2. Find a particular solution to the advancement operator equation:

$$(A^2 + 2A - 15)f(n) = 27(4)^n.$$

$$(A^{2} + 2A - 15)f(n) = 27(4)^{n}.$$
Try $f(n) = C \cdot 4^{n}$.
$$C \cdot 4^{n+2} + 2C4^{n+1} - 15 \cdot C4^{n} = 27 \cdot 4^{n}$$

$$16C4^{n} + 8C4^{n} - 15C4^{n} = 27 \cdot 4^{n}$$

$$9C = 27$$

3. Find the unique solution to the advancement operator equation: $(A^2 + 2A - 15)f(n) = 27(4)^n$ with f(0) = 18 and f(1) = 1.

general solution f(n)= c,(-5)" + c2(3)" + 3.4

$$C_1 + C_2 + 3 = 18$$

-5 $C_1 + 3C_2 + 12 = 1$

$$\frac{C_1 + C_2 = 11}{C_1 + C_2 = -11} = \frac{8C_1 = -56}{C_1 = 7}$$

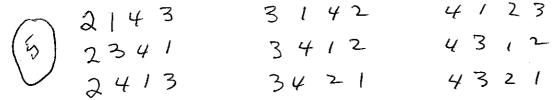
4. Write the Inclusion-Exclusion formula for d_n , the number of derangements of $\{1, 2, \ldots, n\}$:

$$d_n = \sum_{i=0}^{n} (-i)^i \binom{n}{i} (n-i)^i$$

Use the formula in the preceding question to find the value of d_4 .

 $Q_{4} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} 4! - \begin{pmatrix} 4 \\ 1 \end{pmatrix} 3! + \begin{pmatrix} 4 \\ 2 \end{pmatrix} 2! - \begin{pmatrix} 4 \\ 3 \end{pmatrix} 3! + \begin{pmatrix} 4 \\ 4 \end{pmatrix} 0!$

6. Verify your answer to the previous question by listing all the derangements on $\{1, 2, 3, 4\}$.



7. A data file digraph_data.txt has been read for a digraph whose vertex set is [6]. The weights on the directed edges are shown in the matrix below. In the space to the right, apply Dijkstra's algorithm to find the distance from vertex 1 to all other vertices in the graph. Also, for each x, find a shortest path from 1 to x.

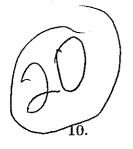
	W	1	2	3	4	5	6
	1	0	54	58	17	22	97
	2	60	. 0	28	9	19	8
	3	46	24	0	19	9	12
	4	16	36	40	0	- 8	73
i	5	23	29	30	3	0	47
	6	19	8	82	16	28	0

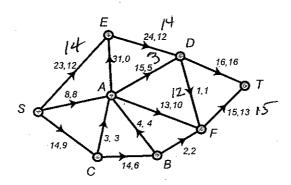
• • • • • • • • • • • • • • • • • • •	3	. 4	5	6
(1,2) 54	(1,3) 58	(1,4),17	(1,5)22	(1,6)97
(1.4,2) 53	(1,4,3) 57	9 .	(1,5) 22	(1,4,6190
(1,5,2) 51	1,5,3152			(1,5,6)69
	11,5,3152			(1,5,2,6)59
				(1,5,2,6) 59

8. The data file for a graph with vertex set $\{1, 2, ..., 7\}$ is shown below. In the space to the right, list in order the edges that would be found in carrying out Kruskal's algorithm (avoid cycles) and Prim's algorithm (build tree). Vertex 1 is the root.

graph1.txt	Kruskal	\mathbf{Prim}
7 2 7 24	2-7 24	6 1 35
6 1 35 2 1 38	6135	2 1 38
7 6 39	2 (38	2 7 24
1 4 45 6 4 47	1 4 45	1 4 45
3 1 53 7 3 54	3 1 53	3 1 53
4 7 56	5 2 58	5 2 58
5 2 58 4 5 60	_	

9. Let R(n, m) denote the least positive integer t so that every graph on t vertices contains a complete subgraph of size n or and independent set of size m. Bob has a new computer and prides himself on being a good programmer. One day, he boasts to Alice that with the assistance of his new computer, he has succeeded in verifying that $R(100, 150) \le 2^{300}$. Alice is not impressed. Can you explain why?





a. What is the current value of the flow?

- b. What is the capacity of the cut $V = \{S, A, C, E\} \cup \{B, D, F, T\}$. 24 + 15 + 13 + 14 = 66
- c. Carry out the labeling algorithm, using the pseudo-alphabetic order on the vertices and list below the labels which will be given to the vertices.

$$5 (*,+,\infty)$$

 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$
 $(5,+,5)$

T (F, +, 2) d. Use your work in part c to find an augmenting path and make the appropriate changes directly on the diagram.

e. What is the value of the new flow?

Carry out the labeling algorithm a second time on the updated flow. It should halt without the sink being labeled. Find a cut whose capacity is equal to the value of the flow.

$$S(x, +, \infty)$$

 $C(S, +, 9)$
 $E(S, +, 9)$
 $B(C, +, 5)$
 $D(E, +, 9)$
 $A(D, -, 3)$
 $F(A, +, 1)$
Labelled