
Complete Solutions for MATH 3012 Quiz 1, September 27, 2011, WTT

Note. The answers given here are more complete than is expected on an actual exam. It is
intended that the more comprehensive solutions presented here will be valuable to students in
studying for the final exam. In a few places, the wording of a problem is changed slightly to reflect
the modifed layout. A table providing point values for the problems is given at the very end.

1. Consider the 16-element set consisting of the ten digits {0, 1, 2, . . . , 9} and the six capital letters
{A,B,C,D,E, F}.
a. How many strings of length 9 can be formed if repetition of symbols is not permitted?

This is just a permutation problem. Answer: P (16, 9).

b. How many strings of length 9 can be formed if repetition of symbols is permitted?
Strings from an alphabet of fixed size. Answer: 169.

c. How many strings of length 9 can be formed using exactly two 6’s, three B’s and four D’s?
This is a “Mississippi” problem. Answer:

(
9

2,3,4

)
.

d. How many strings of length 9 can be formed using exactly two 6’s, three B’s and four D’s if
the four D′s are required to occur consecutively in the string?

We consider the block of four D′s as a single letter. The resulting string has only
2 + 3 + 1 = 6 letters. Answer:

(
6

2,3,1

)
.

2. How many lattice paths from (2, 8) to (27, 39) do not pass through (18, 23)?
The basic fact we need to remember here is that the number of lattice paths from
(0, 0) to (m,n) is

(
m+n
m

)
, assuming of course that m,n ≥ 0. More generally, when

a ≤ c and b ≤ d, the number of lattice paths from (a, b) to (c, d) is
(
(c−a)+(d−b)

c−a

)
. In

this problem, the number of lattice paths from (2, 8) to (27, 39) is
(
25+31
25

)
=

(
56
25

)
.

Of these,
(
16+15
16

)
pass through (18, 23). Answer:

(
56
25

)
−

(
31
15

)
. Note: Be careful as

the answer can be rewritten in four different ways using the identity
(
a
b

)
=

(
a

a−b

)
.

3. How many integer valued solutions to the following equations and inequalities:
a. x1 + x2 + x3 + x4 = 32, all xi > 0.

This is the starting point for all problems of this type. We are counting the number
of distributions of m non-distinct objects into n distinct cells, with the additional
requirement that each cell must receive at least one object (all cells are non-empty).
This requires m ≥ n. We consider the m objects placed on a line—so that there are
m − 1 “gaps”. We then choose n − 1 of these gaps, a process which separates the
objects into n non-empty groups, which appear in left to right order on the line. So
the number of distributions is

(
m−1
n−1

)
.

In this problem, m = 32 and n = 4, so the answer is:
(
31
3

)
.

b. x1 + x2 + x3 + x4 = 32, all xi ≥ 0.
Suppose we are talking about distributing 32 apples, which we assume are non-
distinct, and we are distributing them to four variables, Alice, Bob, Carlos and
Dave. Alice receives x1 apples, Bob gets x2, etc. We are assuming here that we can
tell the difference between the four individuals, which in the problem means that
x1, x2, x3 and x4 are distinct variables.
We add to our collection four “artificial” apples resulting in a total of 36 = 32 + 4
apples. We then distribute these 36 apples to the four individuals. After, this dis-
tribution is made, we “tax” each of them and make them give back one apple. Now



it may happen that any one (and perhaps as many as three of the four) individu-
als are left with none. Regardless, it is clear that we have counted the number of
distributions with empty cells allowed. In general the answer would be

(
m+n−1
n−1

)
. In

this specific problem, the answer is
(
35
3

)
.

c. x1 + x2 + x3 + x4 < 32, all xi > 0.
Add a new “slack” variable x5 which is positive. Then the problem becomes one
just like part (a). Answer:

(
31
4

)
.

d. x1 + x2 + x3 + x4 ≤ 32, all xi ≥ 0.
Now the slack variable x5 is non-negative. So this problem becomes just like part (b).
Answer:

(
36
4

)
.

e. x1 + x2 + x3 + x4 = 32, all xi > 0, x2 ≥ 8.
Here the principle is to “set aside” some apples before the distribution is made. In
this case, we give seven apples to Bob (corresponding to the variable x2) in advance.
There are then 25 = 32 − 7 apples remaining. We distribute these 25 apples with
all four of Alice, Bob, Carlos and Dave getting at least one. Now xi > 0 for all i
and x2 ≥ 8. So the answer is

(
24
3

)
.

f. x1 + x2 + x3 + x4 = 32, all xi > 0, x2 ≤ 13.
We work two related problems and determine the answer for our problem as the
difference. The first problem is the number of distributions with all xi > 0. This is
part (a) and the answer if

(
31
3

)
. The second problem is the number of distributions

with all xi > 0 and x2 ≥ 14. This is part (e), with different parameters, so the
answer is

(
18
3

)
. Clearly, the answer to our problem is then

(
31
3

)
−
(
18
3

)
.

4. Use the Euclidean algorithm to find d = gcd(630, 495).
We carry out a series of long divisions, stopping when the remainder is zero:

630 = 1 · 495 + 135

495 = 3 · 135 + 90

135 = 1 · 90 + 45

90 = 2 · 45 + 0

Accordingly, gcd(630, 495) = 45.

5. Use your work in the preceding problem to find integers a and b so that d = 630a+ 495b.
Start by rewriting the results of the long division done previously (all but the last
one):

135 = 1 · 630− 1 · 495

90 = 1 · 495− 3 · 135

45 = 1 · 135− 1 · 90



Now substitute, starting at the bottom:

45 = 1 · 135− 1 · 90

= 1 · 135− 1 · (1 · 495− 3 · 135)

= 4 · 135− 1 · 495

= 4(1 · 630− 1 · 495)− 1 · 495

= 4 · 630− 5 · 495

So a correct answer is a = 4 and b = −5. Note: It is easy to see that there
are infinitely many correct answers. For every integer n, you may verify that a =
4− 495n and b = −5 + 630n works.

6. For a positive integer n, let sn count the number of ternary strings of length n that do not
contain 00 or 01 as a substring. Note that s1 = 3 and s2 = 7. Develop a recurrence relation for sn
and use it to compute s3, s4 and s5.

Let n ≥ 3. We develop a recurrence relation satisfied by the sequence sn. Look at
the good strings of length n and divide them into G0, G1 and G2, where Gi is the
set of all good strings that start with character i in the first position. We claim that
|G1| = |G2| = sn−1. This follows from the fact that if the first character is a 1 or a
2, then the last n − 1 characters form a good string of length n − 1. Furthermore,
we can take any good string of length n− 1 and prepend a 1 or a 2 at the start and
obtain a good string of length n.
On the other hand, if the first character is a 0, then the second character must be
a 2. Afterwards, in the last n − 2 positions, we have a good string of length n − 2
and all of these may occur. It follows that |G0| = sn−2. So the recurrence equation
becomes sn = 2sn−1 + sn−2.
Using this recurrence, we make the following computations:

s3 = 2 · 7 + 3 = 17

s4 = 2 · 17 + 7 = 41

s5 = 2 · 41 + 17 = 99

There is a fascinating subtlety to this problem. If you work it “left to right”, as we
have just described, it is quite easy. But you could have grouped the good strings
according to their last character, i.e., taking a “right to left” approach. If you try
this, you will find that it more challenging to find a simple recurrence. It can be
done and I showed you how in class, but regardless, it is more complicated than the
solution presented above.
To understand this comment fully, just work the problem of counting all ternary
strings that don’t have a 00 or a 10, and try to take the same “left to right” approach
illustrated above.



7. Use the algorithm developed in class, with vertex 1 as root, to find an Euler circuit in the
following graph:

1

5

3

6

4

2

7

8

9

10

11

The rule is to always take the first available neighbor joined by an edge on which
we have not yet walked. So the initial string becomes:

(1, 7, 6, 8, 1)

Now when we reach the last 1 in this sequence, there are no available edges. So
starting at the first 1, we scan left to right looking for a vertex which has edges
incident to it that we have not yet visited. The first such vertex is 6, so we start
with this vertex and begin again. Now the sequence becomes:

6, 10, 11, 6)

This string is inserted into the first, yielding

(1, 7, 6, 10, 11, 6, 8, 1)

We repeat the process, scanning left to right for the first vertex incident with an
edge we have not yet visited. Now it is vertex 8. Starting from 8, we get:

8, 2, 3, 4, 2, 9, 3, 8, 4, 5, 8)

Inserting, we get:

(1, 7, 6, 10, 11, 6, 8, 2, 3, 4, 2, 9, 3, 8, 4, 5, 8, 1)

When we scan left to right, we see that no vertex is incident with any edge we
haven’t already visited. Furthermore, when we check against the list of all edges,
we see that the current circuit includes all edges of the graph. So we have an Euler
circuit.
Note that this last check, insuring that we have visited all edges, is necessary since
the graph might be disconnected. Visually, it is clear that the graph in this problem
is connected and this is not an issue. But if we are thinking about how this might
be programmed and used on a graph presented as a large data file, the connectivity
check is essential.



8. Consider the graph on the left:
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a. Explain why the graph shown does not have an Euler circuit.
A graph has an Euler circuit if and only if it is connected and every vertex has even
degree. This graph is connected, but there are four vertices that have odd degree:
vertices 2, 3, 8 and 11. Note that in any graph, the number of vertices having odd
degree is always even.

b. Provide a listing of the vertices that constitutes a Hamiltonian cycle starting with vertices 1,
2 and 3 in that order.

Here is a listing of the vertices that forms a hamiltonian cycle: (1, 2, 3, 11, 8, 6, 7, 4, 10, 5, 9).
All vertices appear exactly once in this list. Each consecutive pair forms an edge in
the graph and the last vertex is adjacent to the first. As specified, the list begings
with (1, 2, 3). For visual clarity, we illustrate this cycle with the middle figure above.
Note that there are several correct answers to this problem. All of them start out
as (1, 2, 3, 11, 8). The next two vertices are 6 and 7 but they can be visited in either
order. Then you must visit vertex 4. After that you can do (10, 5, 9), 10, 9, 5),
(5, 9, 10) or (5, 10, 9).
It is important to remember that we do not have an effective algorithm for finding
hamiltonian cycles. Here, we just proceeded by inspection.

c. Find a set of vertices that forms a maximal clique but not a maximum clique.
Recall that a set S of vertices forms a clique when any distinct pair of vertices forms
an edge, and a clique is maximal when there is no vertex x which is not in S for
which S ∪ {x} is also a clique. A clique is maximum when there is no clique which
has more vertices.
There are many, many correct answers here. One is {2, 3, 11}. Note that these three
vertices form a triangle (a clique of size 3 is typically called a triangle), but there
is no other vertex adjacent to all three of them. This clique is not maximum, since
{1, 5, 9, 10} is also a clique and it has size 4.

d. What is ω(G) for this graph?
The notation ω(G) denotes the maximum clique size of the graph G. Here, we note
that ω(G) = 5 (see answer to next question).

e. Find a set of vertices which forms a maximum clique in this graph.
The set {2, 4, 6, 7, 8} forms a clique of size 5. By inspection, there are no cliques
of size 6. Note that we have no effective algorithm for finding the maximum clique
size ω(G) for a graph G. If G has n vertices, we can dertermine whether there is
a clique of size 5 by examining each of the

(
n
5

)
subsets to see if they form a clique.

If n = 1, 000, this means examing approximately 1015 sets, which is barely doable.
But this technique is not likely to be of much use when n = 1, 000, 000 and certainly



won’t work when n = 1, 000, 000, 000. On the other hand, determing whether G has
a clique of size bn/2c is already beyond reach when n = 1, 000.

f. Show that χ(G) = ω(G) for this graph by providing an optimum coloring. You may write
directly on the figure.

The notation χ(G) is used to denote the chromatic number of G, i.e., the fewest
number of colors required so that we can assign a color to each vertex so that
adjacent vertices never receive the same color. For any graph G, we always have the
trivial inequality χ(G) = ω(G). In class, we showed that for every t ≥ 3, there is a
graph Gt for which ω(G) = 2 and χ(G) = t. In other words, there are triangle-free
graphs which have arbitrarily large chromatic number.
On the other hand, there are important classes of graphs for which χ(G) = ω(G).
The graph shown here satisfies χ(G) = ω(G) = 5, and we illustrate in the figure on
the right a 5-coloring. The colors are the bold-face numbers. Again, we comment
that we have an effective algorithm for coloring a graph only when it is 2-colorable,
i.e., it has no odd cycles. But for any t ≥ 3, it is apparently very difficult to answer
whether a graph has chromatic number at most t.

9. Draw a graph G on six vertices with ω(G) = 3 and χ(G) = 4.
We learned in class that the 5-cycle C5 has ω(C5) = 2 and χ(C5) = 3. So if we add
a new vertex x adjacent to all five vertices on the 5-cycle, we get a graph G on 6
vertices with ω(G) = 3 and χ(G) = 4. Here is a drawing of that graph.

10. Draw all unlabelled trees on five vertices. Then for each of them, count the number of ways
the labels from {1, 2, 3, 4, 5} can be applied. Hint: The total number of labeled trees on 5 vertices
is 125 = 53.

In the following figure, we draw the three unlabelled trees on 5 vertices. Below
each of the trees, we show the number of ways the labels from {1, 2, 3, 4, 5} can be
applied. The first count is 5!/2 = 60 since the entire path can be reversed. The
second is 5!/2! = 60 since the two leaves adjacent to the vertex of degree 3 can be
permuted. The third count is 5!/4! = 5 since the four leaves can be permuted. Note
that the total number of labeled trees on 5 vertices is 53 = 125 = 60 + 60 + 5 which
illustrates the general formula: the number of labeled trees on n vertices is nn−2.

5! /2 = 60 5! /2! = 60 5! /4! = 5



11. Prove the following identity by Mathematical Induction:

2 + 8 + 14 + . . . 6n− 4 = 3n2 − n when n ≥ 1.

Proof. For the base step, we note that when n = 1, the left hand side consists only
of a single term, and that term is 2. On the other hand, when n = 1, the right hand
side is 3 · 12 − 1 = 3− 1 = 2. So the formula holds when n = 1.
Now for the inductive step. We assume that the formula holds for some integer
k ≥ 1. When n = k + 1, the left hand side becomes

2 + 8 + 14 + · · ·+ 6k − 4 + 6(k + 1)− 4.

We can then conclude that

2 + 8 + 14 + · · ·+ 6k − 2 + 6(k + 1)− 4 = 3k2 − k + 6(k + 1)− 4

= 3k2 + 5k + 3

= 3k2 + 6k + 3− (k + 1)

= 3(k + 1)2 − (k + 1).

This last computation shows that the formula is also valid when n = k + 1. By the
Principle of Induction, we have now shown that the formula is valid for all n ≥ 1.

Point Totals

1. 12 points. 3 parts each worth 4 points.

2. 7 points.

3. 18 points. 6 parts each worth 3 points.

4. 7 points.

5. 7 points.

6. 8 points.

7. 8 points.

8. 12 points. 6 parts each worth 2 points.

9. 5 points.

10. 8 points.

11. 8 points.

Total of 100 points for all 11 questions.


